Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
 *
 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
 */

#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-mipi-dphy.h>
#include <linux/pm_runtime.h>
#include <linux/mfd/syscon.h>

#define PSEC_PER_SEC	1000000000000LL

#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))

/*
 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
 * is the first address, the other from the bit4 to bit0 is the second address.
 * when you configure the registers, you must set both of them. The Clock Lane
 * and Data Lane use the same registers with the same second address, but the
 * first address is different.
 */
#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
					 SECOND_ADDRESS(second))

/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK			BIT(7)
#define BANDGAP_POWER_DOWN			BIT(7)
#define BANDGAP_POWER_ON			0
#define LANE_EN_MASK				GENMASK(6, 2)
#define LANE_EN_CK				BIT(6)
#define LANE_EN_3				BIT(5)
#define LANE_EN_2				BIT(4)
#define LANE_EN_1				BIT(3)
#define LANE_EN_0				BIT(2)
#define POWER_WORK_MASK				GENMASK(1, 0)
#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK			BIT(2)
#define REG_SYNCRST_RESET			BIT(2)
#define REG_SYNCRST_NORMAL			0
#define REG_LDOPD_MASK				BIT(1)
#define REG_LDOPD_POWER_DOWN			BIT(1)
#define REG_LDOPD_POWER_ON			0
#define REG_PLLPD_MASK				BIT(0)
#define REG_PLLPD_POWER_DOWN			BIT(0)
#define REG_PLLPD_POWER_ON			0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK			BIT(5)
#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
#define REG_PREDIV_MASK				GENMASK(4, 0)
#define REG_PREDIV(x)				UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK			BIT(0)
#define REG_DIG_RSTN_NORMAL			BIT(0)
#define REG_DIG_RSTN_RESET			0
/* Digital Register Part: reg01 */
#define INVERT_TXCLKESC_MASK			BIT(1)
#define INVERT_TXCLKESC_ENABLE			BIT(1)
#define INVERT_TXCLKESC_DISABLE			0
#define INVERT_TXBYTECLKHS_MASK			BIT(0)
#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
#define INVERT_TXBYTECLKHS_DISABLE		0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK				GENMASK(5, 0)
#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
#define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
#define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
#define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE		0
#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
/* LVDS Register Part: reg00 */
#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
/* LVDS Register Part: reg01 */
#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
#define LVDS_DIGITAL_INTERNAL_DISABLE		0
/* LVDS Register Part: reg03 */
#define MODE_ENABLE_MASK			GENMASK(2, 0)
#define TTL_MODE_ENABLE				BIT(2)
#define LVDS_MODE_ENABLE			BIT(1)
#define MIPI_MODE_ENABLE			BIT(0)
/* LVDS Register Part: reg0b */
#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
#define LVDS_DATA_LANE0_EN			BIT(7)
#define LVDS_DATA_LANE1_EN			BIT(6)
#define LVDS_DATA_LANE2_EN			BIT(5)
#define LVDS_DATA_LANE3_EN			BIT(4)
#define LVDS_CLK_LANE_EN			BIT(3)
#define LVDS_PLL_POWER_MASK			BIT(2)
#define LVDS_PLL_POWER_OFF			BIT(2)
#define LVDS_PLL_POWER_ON			0
#define LVDS_BANDGAP_POWER_MASK			BIT(0)
#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
#define LVDS_BANDGAP_POWER_ON			0

#define DSI_PHY_RSTZ		0xa0
#define PHY_ENABLECLK		BIT(2)
#define DSI_PHY_STATUS		0xb0
#define PHY_LOCK		BIT(0)

struct inno_dsidphy {
	struct device *dev;
	struct clk *ref_clk;
	struct clk *pclk_phy;
	struct clk *pclk_host;
	void __iomem *phy_base;
	void __iomem *host_base;
	struct reset_control *rst;
	enum phy_mode mode;
	struct phy_configure_opts_mipi_dphy dphy_cfg;

	struct clk *pll_clk;
	struct {
		struct clk_hw hw;
		u8 prediv;
		u16 fbdiv;
		unsigned long rate;
	} pll;
};

enum {
	REGISTER_PART_ANALOG,
	REGISTER_PART_DIGITAL,
	REGISTER_PART_CLOCK_LANE,
	REGISTER_PART_DATA0_LANE,
	REGISTER_PART_DATA1_LANE,
	REGISTER_PART_DATA2_LANE,
	REGISTER_PART_DATA3_LANE,
	REGISTER_PART_LVDS,
};

static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
{
	return container_of(hw, struct inno_dsidphy, pll.hw);
}

static void phy_update_bits(struct inno_dsidphy *inno,
			    u8 first, u8 second, u8 mask, u8 val)
{
	u32 reg = PHY_REG(first, second) << 2;
	unsigned int tmp, orig;

	orig = readl(inno->phy_base + reg);
	tmp = orig & ~mask;
	tmp |= val & mask;
	writel(tmp, inno->phy_base + reg);
}

static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
						unsigned long rate)
{
	unsigned long prate = clk_get_rate(inno->ref_clk);
	unsigned long best_freq = 0;
	unsigned long fref, fout;
	u8 min_prediv, max_prediv;
	u8 _prediv, best_prediv = 1;
	u16 _fbdiv, best_fbdiv = 1;
	u32 min_delta = UINT_MAX;

	/*
	 * The PLL output frequency can be calculated using a simple formula:
	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
	 */
	fref = prate / 2;
	if (rate > 1000000000UL)
		fout = 1000000000UL;
	else
		fout = rate;

	/* 5Mhz < Fref / prediv < 40MHz */
	min_prediv = DIV_ROUND_UP(fref, 40000000);
	max_prediv = fref / 5000000;

	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
		u64 tmp;
		u32 delta;

		tmp = (u64)fout * _prediv;
		do_div(tmp, fref);
		_fbdiv = tmp;

		/*
		 * The possible settings of feedback divider are
		 * 12, 13, 14, 16, ~ 511
		 */
		if (_fbdiv == 15)
			continue;

		if (_fbdiv < 12 || _fbdiv > 511)
			continue;

		tmp = (u64)_fbdiv * fref;
		do_div(tmp, _prediv);

		delta = abs(fout - tmp);
		if (!delta) {
			best_prediv = _prediv;
			best_fbdiv = _fbdiv;
			best_freq = tmp;
			break;
		} else if (delta < min_delta) {
			best_prediv = _prediv;
			best_fbdiv = _fbdiv;
			best_freq = tmp;
			min_delta = delta;
		}
	}

	if (best_freq) {
		inno->pll.prediv = best_prediv;
		inno->pll.fbdiv = best_fbdiv;
		inno->pll.rate = best_freq;
	}

	return best_freq;
}

static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
{
	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
	const struct {
		unsigned long rate;
		u8 hs_prepare;
		u8 clk_lane_hs_zero;
		u8 data_lane_hs_zero;
		u8 hs_trail;
	} timings[] = {
		{ 110000000, 0x20, 0x16, 0x02, 0x22},
		{ 150000000, 0x06, 0x16, 0x03, 0x45},
		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
		{ 250000000, 0x05, 0x17, 0x05, 0x16},
		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
		{ 400000000, 0x64, 0x19, 0x07, 0x33},
		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
		{1000000000, 0x09, 0x20, 0x09, 0x27},
	};
	u32 t_txbyteclkhs, t_txclkesc;
	u32 txbyteclkhs, txclkesc, esc_clk_div;
	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
	unsigned int i;

	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);

	/* Select MIPI mode */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
	/* Configure PLL */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
	/* Enable PLL and LDO */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
			REG_LDOPD_MASK | REG_PLLPD_MASK,
			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
	/* Reset analog */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
	udelay(1);
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
	/* Reset digital */
	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
	udelay(1);
	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);

	txbyteclkhs = inno->pll.rate / 8;
	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);

	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
	txclkesc = txbyteclkhs / esc_clk_div;
	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);

	/*
	 * The value of counter for HS Ths-exit
	 * Ths-exit = Tpin_txbyteclkhs * value
	 */
	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
	/*
	 * The value of counter for HS Tclk-post
	 * Tclk-post = Tpin_txbyteclkhs * value
	 */
	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
	/*
	 * The value of counter for HS Tclk-pre
	 * Tclk-pre = Tpin_txbyteclkhs * value
	 */
	clk_pre = DIV_ROUND_UP(cfg->clk_pre, t_txbyteclkhs);

	/*
	 * The value of counter for HS Tlpx Time
	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
	 */
	lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
	if (lpx >= 2)
		lpx -= 2;

	/*
	 * The value of counter for HS Tta-go
	 * Tta-go for turnaround
	 * Tta-go = Ttxclkesc * value
	 */
	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
	/*
	 * The value of counter for HS Tta-sure
	 * Tta-sure for turnaround
	 * Tta-sure = Ttxclkesc * value
	 */
	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
	/*
	 * The value of counter for HS Tta-wait
	 * Tta-wait for turnaround
	 * Tta-wait = Ttxclkesc * value
	 */
	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);

	for (i = 0; i < ARRAY_SIZE(timings); i++)
		if (inno->pll.rate <= timings[i].rate)
			break;

	if (i == ARRAY_SIZE(timings))
		--i;

	hs_prepare = timings[i].hs_prepare;
	hs_trail = timings[i].hs_trail;
	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
	data_lane_hs_zero = timings[i].data_lane_hs_zero;
	wakeup = 0x3ff;

	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
		if (i == REGISTER_PART_CLOCK_LANE)
			hs_zero = clk_lane_hs_zero;
		else
			hs_zero = data_lane_hs_zero;

		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
				T_LPX_CNT(lpx));
		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
				T_HS_PREPARE_CNT(hs_prepare));
		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
				T_HS_ZERO_CNT(hs_zero));
		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
				T_HS_TRAIL_CNT(hs_trail));
		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
				T_HS_EXIT_CNT(hs_exit));
		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
				T_CLK_POST_CNT(clk_post));
		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
				T_CLK_PRE_CNT(clk_pre));
		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
				T_WAKEUP_CNT_HI(wakeup >> 8));
		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
				T_WAKEUP_CNT_LO(wakeup));
		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
				T_TA_GO_CNT(ta_go));
		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
				T_TA_SURE_CNT(ta_sure));
		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
				T_TA_WAIT_CNT(ta_wait));
	}

	/* Enable all lanes on analog part */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
			LANE_EN_1 | LANE_EN_0);
}

static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
{
	u8 prediv = 2;
	u16 fbdiv = 28;

	/* Sample clock reverse direction */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
			SAMPLE_CLOCK_DIRECTION_MASK,
			SAMPLE_CLOCK_DIRECTION_REVERSE);

	/* Select LVDS mode */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
	/* Configure PLL */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
			REG_PREDIV_MASK, REG_PREDIV(prediv));
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
	/* Enable PLL and Bandgap */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);

	msleep(20);

	/* Reset LVDS digital logic */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
			LVDS_DIGITAL_INTERNAL_RESET_MASK,
			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
	udelay(1);
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
			LVDS_DIGITAL_INTERNAL_RESET_MASK,
			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
	/* Enable LVDS digital logic */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
			LVDS_DIGITAL_INTERNAL_ENABLE);
	/* Enable LVDS analog driver */
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
}

static int inno_dsidphy_power_on(struct phy *phy)
{
	struct inno_dsidphy *inno = phy_get_drvdata(phy);

	clk_prepare_enable(inno->pclk_phy);
	clk_prepare_enable(inno->ref_clk);
	pm_runtime_get_sync(inno->dev);

	/* Bandgap power on */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
	/* Enable power work */
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
			POWER_WORK_MASK, POWER_WORK_ENABLE);

	switch (inno->mode) {
	case PHY_MODE_MIPI_DPHY:
		inno_dsidphy_mipi_mode_enable(inno);
		break;
	case PHY_MODE_LVDS:
		inno_dsidphy_lvds_mode_enable(inno);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int inno_dsidphy_power_off(struct phy *phy)
{
	struct inno_dsidphy *inno = phy_get_drvdata(phy);

	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
			REG_LDOPD_MASK | REG_PLLPD_MASK,
			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
			POWER_WORK_MASK, POWER_WORK_DISABLE);
	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);

	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
			LVDS_DIGITAL_INTERNAL_DISABLE);
	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);

	pm_runtime_put(inno->dev);
	clk_disable_unprepare(inno->ref_clk);
	clk_disable_unprepare(inno->pclk_phy);

	return 0;
}

static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
				   int submode)
{
	struct inno_dsidphy *inno = phy_get_drvdata(phy);

	switch (mode) {
	case PHY_MODE_MIPI_DPHY:
	case PHY_MODE_LVDS:
		inno->mode = mode;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int inno_dsidphy_configure(struct phy *phy,
				  union phy_configure_opts *opts)
{
	struct inno_dsidphy *inno = phy_get_drvdata(phy);
	int ret;

	if (inno->mode != PHY_MODE_MIPI_DPHY)
		return -EINVAL;

	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
	if (ret)
		return ret;

	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));

	return 0;
}

static const struct phy_ops inno_dsidphy_ops = {
	.configure = inno_dsidphy_configure,
	.set_mode = inno_dsidphy_set_mode,
	.power_on = inno_dsidphy_power_on,
	.power_off = inno_dsidphy_power_off,
	.owner = THIS_MODULE,
};

static int inno_dsidphy_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct inno_dsidphy *inno;
	struct phy_provider *phy_provider;
	struct phy *phy;
	int ret;

	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
	if (!inno)
		return -ENOMEM;

	inno->dev = dev;
	platform_set_drvdata(pdev, inno);

	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(inno->phy_base))
		return PTR_ERR(inno->phy_base);

	inno->ref_clk = devm_clk_get(dev, "ref");
	if (IS_ERR(inno->ref_clk)) {
		ret = PTR_ERR(inno->ref_clk);
		dev_err(dev, "failed to get ref clock: %d\n", ret);
		return ret;
	}

	inno->pclk_phy = devm_clk_get(dev, "pclk");
	if (IS_ERR(inno->pclk_phy)) {
		ret = PTR_ERR(inno->pclk_phy);
		dev_err(dev, "failed to get phy pclk: %d\n", ret);
		return ret;
	}

	inno->rst = devm_reset_control_get(dev, "apb");
	if (IS_ERR(inno->rst)) {
		ret = PTR_ERR(inno->rst);
		dev_err(dev, "failed to get system reset control: %d\n", ret);
		return ret;
	}

	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
	if (IS_ERR(phy)) {
		ret = PTR_ERR(phy);
		dev_err(dev, "failed to create phy: %d\n", ret);
		return ret;
	}

	phy_set_drvdata(phy, inno);

	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
	if (IS_ERR(phy_provider)) {
		ret = PTR_ERR(phy_provider);
		dev_err(dev, "failed to register phy provider: %d\n", ret);
		return ret;
	}

	pm_runtime_enable(dev);

	return 0;
}

static int inno_dsidphy_remove(struct platform_device *pdev)
{
	struct inno_dsidphy *inno = platform_get_drvdata(pdev);

	pm_runtime_disable(inno->dev);

	return 0;
}

static const struct of_device_id inno_dsidphy_of_match[] = {
	{ .compatible = "rockchip,px30-dsi-dphy", },
	{ .compatible = "rockchip,rk3128-dsi-dphy", },
	{ .compatible = "rockchip,rk3368-dsi-dphy", },
	{}
};
MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);

static struct platform_driver inno_dsidphy_driver = {
	.driver = {
		.name = "inno-dsidphy",
		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
	},
	.probe = inno_dsidphy_probe,
	.remove = inno_dsidphy_remove,
};
module_platform_driver(inno_dsidphy_driver);

MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
MODULE_LICENSE("GPL v2");