Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
// SPDX-License-Identifier: BSD-3-Clause
/*
 * Copyright (c) 2020, MIPI Alliance, Inc.
 *
 * Author: Nicolas Pitre <npitre@baylibre.com>
 *
 * Core driver code with main interface to the I3C subsystem.
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>

#include "hci.h"
#include "ext_caps.h"
#include "cmd.h"
#include "dat.h"


/*
 * Host Controller Capabilities and Operation Registers
 */

#define reg_read(r)		readl(hci->base_regs + (r))
#define reg_write(r, v)		writel(v, hci->base_regs + (r))
#define reg_set(r, v)		reg_write(r, reg_read(r) | (v))
#define reg_clear(r, v)		reg_write(r, reg_read(r) & ~(v))

#define HCI_VERSION			0x00	/* HCI Version (in BCD) */

#define HC_CONTROL			0x04
#define HC_CONTROL_BUS_ENABLE		BIT(31)
#define HC_CONTROL_RESUME		BIT(30)
#define HC_CONTROL_ABORT		BIT(29)
#define HC_CONTROL_HALT_ON_CMD_TIMEOUT	BIT(12)
#define HC_CONTROL_HOT_JOIN_CTRL	BIT(8)	/* Hot-Join ACK/NACK Control */
#define HC_CONTROL_I2C_TARGET_PRESENT	BIT(7)
#define HC_CONTROL_PIO_MODE		BIT(6)	/* DMA/PIO Mode Selector */
#define HC_CONTROL_DATA_BIG_ENDIAN	BIT(4)
#define HC_CONTROL_IBA_INCLUDE		BIT(0)	/* Include I3C Broadcast Address */

#define MASTER_DEVICE_ADDR		0x08	/* Master Device Address */
#define MASTER_DYNAMIC_ADDR_VALID	BIT(31)	/* Dynamic Address is Valid */
#define MASTER_DYNAMIC_ADDR(v)		FIELD_PREP(GENMASK(22, 16), v)

#define HC_CAPABILITIES			0x0c
#define HC_CAP_SG_DC_EN			BIT(30)
#define HC_CAP_SG_IBI_EN		BIT(29)
#define HC_CAP_SG_CR_EN			BIT(28)
#define HC_CAP_MAX_DATA_LENGTH		GENMASK(24, 22)
#define HC_CAP_CMD_SIZE			GENMASK(21, 20)
#define HC_CAP_DIRECT_COMMANDS_EN	BIT(18)
#define HC_CAP_MULTI_LANE_EN		BIT(15)
#define HC_CAP_CMD_CCC_DEFBYTE		BIT(10)
#define HC_CAP_HDR_BT_EN		BIT(8)
#define HC_CAP_HDR_TS_EN		BIT(7)
#define HC_CAP_HDR_DDR_EN		BIT(6)
#define HC_CAP_NON_CURRENT_MASTER_CAP	BIT(5)	/* master handoff capable */
#define HC_CAP_DATA_BYTE_CFG_EN		BIT(4)	/* endian selection possible */
#define HC_CAP_AUTO_COMMAND		BIT(3)
#define HC_CAP_COMBO_COMMAND		BIT(2)

#define RESET_CONTROL			0x10
#define BUS_RESET			BIT(31)
#define BUS_RESET_TYPE			GENMASK(30, 29)
#define IBI_QUEUE_RST			BIT(5)
#define RX_FIFO_RST			BIT(4)
#define TX_FIFO_RST			BIT(3)
#define RESP_QUEUE_RST			BIT(2)
#define CMD_QUEUE_RST			BIT(1)
#define SOFT_RST			BIT(0)	/* Core Reset */

#define PRESENT_STATE			0x14
#define STATE_CURRENT_MASTER		BIT(2)

#define INTR_STATUS			0x20
#define INTR_STATUS_ENABLE		0x24
#define INTR_SIGNAL_ENABLE		0x28
#define INTR_FORCE			0x2c
#define INTR_HC_CMD_SEQ_UFLOW_STAT	BIT(12)	/* Cmd Sequence Underflow */
#define INTR_HC_RESET_CANCEL		BIT(11)	/* HC Cancelled Reset */
#define INTR_HC_INTERNAL_ERR		BIT(10)	/* HC Internal Error */
#define INTR_HC_PIO			BIT(8)	/* cascaded PIO interrupt */
#define INTR_HC_RINGS			GENMASK(7, 0)

#define DAT_SECTION			0x30	/* Device Address Table */
#define DAT_ENTRY_SIZE			GENMASK(31, 28)
#define DAT_TABLE_SIZE			GENMASK(18, 12)
#define DAT_TABLE_OFFSET		GENMASK(11, 0)

#define DCT_SECTION			0x34	/* Device Characteristics Table */
#define DCT_ENTRY_SIZE			GENMASK(31, 28)
#define DCT_TABLE_INDEX			GENMASK(23, 19)
#define DCT_TABLE_SIZE			GENMASK(18, 12)
#define DCT_TABLE_OFFSET		GENMASK(11, 0)

#define RING_HEADERS_SECTION		0x38
#define RING_HEADERS_OFFSET		GENMASK(15, 0)

#define PIO_SECTION			0x3c
#define PIO_REGS_OFFSET			GENMASK(15, 0)	/* PIO Offset */

#define EXT_CAPS_SECTION		0x40
#define EXT_CAPS_OFFSET			GENMASK(15, 0)

#define IBI_NOTIFY_CTRL			0x58	/* IBI Notify Control */
#define IBI_NOTIFY_SIR_REJECTED		BIT(3)	/* Rejected Target Interrupt Request */
#define IBI_NOTIFY_MR_REJECTED		BIT(1)	/* Rejected Master Request Control */
#define IBI_NOTIFY_HJ_REJECTED		BIT(0)	/* Rejected Hot-Join Control */

#define DEV_CTX_BASE_LO			0x60
#define DEV_CTX_BASE_HI			0x64


static inline struct i3c_hci *to_i3c_hci(struct i3c_master_controller *m)
{
	return container_of(m, struct i3c_hci, master);
}

static int i3c_hci_bus_init(struct i3c_master_controller *m)
{
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_device_info info;
	int ret;

	DBG("");

	if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
		ret = mipi_i3c_hci_dat_v1.init(hci);
		if (ret)
			return ret;
	}

	ret = i3c_master_get_free_addr(m, 0);
	if (ret < 0)
		return ret;
	reg_write(MASTER_DEVICE_ADDR,
		  MASTER_DYNAMIC_ADDR(ret) | MASTER_DYNAMIC_ADDR_VALID);
	memset(&info, 0, sizeof(info));
	info.dyn_addr = ret;
	ret = i3c_master_set_info(m, &info);
	if (ret)
		return ret;

	ret = hci->io->init(hci);
	if (ret)
		return ret;

	reg_set(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
	DBG("HC_CONTROL = %#x", reg_read(HC_CONTROL));

	return 0;
}

static void i3c_hci_bus_cleanup(struct i3c_master_controller *m)
{
	struct i3c_hci *hci = to_i3c_hci(m);

	DBG("");

	reg_clear(HC_CONTROL, HC_CONTROL_BUS_ENABLE);
	hci->io->cleanup(hci);
	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
		mipi_i3c_hci_dat_v1.cleanup(hci);
}

void mipi_i3c_hci_resume(struct i3c_hci *hci)
{
	/* the HC_CONTROL_RESUME bit is R/W1C so just read and write back */
	reg_write(HC_CONTROL, reg_read(HC_CONTROL));
}

/* located here rather than pio.c because needed bits are in core reg space */
void mipi_i3c_hci_pio_reset(struct i3c_hci *hci)
{
	reg_write(RESET_CONTROL, RX_FIFO_RST | TX_FIFO_RST | RESP_QUEUE_RST);
}

/* located here rather than dct.c because needed bits are in core reg space */
void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci)
{
	reg_write(DCT_SECTION, FIELD_PREP(DCT_TABLE_INDEX, 0));
}

static int i3c_hci_send_ccc_cmd(struct i3c_master_controller *m,
				struct i3c_ccc_cmd *ccc)
{
	struct i3c_hci *hci = to_i3c_hci(m);
	struct hci_xfer *xfer;
	bool raw = !!(hci->quirks & HCI_QUIRK_RAW_CCC);
	bool prefixed = raw && !!(ccc->id & I3C_CCC_DIRECT);
	unsigned int nxfers = ccc->ndests + prefixed;
	DECLARE_COMPLETION_ONSTACK(done);
	int i, last, ret = 0;

	DBG("cmd=%#x rnw=%d ndests=%d data[0].len=%d",
	    ccc->id, ccc->rnw, ccc->ndests, ccc->dests[0].payload.len);

	xfer = hci_alloc_xfer(nxfers);
	if (!xfer)
		return -ENOMEM;

	if (prefixed) {
		xfer->data = NULL;
		xfer->data_len = 0;
		xfer->rnw = false;
		hci->cmd->prep_ccc(hci, xfer, I3C_BROADCAST_ADDR,
				   ccc->id, true);
		xfer++;
	}

	for (i = 0; i < nxfers - prefixed; i++) {
		xfer[i].data = ccc->dests[i].payload.data;
		xfer[i].data_len = ccc->dests[i].payload.len;
		xfer[i].rnw = ccc->rnw;
		ret = hci->cmd->prep_ccc(hci, &xfer[i], ccc->dests[i].addr,
					 ccc->id, raw);
		if (ret)
			goto out;
		xfer[i].cmd_desc[0] |= CMD_0_ROC;
	}
	last = i - 1;
	xfer[last].cmd_desc[0] |= CMD_0_TOC;
	xfer[last].completion = &done;

	if (prefixed)
		xfer--;

	ret = hci->io->queue_xfer(hci, xfer, nxfers);
	if (ret)
		goto out;
	if (!wait_for_completion_timeout(&done, HZ) &&
	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
		ret = -ETIME;
		goto out;
	}
	for (i = prefixed; i < nxfers; i++) {
		if (ccc->rnw)
			ccc->dests[i - prefixed].payload.len =
				RESP_DATA_LENGTH(xfer[i].response);
		if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
			ret = -EIO;
			goto out;
		}
	}

	if (ccc->rnw)
		DBG("got: %*ph",
		    ccc->dests[0].payload.len, ccc->dests[0].payload.data);

out:
	hci_free_xfer(xfer, nxfers);
	return ret;
}

static int i3c_hci_daa(struct i3c_master_controller *m)
{
	struct i3c_hci *hci = to_i3c_hci(m);

	DBG("");

	return hci->cmd->perform_daa(hci);
}

static int i3c_hci_priv_xfers(struct i3c_dev_desc *dev,
			      struct i3c_priv_xfer *i3c_xfers,
			      int nxfers)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct hci_xfer *xfer;
	DECLARE_COMPLETION_ONSTACK(done);
	unsigned int size_limit;
	int i, last, ret = 0;

	DBG("nxfers = %d", nxfers);

	xfer = hci_alloc_xfer(nxfers);
	if (!xfer)
		return -ENOMEM;

	size_limit = 1U << (16 + FIELD_GET(HC_CAP_MAX_DATA_LENGTH, hci->caps));

	for (i = 0; i < nxfers; i++) {
		xfer[i].data_len = i3c_xfers[i].len;
		ret = -EFBIG;
		if (xfer[i].data_len >= size_limit)
			goto out;
		xfer[i].rnw = i3c_xfers[i].rnw;
		if (i3c_xfers[i].rnw) {
			xfer[i].data = i3c_xfers[i].data.in;
		} else {
			/* silence the const qualifier warning with a cast */
			xfer[i].data = (void *) i3c_xfers[i].data.out;
		}
		hci->cmd->prep_i3c_xfer(hci, dev, &xfer[i]);
		xfer[i].cmd_desc[0] |= CMD_0_ROC;
	}
	last = i - 1;
	xfer[last].cmd_desc[0] |= CMD_0_TOC;
	xfer[last].completion = &done;

	ret = hci->io->queue_xfer(hci, xfer, nxfers);
	if (ret)
		goto out;
	if (!wait_for_completion_timeout(&done, HZ) &&
	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
		ret = -ETIME;
		goto out;
	}
	for (i = 0; i < nxfers; i++) {
		if (i3c_xfers[i].rnw)
			i3c_xfers[i].len = RESP_DATA_LENGTH(xfer[i].response);
		if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
			ret = -EIO;
			goto out;
		}
	}

out:
	hci_free_xfer(xfer, nxfers);
	return ret;
}

static int i3c_hci_i2c_xfers(struct i2c_dev_desc *dev,
			     const struct i2c_msg *i2c_xfers, int nxfers)
{
	struct i3c_master_controller *m = i2c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct hci_xfer *xfer;
	DECLARE_COMPLETION_ONSTACK(done);
	int i, last, ret = 0;

	DBG("nxfers = %d", nxfers);

	xfer = hci_alloc_xfer(nxfers);
	if (!xfer)
		return -ENOMEM;

	for (i = 0; i < nxfers; i++) {
		xfer[i].data = i2c_xfers[i].buf;
		xfer[i].data_len = i2c_xfers[i].len;
		xfer[i].rnw = i2c_xfers[i].flags & I2C_M_RD;
		hci->cmd->prep_i2c_xfer(hci, dev, &xfer[i]);
		xfer[i].cmd_desc[0] |= CMD_0_ROC;
	}
	last = i - 1;
	xfer[last].cmd_desc[0] |= CMD_0_TOC;
	xfer[last].completion = &done;

	ret = hci->io->queue_xfer(hci, xfer, nxfers);
	if (ret)
		goto out;
	if (!wait_for_completion_timeout(&done, HZ) &&
	    hci->io->dequeue_xfer(hci, xfer, nxfers)) {
		ret = -ETIME;
		goto out;
	}
	for (i = 0; i < nxfers; i++) {
		if (RESP_STATUS(xfer[i].response) != RESP_SUCCESS) {
			ret = -EIO;
			goto out;
		}
	}

out:
	hci_free_xfer(xfer, nxfers);
	return ret;
}

static int i3c_hci_attach_i3c_dev(struct i3c_dev_desc *dev)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data;
	int ret;

	DBG("");

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;
	if (hci->cmd == &mipi_i3c_hci_cmd_v1) {
		ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
		if (ret < 0) {
			kfree(dev_data);
			return ret;
		}
		mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, ret, dev->info.dyn_addr);
		dev_data->dat_idx = ret;
	}
	i3c_dev_set_master_data(dev, dev_data);
	return 0;
}

static int i3c_hci_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);

	DBG("");

	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
		mipi_i3c_hci_dat_v1.set_dynamic_addr(hci, dev_data->dat_idx,
					     dev->info.dyn_addr);
	return 0;
}

static void i3c_hci_detach_i3c_dev(struct i3c_dev_desc *dev)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);

	DBG("");

	i3c_dev_set_master_data(dev, NULL);
	if (hci->cmd == &mipi_i3c_hci_cmd_v1)
		mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
	kfree(dev_data);
}

static int i3c_hci_attach_i2c_dev(struct i2c_dev_desc *dev)
{
	struct i3c_master_controller *m = i2c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data;
	int ret;

	DBG("");

	if (hci->cmd != &mipi_i3c_hci_cmd_v1)
		return 0;
	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;
	ret = mipi_i3c_hci_dat_v1.alloc_entry(hci);
	if (ret < 0) {
		kfree(dev_data);
		return ret;
	}
	mipi_i3c_hci_dat_v1.set_static_addr(hci, ret, dev->addr);
	mipi_i3c_hci_dat_v1.set_flags(hci, ret, DAT_0_I2C_DEVICE, 0);
	dev_data->dat_idx = ret;
	i2c_dev_set_master_data(dev, dev_data);
	return 0;
}

static void i3c_hci_detach_i2c_dev(struct i2c_dev_desc *dev)
{
	struct i3c_master_controller *m = i2c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i2c_dev_get_master_data(dev);

	DBG("");

	if (dev_data) {
		i2c_dev_set_master_data(dev, NULL);
		if (hci->cmd == &mipi_i3c_hci_cmd_v1)
			mipi_i3c_hci_dat_v1.free_entry(hci, dev_data->dat_idx);
		kfree(dev_data);
	}
}

static int i3c_hci_request_ibi(struct i3c_dev_desc *dev,
			       const struct i3c_ibi_setup *req)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	unsigned int dat_idx = dev_data->dat_idx;

	if (req->max_payload_len != 0)
		mipi_i3c_hci_dat_v1.set_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
	else
		mipi_i3c_hci_dat_v1.clear_flags(hci, dat_idx, DAT_0_IBI_PAYLOAD, 0);
	return hci->io->request_ibi(hci, dev, req);
}

static void i3c_hci_free_ibi(struct i3c_dev_desc *dev)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);

	hci->io->free_ibi(hci, dev);
}

static int i3c_hci_enable_ibi(struct i3c_dev_desc *dev)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);

	mipi_i3c_hci_dat_v1.clear_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
	return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
}

static int i3c_hci_disable_ibi(struct i3c_dev_desc *dev)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);

	mipi_i3c_hci_dat_v1.set_flags(hci, dev_data->dat_idx, DAT_0_SIR_REJECT, 0);
	return i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR);
}

static void i3c_hci_recycle_ibi_slot(struct i3c_dev_desc *dev,
				     struct i3c_ibi_slot *slot)
{
	struct i3c_master_controller *m = i3c_dev_get_master(dev);
	struct i3c_hci *hci = to_i3c_hci(m);

	hci->io->recycle_ibi_slot(hci, dev, slot);
}

static const struct i3c_master_controller_ops i3c_hci_ops = {
	.bus_init		= i3c_hci_bus_init,
	.bus_cleanup		= i3c_hci_bus_cleanup,
	.do_daa			= i3c_hci_daa,
	.send_ccc_cmd		= i3c_hci_send_ccc_cmd,
	.priv_xfers		= i3c_hci_priv_xfers,
	.i2c_xfers		= i3c_hci_i2c_xfers,
	.attach_i3c_dev		= i3c_hci_attach_i3c_dev,
	.reattach_i3c_dev	= i3c_hci_reattach_i3c_dev,
	.detach_i3c_dev		= i3c_hci_detach_i3c_dev,
	.attach_i2c_dev		= i3c_hci_attach_i2c_dev,
	.detach_i2c_dev		= i3c_hci_detach_i2c_dev,
	.request_ibi		= i3c_hci_request_ibi,
	.free_ibi		= i3c_hci_free_ibi,
	.enable_ibi		= i3c_hci_enable_ibi,
	.disable_ibi		= i3c_hci_disable_ibi,
	.recycle_ibi_slot	= i3c_hci_recycle_ibi_slot,
};

static irqreturn_t i3c_hci_irq_handler(int irq, void *dev_id)
{
	struct i3c_hci *hci = dev_id;
	irqreturn_t result = IRQ_NONE;
	u32 val;

	val = reg_read(INTR_STATUS);
	DBG("INTR_STATUS = %#x", val);

	if (val) {
		reg_write(INTR_STATUS, val);
	} else {
		/* v1.0 does not have PIO cascaded notification bits */
		val |= INTR_HC_PIO;
	}

	if (val & INTR_HC_RESET_CANCEL) {
		DBG("cancelled reset");
		val &= ~INTR_HC_RESET_CANCEL;
	}
	if (val & INTR_HC_INTERNAL_ERR) {
		dev_err(&hci->master.dev, "Host Controller Internal Error\n");
		val &= ~INTR_HC_INTERNAL_ERR;
	}
	if (val & INTR_HC_PIO) {
		hci->io->irq_handler(hci, 0);
		val &= ~INTR_HC_PIO;
	}
	if (val & INTR_HC_RINGS) {
		hci->io->irq_handler(hci, val & INTR_HC_RINGS);
		val &= ~INTR_HC_RINGS;
	}
	if (val)
		dev_err(&hci->master.dev, "unexpected INTR_STATUS %#x\n", val);
	else
		result = IRQ_HANDLED;

	return result;
}

static int i3c_hci_init(struct i3c_hci *hci)
{
	u32 regval, offset;
	int ret;

	/* Validate HCI hardware version */
	regval = reg_read(HCI_VERSION);
	hci->version_major = (regval >> 8) & 0xf;
	hci->version_minor = (regval >> 4) & 0xf;
	hci->revision = regval & 0xf;
	dev_notice(&hci->master.dev, "MIPI I3C HCI v%u.%u r%02u\n",
		   hci->version_major, hci->version_minor, hci->revision);
	/* known versions */
	switch (regval & ~0xf) {
	case 0x100:	/* version 1.0 */
	case 0x110:	/* version 1.1 */
	case 0x200:	/* version 2.0 */
		break;
	default:
		dev_err(&hci->master.dev, "unsupported HCI version\n");
		return -EPROTONOSUPPORT;
	}

	hci->caps = reg_read(HC_CAPABILITIES);
	DBG("caps = %#x", hci->caps);

	regval = reg_read(DAT_SECTION);
	offset = FIELD_GET(DAT_TABLE_OFFSET, regval);
	hci->DAT_regs = offset ? hci->base_regs + offset : NULL;
	hci->DAT_entries = FIELD_GET(DAT_TABLE_SIZE, regval);
	hci->DAT_entry_size = FIELD_GET(DAT_ENTRY_SIZE, regval);
	dev_info(&hci->master.dev, "DAT: %u %u-bytes entries at offset %#x\n",
		 hci->DAT_entries, hci->DAT_entry_size * 4, offset);

	regval = reg_read(DCT_SECTION);
	offset = FIELD_GET(DCT_TABLE_OFFSET, regval);
	hci->DCT_regs = offset ? hci->base_regs + offset : NULL;
	hci->DCT_entries = FIELD_GET(DCT_TABLE_SIZE, regval);
	hci->DCT_entry_size = FIELD_GET(DCT_ENTRY_SIZE, regval);
	dev_info(&hci->master.dev, "DCT: %u %u-bytes entries at offset %#x\n",
		 hci->DCT_entries, hci->DCT_entry_size * 4, offset);

	regval = reg_read(RING_HEADERS_SECTION);
	offset = FIELD_GET(RING_HEADERS_OFFSET, regval);
	hci->RHS_regs = offset ? hci->base_regs + offset : NULL;
	dev_info(&hci->master.dev, "Ring Headers at offset %#x\n", offset);

	regval = reg_read(PIO_SECTION);
	offset = FIELD_GET(PIO_REGS_OFFSET, regval);
	hci->PIO_regs = offset ? hci->base_regs + offset : NULL;
	dev_info(&hci->master.dev, "PIO section at offset %#x\n", offset);

	regval = reg_read(EXT_CAPS_SECTION);
	offset = FIELD_GET(EXT_CAPS_OFFSET, regval);
	hci->EXTCAPS_regs = offset ? hci->base_regs + offset : NULL;
	dev_info(&hci->master.dev, "Extended Caps at offset %#x\n", offset);

	ret = i3c_hci_parse_ext_caps(hci);
	if (ret)
		return ret;

	/*
	 * Now let's reset the hardware.
	 * SOFT_RST must be clear before we write to it.
	 * Then we must wait until it clears again.
	 */
	ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
				 !(regval & SOFT_RST), 1, 10000);
	if (ret)
		return -ENXIO;
	reg_write(RESET_CONTROL, SOFT_RST);
	ret = readx_poll_timeout(reg_read, RESET_CONTROL, regval,
				 !(regval & SOFT_RST), 1, 10000);
	if (ret)
		return -ENXIO;

	/* Disable all interrupts and allow all signal updates */
	reg_write(INTR_SIGNAL_ENABLE, 0x0);
	reg_write(INTR_STATUS_ENABLE, 0xffffffff);

	/* Make sure our data ordering fits the host's */
	regval = reg_read(HC_CONTROL);
	if (IS_ENABLED(CONFIG_BIG_ENDIAN)) {
		if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
			regval |= HC_CONTROL_DATA_BIG_ENDIAN;
			reg_write(HC_CONTROL, regval);
			regval = reg_read(HC_CONTROL);
			if (!(regval & HC_CONTROL_DATA_BIG_ENDIAN)) {
				dev_err(&hci->master.dev, "cannot set BE mode\n");
				return -EOPNOTSUPP;
			}
		}
	} else {
		if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
			regval &= ~HC_CONTROL_DATA_BIG_ENDIAN;
			reg_write(HC_CONTROL, regval);
			regval = reg_read(HC_CONTROL);
			if (regval & HC_CONTROL_DATA_BIG_ENDIAN) {
				dev_err(&hci->master.dev, "cannot clear BE mode\n");
				return -EOPNOTSUPP;
			}
		}
	}

	/* Select our command descriptor model */
	switch (FIELD_GET(HC_CAP_CMD_SIZE, hci->caps)) {
	case 0:
		hci->cmd = &mipi_i3c_hci_cmd_v1;
		break;
	case 1:
		hci->cmd = &mipi_i3c_hci_cmd_v2;
		break;
	default:
		dev_err(&hci->master.dev, "wrong CMD_SIZE capability value\n");
		return -EINVAL;
	}

	/* Try activating DMA operations first */
	if (hci->RHS_regs) {
		reg_clear(HC_CONTROL, HC_CONTROL_PIO_MODE);
		if (reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE) {
			dev_err(&hci->master.dev, "PIO mode is stuck\n");
			ret = -EIO;
		} else {
			hci->io = &mipi_i3c_hci_dma;
			dev_info(&hci->master.dev, "Using DMA\n");
		}
	}

	/* If no DMA, try PIO */
	if (!hci->io && hci->PIO_regs) {
		reg_set(HC_CONTROL, HC_CONTROL_PIO_MODE);
		if (!(reg_read(HC_CONTROL) & HC_CONTROL_PIO_MODE)) {
			dev_err(&hci->master.dev, "DMA mode is stuck\n");
			ret = -EIO;
		} else {
			hci->io = &mipi_i3c_hci_pio;
			dev_info(&hci->master.dev, "Using PIO\n");
		}
	}

	if (!hci->io) {
		dev_err(&hci->master.dev, "neither DMA nor PIO can be used\n");
		if (!ret)
			ret = -EINVAL;
		return ret;
	}

	return 0;
}

static int i3c_hci_probe(struct platform_device *pdev)
{
	struct i3c_hci *hci;
	int irq, ret;

	hci = devm_kzalloc(&pdev->dev, sizeof(*hci), GFP_KERNEL);
	if (!hci)
		return -ENOMEM;
	hci->base_regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(hci->base_regs))
		return PTR_ERR(hci->base_regs);

	platform_set_drvdata(pdev, hci);
	/* temporary for dev_printk's, to be replaced in i3c_master_register */
	hci->master.dev.init_name = dev_name(&pdev->dev);

	ret = i3c_hci_init(hci);
	if (ret)
		return ret;

	irq = platform_get_irq(pdev, 0);
	ret = devm_request_irq(&pdev->dev, irq, i3c_hci_irq_handler,
			       0, NULL, hci);
	if (ret)
		return ret;

	ret = i3c_master_register(&hci->master, &pdev->dev,
				  &i3c_hci_ops, false);
	if (ret)
		return ret;

	return 0;
}

static int i3c_hci_remove(struct platform_device *pdev)
{
	struct i3c_hci *hci = platform_get_drvdata(pdev);
	int ret;

	ret = i3c_master_unregister(&hci->master);
	if (ret)
		return ret;

	return 0;
}

static const __maybe_unused struct of_device_id i3c_hci_of_match[] = {
	{ .compatible = "mipi-i3c-hci", },
	{},
};
MODULE_DEVICE_TABLE(of, i3c_hci_of_match);

static struct platform_driver i3c_hci_driver = {
	.probe = i3c_hci_probe,
	.remove = i3c_hci_remove,
	.driver = {
		.name = "mipi-i3c-hci",
		.of_match_table = of_match_ptr(i3c_hci_of_match),
	},
};
module_platform_driver(i3c_hci_driver);

MODULE_AUTHOR("Nicolas Pitre <npitre@baylibre.com>");
MODULE_DESCRIPTION("MIPI I3C HCI driver");
MODULE_LICENSE("Dual BSD/GPL");