Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for Broadcom BCM2835 SPI Controllers
 *
 * Copyright (C) 2012 Chris Boot
 * Copyright (C) 2013 Stephen Warren
 * Copyright (C) 2015 Martin Sperl
 *
 * This driver is inspired by:
 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/machine.h> /* FIXME: using chip internals */
#include <linux/gpio/driver.h> /* FIXME: using chip internals */
#include <linux/of_irq.h>
#include <linux/spi/spi.h>

/* SPI register offsets */
#define BCM2835_SPI_CS			0x00
#define BCM2835_SPI_FIFO		0x04
#define BCM2835_SPI_CLK			0x08
#define BCM2835_SPI_DLEN		0x0c
#define BCM2835_SPI_LTOH		0x10
#define BCM2835_SPI_DC			0x14

/* Bitfields in CS */
#define BCM2835_SPI_CS_LEN_LONG		0x02000000
#define BCM2835_SPI_CS_DMA_LEN		0x01000000
#define BCM2835_SPI_CS_CSPOL2		0x00800000
#define BCM2835_SPI_CS_CSPOL1		0x00400000
#define BCM2835_SPI_CS_CSPOL0		0x00200000
#define BCM2835_SPI_CS_RXF		0x00100000
#define BCM2835_SPI_CS_RXR		0x00080000
#define BCM2835_SPI_CS_TXD		0x00040000
#define BCM2835_SPI_CS_RXD		0x00020000
#define BCM2835_SPI_CS_DONE		0x00010000
#define BCM2835_SPI_CS_LEN		0x00002000
#define BCM2835_SPI_CS_REN		0x00001000
#define BCM2835_SPI_CS_ADCS		0x00000800
#define BCM2835_SPI_CS_INTR		0x00000400
#define BCM2835_SPI_CS_INTD		0x00000200
#define BCM2835_SPI_CS_DMAEN		0x00000100
#define BCM2835_SPI_CS_TA		0x00000080
#define BCM2835_SPI_CS_CSPOL		0x00000040
#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
#define BCM2835_SPI_CS_CPOL		0x00000008
#define BCM2835_SPI_CS_CPHA		0x00000004
#define BCM2835_SPI_CS_CS_10		0x00000002
#define BCM2835_SPI_CS_CS_01		0x00000001

#define BCM2835_SPI_FIFO_SIZE		64
#define BCM2835_SPI_FIFO_SIZE_3_4	48
#define BCM2835_SPI_DMA_MIN_LENGTH	96
#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
				| SPI_NO_CS | SPI_3WIRE)

#define DRV_NAME	"spi-bcm2835"

/* define polling limits */
static unsigned int polling_limit_us = 30;
module_param(polling_limit_us, uint, 0664);
MODULE_PARM_DESC(polling_limit_us,
		 "time in us to run a transfer in polling mode\n");

/**
 * struct bcm2835_spi - BCM2835 SPI controller
 * @regs: base address of register map
 * @clk: core clock, divided to calculate serial clock
 * @clk_hz: core clock cached speed
 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
 * @tfr: SPI transfer currently processed
 * @ctlr: SPI controller reverse lookup
 * @tx_buf: pointer whence next transmitted byte is read
 * @rx_buf: pointer where next received byte is written
 * @tx_len: remaining bytes to transmit
 * @rx_len: remaining bytes to receive
 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
 *	length is not a multiple of 4 (to overcome hardware limitation)
 * @rx_prologue: bytes received without DMA if first RX sglist entry's
 *	length is not a multiple of 4 (to overcome hardware limitation)
 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 *      unloading the module
 * @count_transfer_polling: count of how often polling mode is used
 * @count_transfer_irq: count of how often interrupt mode is used
 * @count_transfer_irq_after_polling: count of how often we fall back to
 *      interrupt mode after starting in polling mode.
 *      These are counted as well in @count_transfer_polling and
 *      @count_transfer_irq
 * @count_transfer_dma: count how often dma mode is used
 * @slv: SPI slave currently selected
 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 * @tx_dma_active: whether a TX DMA descriptor is in progress
 * @rx_dma_active: whether a RX DMA descriptor is in progress
 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 *	(cyclically copies from zero page to TX FIFO)
 * @fill_tx_addr: bus address of zero page
 */
struct bcm2835_spi {
	void __iomem *regs;
	struct clk *clk;
	unsigned long clk_hz;
	int irq;
	struct spi_transfer *tfr;
	struct spi_controller *ctlr;
	const u8 *tx_buf;
	u8 *rx_buf;
	int tx_len;
	int rx_len;
	int tx_prologue;
	int rx_prologue;
	unsigned int tx_spillover;

	struct dentry *debugfs_dir;
	u64 count_transfer_polling;
	u64 count_transfer_irq;
	u64 count_transfer_irq_after_polling;
	u64 count_transfer_dma;

	struct bcm2835_spidev *slv;
	unsigned int tx_dma_active;
	unsigned int rx_dma_active;
	struct dma_async_tx_descriptor *fill_tx_desc;
	dma_addr_t fill_tx_addr;
};

/**
 * struct bcm2835_spidev - BCM2835 SPI slave
 * @prepare_cs: precalculated CS register value for ->prepare_message()
 *	(uses slave-specific clock polarity and phase settings)
 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 * @clear_rx_addr: bus address of @clear_rx_cs
 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 *	(uses slave-specific clock polarity and phase settings)
 */
struct bcm2835_spidev {
	u32 prepare_cs;
	struct dma_async_tx_descriptor *clear_rx_desc;
	dma_addr_t clear_rx_addr;
	u32 clear_rx_cs ____cacheline_aligned;
};

#if defined(CONFIG_DEBUG_FS)
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
				   const char *dname)
{
	char name[64];
	struct dentry *dir;

	/* get full name */
	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);

	/* the base directory */
	dir = debugfs_create_dir(name, NULL);
	bs->debugfs_dir = dir;

	/* the counters */
	debugfs_create_u64("count_transfer_polling", 0444, dir,
			   &bs->count_transfer_polling);
	debugfs_create_u64("count_transfer_irq", 0444, dir,
			   &bs->count_transfer_irq);
	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
			   &bs->count_transfer_irq_after_polling);
	debugfs_create_u64("count_transfer_dma", 0444, dir,
			   &bs->count_transfer_dma);
}

static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
{
	debugfs_remove_recursive(bs->debugfs_dir);
	bs->debugfs_dir = NULL;
}
#else
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
				   const char *dname)
{
}

static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
{
}
#endif /* CONFIG_DEBUG_FS */

static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
{
	return readl(bs->regs + reg);
}

static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
{
	writel(val, bs->regs + reg);
}

static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
{
	u8 byte;

	while ((bs->rx_len) &&
	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		if (bs->rx_buf)
			*bs->rx_buf++ = byte;
		bs->rx_len--;
	}
}

static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
{
	u8 byte;

	while ((bs->tx_len) &&
	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
		bs->tx_len--;
	}
}

/**
 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes to read from RX FIFO
 *
 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 * in the CS register is set (such that a read from the FIFO register receives
 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 */
static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
{
	u32 val;
	int len;

	bs->rx_len -= count;

	do {
		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		len = min(count, 4);
		memcpy(bs->rx_buf, &val, len);
		bs->rx_buf += len;
		count -= 4;
	} while (count > 0);
}

/**
 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes to write to TX FIFO
 *
 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 * in the CS register is set (such that a write to the FIFO register transmits
 * 32-bit instead of just 8-bit).
 */
static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
{
	u32 val;
	int len;

	bs->tx_len -= count;

	do {
		if (bs->tx_buf) {
			len = min(count, 4);
			memcpy(&val, bs->tx_buf, len);
			bs->tx_buf += len;
		} else {
			val = 0;
		}
		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
		count -= 4;
	} while (count > 0);
}

/**
 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 * @bs: BCM2835 SPI controller
 *
 * The caller must ensure that the RX FIFO can accommodate as many bytes
 * as have been written to the TX FIFO:  Transmission is halted once the
 * RX FIFO is full, causing this function to spin forever.
 */
static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
{
	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
		cpu_relax();
}

/**
 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes available for reading in RX FIFO
 */
static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
{
	u8 val;

	count = min(count, bs->rx_len);
	bs->rx_len -= count;

	do {
		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		if (bs->rx_buf)
			*bs->rx_buf++ = val;
	} while (--count);
}

/**
 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes available for writing in TX FIFO
 */
static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
{
	u8 val;

	count = min(count, bs->tx_len);
	bs->tx_len -= count;

	do {
		val = bs->tx_buf ? *bs->tx_buf++ : 0;
		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
	} while (--count);
}

static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
{
	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);

	/* Disable SPI interrupts and transfer */
	cs &= ~(BCM2835_SPI_CS_INTR |
		BCM2835_SPI_CS_INTD |
		BCM2835_SPI_CS_DMAEN |
		BCM2835_SPI_CS_TA);
	/*
	 * Transmission sometimes breaks unless the DONE bit is written at the
	 * end of every transfer.  The spec says it's a RO bit.  Either the
	 * spec is wrong and the bit is actually of type RW1C, or it's a
	 * hardware erratum.
	 */
	cs |= BCM2835_SPI_CS_DONE;
	/* and reset RX/TX FIFOS */
	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;

	/* and reset the SPI_HW */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
	/* as well as DLEN */
	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
}

static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{
	struct bcm2835_spi *bs = dev_id;
	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);

	/*
	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
	 * or if RXR is set (RX FIFO >= ¾ full).
	 */
	if (cs & BCM2835_SPI_CS_RXF)
		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
	else if (cs & BCM2835_SPI_CS_RXR)
		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);

	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);

	/* Read as many bytes as possible from FIFO */
	bcm2835_rd_fifo(bs);
	/* Write as many bytes as possible to FIFO */
	bcm2835_wr_fifo(bs);

	if (!bs->rx_len) {
		/* Transfer complete - reset SPI HW */
		bcm2835_spi_reset_hw(bs);
		/* wake up the framework */
		spi_finalize_current_transfer(bs->ctlr);
	}

	return IRQ_HANDLED;
}

static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
					struct spi_device *spi,
					struct spi_transfer *tfr,
					u32 cs, bool fifo_empty)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* update usage statistics */
	bs->count_transfer_irq++;

	/*
	 * Enable HW block, but with interrupts still disabled.
	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
	 */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);

	/* fill TX FIFO as much as possible */
	if (fifo_empty)
		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
	bcm2835_wr_fifo(bs);

	/* enable interrupts */
	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
	bcm2835_wr(bs, BCM2835_SPI_CS, cs);

	/* signal that we need to wait for completion */
	return 1;
}

/**
 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 * @ctlr: SPI master controller
 * @tfr: SPI transfer
 * @bs: BCM2835 SPI controller
 * @cs: CS register
 *
 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 * Only the final write access is permitted to transmit less than 4 bytes, the
 * SPI controller deduces its intended size from the DLEN register.
 *
 * If a TX or RX sglist contains multiple entries, one per page, and the first
 * entry starts in the middle of a page, that first entry's length may not be
 * a multiple of 4.  Subsequent entries are fine because they span an entire
 * page, hence do have a length that's a multiple of 4.
 *
 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 * because they are contiguous in physical memory and therefore not split on
 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 * buffers.
 *
 * The DMA engine is incapable of combining sglist entries into a continuous
 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 * entry is rounded up by throwing away received bytes.
 *
 * Overcome this limitation by transferring the first few bytes without DMA:
 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 *
 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 * if the length of the first is *exactly* 1.
 *
 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 *
 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 * the width but also garbles the FIFO's contents.  The prologue must therefore
 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 * pick up the residue in the RX FIFO in ungarbled form.
 */
static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
					  struct spi_transfer *tfr,
					  struct bcm2835_spi *bs,
					  u32 cs)
{
	int tx_remaining;

	bs->tfr		 = tfr;
	bs->tx_prologue  = 0;
	bs->rx_prologue  = 0;
	bs->tx_spillover = false;

	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;

	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;

		if (bs->rx_prologue > bs->tx_prologue) {
			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
				bs->tx_prologue  = bs->rx_prologue;
			} else {
				bs->tx_prologue += 4;
				bs->tx_spillover =
					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
			}
		}
	}

	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
	if (!bs->tx_prologue)
		return;

	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
	if (bs->rx_prologue) {
		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
						  | BCM2835_SPI_CS_DMAEN);
		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
		bcm2835_wait_tx_fifo_empty(bs);
		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
						  | BCM2835_SPI_CS_CLEAR_TX
						  | BCM2835_SPI_CS_DONE);

		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
					   sg_dma_address(&tfr->rx_sg.sgl[0]),
					   bs->rx_prologue, DMA_FROM_DEVICE);

		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
	}

	if (!bs->tx_buf)
		return;

	/*
	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
	 * Also adjust second entry if prologue spills over to it.
	 */
	tx_remaining = bs->tx_prologue - bs->rx_prologue;
	if (tx_remaining) {
		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
						  | BCM2835_SPI_CS_DMAEN);
		bcm2835_wr_fifo_count(bs, tx_remaining);
		bcm2835_wait_tx_fifo_empty(bs);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
						  | BCM2835_SPI_CS_DONE);
	}

	if (likely(!bs->tx_spillover)) {
		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
	} else {
		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
	}
}

/**
 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 * @bs: BCM2835 SPI controller
 *
 * Undo changes which were made to an SPI transfer's sglist when transmitting
 * the prologue.  This is necessary to ensure the same memory ranges are
 * unmapped that were originally mapped.
 */
static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
{
	struct spi_transfer *tfr = bs->tfr;

	if (!bs->tx_prologue)
		return;

	if (bs->rx_prologue) {
		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
	}

	if (!bs->tx_buf)
		goto out;

	if (likely(!bs->tx_spillover)) {
		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
	} else {
		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
	}
out:
	bs->tx_prologue = 0;
}

/**
 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 * @data: SPI master controller
 *
 * Used for bidirectional and RX-only transfers.
 */
static void bcm2835_spi_dma_rx_done(void *data)
{
	struct spi_controller *ctlr = data;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* terminate tx-dma as we do not have an irq for it
	 * because when the rx dma will terminate and this callback
	 * is called the tx-dma must have finished - can't get to this
	 * situation otherwise...
	 */
	dmaengine_terminate_async(ctlr->dma_tx);
	bs->tx_dma_active = false;
	bs->rx_dma_active = false;
	bcm2835_spi_undo_prologue(bs);

	/* reset fifo and HW */
	bcm2835_spi_reset_hw(bs);

	/* and mark as completed */;
	spi_finalize_current_transfer(ctlr);
}

/**
 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 * @data: SPI master controller
 *
 * Used for TX-only transfers.
 */
static void bcm2835_spi_dma_tx_done(void *data)
{
	struct spi_controller *ctlr = data;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* busy-wait for TX FIFO to empty */
	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
		bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);

	bs->tx_dma_active = false;
	smp_wmb();

	/*
	 * In case of a very short transfer, RX DMA may not have been
	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
	 * to terminate it immediately after issuing.
	 */
	if (cmpxchg(&bs->rx_dma_active, true, false))
		dmaengine_terminate_async(ctlr->dma_rx);

	bcm2835_spi_undo_prologue(bs);
	bcm2835_spi_reset_hw(bs);
	spi_finalize_current_transfer(ctlr);
}

/**
 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 * @ctlr: SPI master controller
 * @tfr: SPI transfer
 * @bs: BCM2835 SPI controller
 * @slv: BCM2835 SPI slave
 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 *
 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 * Return 0 on success or a negative error number.
 */
static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
				  struct spi_transfer *tfr,
				  struct bcm2835_spi *bs,
				  struct bcm2835_spidev *slv,
				  bool is_tx)
{
	struct dma_chan *chan;
	struct scatterlist *sgl;
	unsigned int nents;
	enum dma_transfer_direction dir;
	unsigned long flags;

	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;

	if (is_tx) {
		dir   = DMA_MEM_TO_DEV;
		chan  = ctlr->dma_tx;
		nents = tfr->tx_sg.nents;
		sgl   = tfr->tx_sg.sgl;
		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
	} else {
		dir   = DMA_DEV_TO_MEM;
		chan  = ctlr->dma_rx;
		nents = tfr->rx_sg.nents;
		sgl   = tfr->rx_sg.sgl;
		flags = DMA_PREP_INTERRUPT;
	}
	/* prepare the channel */
	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
	if (!desc)
		return -EINVAL;

	/*
	 * Completion is signaled by the RX channel for bidirectional and
	 * RX-only transfers; else by the TX channel for TX-only transfers.
	 */
	if (!is_tx) {
		desc->callback = bcm2835_spi_dma_rx_done;
		desc->callback_param = ctlr;
	} else if (!tfr->rx_buf) {
		desc->callback = bcm2835_spi_dma_tx_done;
		desc->callback_param = ctlr;
		bs->slv = slv;
	}

	/* submit it to DMA-engine */
	cookie = dmaengine_submit(desc);

	return dma_submit_error(cookie);
}

/**
 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 * @ctlr: SPI master controller
 * @tfr: SPI transfer
 * @slv: BCM2835 SPI slave
 * @cs: CS register
 *
 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 * the TX and RX DMA channel to copy between memory and FIFO register.
 *
 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 * memory is pointless.  However not reading the RX FIFO isn't an option either
 * because transmission is halted once it's full.  As a workaround, cyclically
 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 *
 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 * this is called only once, on slave registration.  A DMA descriptor to write
 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 * when performing a TX-only transfer is to submit this descriptor to the RX
 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 * generate any interrupts while running.  It must be terminated once the
 * TX DMA channel is done.
 *
 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 * reduction in bus traffic and thus energy consumption is achieved.
 *
 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 * copying from the zero page.  The DMA descriptor to do this is preallocated
 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 * done and can then be reused.
 *
 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 * of copying them from memory.  This reduces traffic on the memory bus.  The
 * feature is not available on so-called "lite" channels, but normally TX DMA
 * is backed by a full-featured channel.
 *
 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 * performed at the end of an RX-only transfer.
 */
static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
					struct spi_transfer *tfr,
					struct bcm2835_spidev *slv,
					u32 cs)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	dma_cookie_t cookie;
	int ret;

	/* update usage statistics */
	bs->count_transfer_dma++;

	/*
	 * Transfer first few bytes without DMA if length of first TX or RX
	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
	 */
	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);

	/* setup tx-DMA */
	if (bs->tx_buf) {
		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
	} else {
		cookie = dmaengine_submit(bs->fill_tx_desc);
		ret = dma_submit_error(cookie);
	}
	if (ret)
		goto err_reset_hw;

	/* set the DMA length */
	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);

	/* start the HW */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);

	bs->tx_dma_active = true;
	smp_wmb();

	/* start TX early */
	dma_async_issue_pending(ctlr->dma_tx);

	/* setup rx-DMA late - to run transfers while
	 * mapping of the rx buffers still takes place
	 * this saves 10us or more.
	 */
	if (bs->rx_buf) {
		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
	} else {
		cookie = dmaengine_submit(slv->clear_rx_desc);
		ret = dma_submit_error(cookie);
	}
	if (ret) {
		/* need to reset on errors */
		dmaengine_terminate_sync(ctlr->dma_tx);
		bs->tx_dma_active = false;
		goto err_reset_hw;
	}

	/* start rx dma late */
	dma_async_issue_pending(ctlr->dma_rx);
	bs->rx_dma_active = true;
	smp_mb();

	/*
	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
	 * may run before RX DMA is issued.  Terminate RX DMA if so.
	 */
	if (!bs->rx_buf && !bs->tx_dma_active &&
	    cmpxchg(&bs->rx_dma_active, true, false)) {
		dmaengine_terminate_async(ctlr->dma_rx);
		bcm2835_spi_reset_hw(bs);
	}

	/* wait for wakeup in framework */
	return 1;

err_reset_hw:
	bcm2835_spi_reset_hw(bs);
	bcm2835_spi_undo_prologue(bs);
	return ret;
}

static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
				struct spi_device *spi,
				struct spi_transfer *tfr)
{
	/* we start DMA efforts only on bigger transfers */
	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
		return false;

	/* return OK */
	return true;
}

static void bcm2835_dma_release(struct spi_controller *ctlr,
				struct bcm2835_spi *bs)
{
	if (ctlr->dma_tx) {
		dmaengine_terminate_sync(ctlr->dma_tx);

		if (bs->fill_tx_desc)
			dmaengine_desc_free(bs->fill_tx_desc);

		if (bs->fill_tx_addr)
			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
					     bs->fill_tx_addr, sizeof(u32),
					     DMA_TO_DEVICE,
					     DMA_ATTR_SKIP_CPU_SYNC);

		dma_release_channel(ctlr->dma_tx);
		ctlr->dma_tx = NULL;
	}

	if (ctlr->dma_rx) {
		dmaengine_terminate_sync(ctlr->dma_rx);
		dma_release_channel(ctlr->dma_rx);
		ctlr->dma_rx = NULL;
	}
}

static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
			    struct bcm2835_spi *bs)
{
	struct dma_slave_config slave_config;
	const __be32 *addr;
	dma_addr_t dma_reg_base;
	int ret;

	/* base address in dma-space */
	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
	if (!addr) {
		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
		/* Fall back to interrupt mode */
		return 0;
	}
	dma_reg_base = be32_to_cpup(addr);

	/* get tx/rx dma */
	ctlr->dma_tx = dma_request_chan(dev, "tx");
	if (IS_ERR(ctlr->dma_tx)) {
		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
		ret = PTR_ERR(ctlr->dma_tx);
		ctlr->dma_tx = NULL;
		goto err;
	}
	ctlr->dma_rx = dma_request_chan(dev, "rx");
	if (IS_ERR(ctlr->dma_rx)) {
		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
		ret = PTR_ERR(ctlr->dma_rx);
		ctlr->dma_rx = NULL;
		goto err_release;
	}

	/*
	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
	 * or, in case of an RX-only transfer, cyclically copies from the zero
	 * page to the FIFO using a preallocated, reusable descriptor.
	 */
	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
	if (ret)
		goto err_config;

	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
					      ZERO_PAGE(0), 0, sizeof(u32),
					      DMA_TO_DEVICE,
					      DMA_ATTR_SKIP_CPU_SYNC);
	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
		dev_err(dev, "cannot map zero page - not using DMA mode\n");
		bs->fill_tx_addr = 0;
		ret = -ENOMEM;
		goto err_release;
	}

	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
						     bs->fill_tx_addr,
						     sizeof(u32), 0,
						     DMA_MEM_TO_DEV, 0);
	if (!bs->fill_tx_desc) {
		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
		ret = -ENOMEM;
		goto err_release;
	}

	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
	if (ret) {
		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
		goto err_release;
	}

	/*
	 * The RX DMA channel is used bidirectionally:  It either reads the
	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
	 * precalculated value to the CS register to clear the RX FIFO.
	 */
	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
	if (ret)
		goto err_config;

	/* all went well, so set can_dma */
	ctlr->can_dma = bcm2835_spi_can_dma;

	return 0;

err_config:
	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
		ret);
err_release:
	bcm2835_dma_release(ctlr, bs);
err:
	/*
	 * Only report error for deferred probing, otherwise fall back to
	 * interrupt mode
	 */
	if (ret != -EPROBE_DEFER)
		ret = 0;

	return ret;
}

static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
					 struct spi_device *spi,
					 struct spi_transfer *tfr,
					 u32 cs)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	unsigned long timeout;

	/* update usage statistics */
	bs->count_transfer_polling++;

	/* enable HW block without interrupts */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);

	/* fill in the fifo before timeout calculations
	 * if we are interrupted here, then the data is
	 * getting transferred by the HW while we are interrupted
	 */
	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);

	/* set the timeout to at least 2 jiffies */
	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;

	/* loop until finished the transfer */
	while (bs->rx_len) {
		/* fill in tx fifo with remaining data */
		bcm2835_wr_fifo(bs);

		/* read from fifo as much as possible */
		bcm2835_rd_fifo(bs);

		/* if there is still data pending to read
		 * then check the timeout
		 */
		if (bs->rx_len && time_after(jiffies, timeout)) {
			dev_dbg_ratelimited(&spi->dev,
					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
					    jiffies - timeout,
					    bs->tx_len, bs->rx_len);
			/* fall back to interrupt mode */

			/* update usage statistics */
			bs->count_transfer_irq_after_polling++;

			return bcm2835_spi_transfer_one_irq(ctlr, spi,
							    tfr, cs, false);
		}
	}

	/* Transfer complete - reset SPI HW */
	bcm2835_spi_reset_hw(bs);
	/* and return without waiting for completion */
	return 0;
}

static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
				    struct spi_device *spi,
				    struct spi_transfer *tfr)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
	unsigned long spi_hz, cdiv;
	unsigned long hz_per_byte, byte_limit;
	u32 cs = slv->prepare_cs;

	/* set clock */
	spi_hz = tfr->speed_hz;

	if (spi_hz >= bs->clk_hz / 2) {
		cdiv = 2; /* clk_hz/2 is the fastest we can go */
	} else if (spi_hz) {
		/* CDIV must be a multiple of two */
		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
		cdiv += (cdiv % 2);

		if (cdiv >= 65536)
			cdiv = 0; /* 0 is the slowest we can go */
	} else {
		cdiv = 0; /* 0 is the slowest we can go */
	}
	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);

	/* handle all the 3-wire mode */
	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
		cs |= BCM2835_SPI_CS_REN;

	/* set transmit buffers and length */
	bs->tx_buf = tfr->tx_buf;
	bs->rx_buf = tfr->rx_buf;
	bs->tx_len = tfr->len;
	bs->rx_len = tfr->len;

	/* Calculate the estimated time in us the transfer runs.  Note that
	 * there is 1 idle clocks cycles after each byte getting transferred
	 * so we have 9 cycles/byte.  This is used to find the number of Hz
	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
	 * per 300,000 Hz of bus clock.
	 */
	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;

	/* run in polling mode for short transfers */
	if (tfr->len < byte_limit)
		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);

	/* run in dma mode if conditions are right
	 * Note that unlike poll or interrupt mode DMA mode does not have
	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
	 */
	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
		return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);

	/* run in interrupt-mode */
	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
}

static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
				       struct spi_message *msg)
{
	struct spi_device *spi = msg->spi;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
	int ret;

	if (ctlr->can_dma) {
		/*
		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
		 * aligned) if the limit is exceeded.
		 */
		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
						  GFP_KERNEL | GFP_DMA);
		if (ret)
			return ret;
	}

	/*
	 * Set up clock polarity before spi_transfer_one_message() asserts
	 * chip select to avoid a gratuitous clock signal edge.
	 */
	bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);

	return 0;
}

static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
				   struct spi_message *msg)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* if an error occurred and we have an active dma, then terminate */
	dmaengine_terminate_sync(ctlr->dma_tx);
	bs->tx_dma_active = false;
	dmaengine_terminate_sync(ctlr->dma_rx);
	bs->rx_dma_active = false;
	bcm2835_spi_undo_prologue(bs);

	/* and reset */
	bcm2835_spi_reset_hw(bs);
}

static int chip_match_name(struct gpio_chip *chip, void *data)
{
	return !strcmp(chip->label, data);
}

static void bcm2835_spi_cleanup(struct spi_device *spi)
{
	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
	struct spi_controller *ctlr = spi->controller;

	if (slv->clear_rx_desc)
		dmaengine_desc_free(slv->clear_rx_desc);

	if (slv->clear_rx_addr)
		dma_unmap_single(ctlr->dma_rx->device->dev,
				 slv->clear_rx_addr,
				 sizeof(u32),
				 DMA_TO_DEVICE);

	kfree(slv);
}

static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
				 struct spi_device *spi,
				 struct bcm2835_spi *bs,
				 struct bcm2835_spidev *slv)
{
	int ret;

	if (!ctlr->dma_rx)
		return 0;

	slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
					    &slv->clear_rx_cs,
					    sizeof(u32),
					    DMA_TO_DEVICE);
	if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
		slv->clear_rx_addr = 0;
		return -ENOMEM;
	}

	slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
						       slv->clear_rx_addr,
						       sizeof(u32), 0,
						       DMA_MEM_TO_DEV, 0);
	if (!slv->clear_rx_desc) {
		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
		return -ENOMEM;
	}

	ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
	if (ret) {
		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
		return ret;
	}

	return 0;
}

static int bcm2835_spi_setup(struct spi_device *spi)
{
	struct spi_controller *ctlr = spi->controller;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
	struct gpio_chip *chip;
	int ret;
	u32 cs;

	if (!slv) {
		slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
			      GFP_KERNEL);
		if (!slv)
			return -ENOMEM;

		spi_set_ctldata(spi, slv);

		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
		if (ret)
			goto err_cleanup;
	}

	/*
	 * Precalculate SPI slave's CS register value for ->prepare_message():
	 * The driver always uses software-controlled GPIO chip select, hence
	 * set the hardware-controlled native chip select to an invalid value
	 * to prevent it from interfering.
	 */
	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
	if (spi->mode & SPI_CPOL)
		cs |= BCM2835_SPI_CS_CPOL;
	if (spi->mode & SPI_CPHA)
		cs |= BCM2835_SPI_CS_CPHA;
	slv->prepare_cs = cs;

	/*
	 * Precalculate SPI slave's CS register value to clear RX FIFO
	 * in case of a TX-only DMA transfer.
	 */
	if (ctlr->dma_rx) {
		slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
					BCM2835_SPI_CS_DMAEN |
					BCM2835_SPI_CS_CLEAR_RX;
		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
					   slv->clear_rx_addr,
					   sizeof(u32),
					   DMA_TO_DEVICE);
	}

	/*
	 * sanity checking the native-chipselects
	 */
	if (spi->mode & SPI_NO_CS)
		return 0;
	/*
	 * The SPI core has successfully requested the CS GPIO line from the
	 * device tree, so we are done.
	 */
	if (spi->cs_gpiod)
		return 0;
	if (spi->chip_select > 1) {
		/* error in the case of native CS requested with CS > 1
		 * officially there is a CS2, but it is not documented
		 * which GPIO is connected with that...
		 */
		dev_err(&spi->dev,
			"setup: only two native chip-selects are supported\n");
		ret = -EINVAL;
		goto err_cleanup;
	}

	/*
	 * Translate native CS to GPIO
	 *
	 * FIXME: poking around in the gpiolib internals like this is
	 * not very good practice. Find a way to locate the real problem
	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
	 * sometimes not assigned correctly? Erroneous device trees?
	 */

	/* get the gpio chip for the base */
	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
	if (!chip)
		return 0;

	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
						  DRV_NAME,
						  GPIO_LOOKUP_FLAGS_DEFAULT,
						  GPIOD_OUT_LOW);
	if (IS_ERR(spi->cs_gpiod)) {
		ret = PTR_ERR(spi->cs_gpiod);
		goto err_cleanup;
	}

	/* and set up the "mode" and level */
	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
		 spi->chip_select);

	return 0;

err_cleanup:
	bcm2835_spi_cleanup(spi);
	return ret;
}

static int bcm2835_spi_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	struct bcm2835_spi *bs;
	int err;

	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
	if (!ctlr)
		return -ENOMEM;

	platform_set_drvdata(pdev, ctlr);

	ctlr->use_gpio_descriptors = true;
	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
	ctlr->num_chipselect = 3;
	ctlr->setup = bcm2835_spi_setup;
	ctlr->cleanup = bcm2835_spi_cleanup;
	ctlr->transfer_one = bcm2835_spi_transfer_one;
	ctlr->handle_err = bcm2835_spi_handle_err;
	ctlr->prepare_message = bcm2835_spi_prepare_message;
	ctlr->dev.of_node = pdev->dev.of_node;

	bs = spi_controller_get_devdata(ctlr);
	bs->ctlr = ctlr;

	bs->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(bs->regs))
		return PTR_ERR(bs->regs);

	bs->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(bs->clk))
		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
				     "could not get clk\n");

	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;

	bs->irq = platform_get_irq(pdev, 0);
	if (bs->irq <= 0)
		return bs->irq ? bs->irq : -ENODEV;

	clk_prepare_enable(bs->clk);
	bs->clk_hz = clk_get_rate(bs->clk);

	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
	if (err)
		goto out_clk_disable;

	/* initialise the hardware with the default polarities */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);

	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
			       dev_name(&pdev->dev), bs);
	if (err) {
		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
		goto out_dma_release;
	}

	err = spi_register_controller(ctlr);
	if (err) {
		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
			err);
		goto out_dma_release;
	}

	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));

	return 0;

out_dma_release:
	bcm2835_dma_release(ctlr, bs);
out_clk_disable:
	clk_disable_unprepare(bs->clk);
	return err;
}

static int bcm2835_spi_remove(struct platform_device *pdev)
{
	struct spi_controller *ctlr = platform_get_drvdata(pdev);
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	bcm2835_debugfs_remove(bs);

	spi_unregister_controller(ctlr);

	bcm2835_dma_release(ctlr, bs);

	/* Clear FIFOs, and disable the HW block */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);

	clk_disable_unprepare(bs->clk);

	return 0;
}

static void bcm2835_spi_shutdown(struct platform_device *pdev)
{
	int ret;

	ret = bcm2835_spi_remove(pdev);
	if (ret)
		dev_err(&pdev->dev, "failed to shutdown\n");
}

static const struct of_device_id bcm2835_spi_match[] = {
	{ .compatible = "brcm,bcm2835-spi", },
	{}
};
MODULE_DEVICE_TABLE(of, bcm2835_spi_match);

static struct platform_driver bcm2835_spi_driver = {
	.driver		= {
		.name		= DRV_NAME,
		.of_match_table	= bcm2835_spi_match,
	},
	.probe		= bcm2835_spi_probe,
	.remove		= bcm2835_spi_remove,
	.shutdown	= bcm2835_spi_shutdown,
};
module_platform_driver(bcm2835_spi_driver);

MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
MODULE_LICENSE("GPL");