Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include "../dmaengine.h"
#include "../virt-dma.h"

/* ADM registers - calculated from channel number and security domain */
#define ADM_CHAN_MULTI			0x4
#define ADM_CI_MULTI			0x4
#define ADM_CRCI_MULTI			0x4
#define ADM_EE_MULTI			0x800
#define ADM_CHAN_OFFS(chan)		(ADM_CHAN_MULTI * (chan))
#define ADM_EE_OFFS(ee)			(ADM_EE_MULTI * (ee))
#define ADM_CHAN_EE_OFFS(chan, ee)	(ADM_CHAN_OFFS(chan) + ADM_EE_OFFS(ee))
#define ADM_CHAN_OFFS(chan)		(ADM_CHAN_MULTI * (chan))
#define ADM_CI_OFFS(ci)			(ADM_CHAN_OFF(ci))
#define ADM_CH_CMD_PTR(chan, ee)	(ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_RSLT(chan, ee)		(0x40 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_FLUSH_STATE0(chan, ee)	(0x80 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_STATUS_SD(chan, ee)	(0x200 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_CH_CONF(chan)		(0x240 + ADM_CHAN_OFFS(chan))
#define ADM_CH_RSLT_CONF(chan, ee)	(0x300 + ADM_CHAN_EE_OFFS(chan, ee))
#define ADM_SEC_DOMAIN_IRQ_STATUS(ee)	(0x380 + ADM_EE_OFFS(ee))
#define ADM_CI_CONF(ci)			(0x390 + (ci) * ADM_CI_MULTI)
#define ADM_GP_CTL			0x3d8
#define ADM_CRCI_CTL(crci, ee)		(0x400 + (crci) * ADM_CRCI_MULTI + \
						ADM_EE_OFFS(ee))

/* channel status */
#define ADM_CH_STATUS_VALID		BIT(1)

/* channel result */
#define ADM_CH_RSLT_VALID		BIT(31)
#define ADM_CH_RSLT_ERR			BIT(3)
#define ADM_CH_RSLT_FLUSH		BIT(2)
#define ADM_CH_RSLT_TPD			BIT(1)

/* channel conf */
#define ADM_CH_CONF_SHADOW_EN		BIT(12)
#define ADM_CH_CONF_MPU_DISABLE		BIT(11)
#define ADM_CH_CONF_PERM_MPU_CONF	BIT(9)
#define ADM_CH_CONF_FORCE_RSLT_EN	BIT(7)
#define ADM_CH_CONF_SEC_DOMAIN(ee)	((((ee) & 0x3) << 4) | (((ee) & 0x4) << 11))

/* channel result conf */
#define ADM_CH_RSLT_CONF_FLUSH_EN	BIT(1)
#define ADM_CH_RSLT_CONF_IRQ_EN		BIT(0)

/* CRCI CTL */
#define ADM_CRCI_CTL_MUX_SEL		BIT(18)
#define ADM_CRCI_CTL_RST		BIT(17)

/* CI configuration */
#define ADM_CI_RANGE_END(x)		((x) << 24)
#define ADM_CI_RANGE_START(x)		((x) << 16)
#define ADM_CI_BURST_4_WORDS		BIT(2)
#define ADM_CI_BURST_8_WORDS		BIT(3)

/* GP CTL */
#define ADM_GP_CTL_LP_EN		BIT(12)
#define ADM_GP_CTL_LP_CNT(x)		((x) << 8)

/* Command pointer list entry */
#define ADM_CPLE_LP			BIT(31)
#define ADM_CPLE_CMD_PTR_LIST		BIT(29)

/* Command list entry */
#define ADM_CMD_LC			BIT(31)
#define ADM_CMD_DST_CRCI(n)		(((n) & 0xf) << 7)
#define ADM_CMD_SRC_CRCI(n)		(((n) & 0xf) << 3)

#define ADM_CMD_TYPE_SINGLE		0x0
#define ADM_CMD_TYPE_BOX		0x3

#define ADM_CRCI_MUX_SEL		BIT(4)
#define ADM_DESC_ALIGN			8
#define ADM_MAX_XFER			(SZ_64K - 1)
#define ADM_MAX_ROWS			(SZ_64K - 1)
#define ADM_MAX_CHANNELS		16

struct adm_desc_hw_box {
	u32 cmd;
	u32 src_addr;
	u32 dst_addr;
	u32 row_len;
	u32 num_rows;
	u32 row_offset;
};

struct adm_desc_hw_single {
	u32 cmd;
	u32 src_addr;
	u32 dst_addr;
	u32 len;
};

struct adm_async_desc {
	struct virt_dma_desc vd;
	struct adm_device *adev;

	size_t length;
	enum dma_transfer_direction dir;
	dma_addr_t dma_addr;
	size_t dma_len;

	void *cpl;
	dma_addr_t cp_addr;
	u32 crci;
	u32 mux;
	u32 blk_size;
};

struct adm_chan {
	struct virt_dma_chan vc;
	struct adm_device *adev;

	/* parsed from DT */
	u32 id;			/* channel id */

	struct adm_async_desc *curr_txd;
	struct dma_slave_config slave;
	struct list_head node;

	int error;
	int initialized;
};

static inline struct adm_chan *to_adm_chan(struct dma_chan *common)
{
	return container_of(common, struct adm_chan, vc.chan);
}

struct adm_device {
	void __iomem *regs;
	struct device *dev;
	struct dma_device common;
	struct device_dma_parameters dma_parms;
	struct adm_chan *channels;

	u32 ee;

	struct clk *core_clk;
	struct clk *iface_clk;

	struct reset_control *clk_reset;
	struct reset_control *c0_reset;
	struct reset_control *c1_reset;
	struct reset_control *c2_reset;
	int irq;
};

/**
 * adm_free_chan - Frees dma resources associated with the specific channel
 *
 * @chan: dma channel
 *
 * Free all allocated descriptors associated with this channel
 */
static void adm_free_chan(struct dma_chan *chan)
{
	/* free all queued descriptors */
	vchan_free_chan_resources(to_virt_chan(chan));
}

/**
 * adm_get_blksize - Get block size from burst value
 *
 * @burst: Burst size of transaction
 */
static int adm_get_blksize(unsigned int burst)
{
	int ret;

	switch (burst) {
	case 16:
	case 32:
	case 64:
	case 128:
		ret = ffs(burst >> 4) - 1;
		break;
	case 192:
		ret = 4;
		break;
	case 256:
		ret = 5;
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

/**
 * adm_process_fc_descriptors - Process descriptors for flow controlled xfers
 *
 * @achan: ADM channel
 * @desc: Descriptor memory pointer
 * @sg: Scatterlist entry
 * @crci: CRCI value
 * @burst: Burst size of transaction
 * @direction: DMA transfer direction
 */
static void *adm_process_fc_descriptors(struct adm_chan *achan, void *desc,
					struct scatterlist *sg, u32 crci,
					u32 burst,
					enum dma_transfer_direction direction)
{
	struct adm_desc_hw_box *box_desc = NULL;
	struct adm_desc_hw_single *single_desc;
	u32 remainder = sg_dma_len(sg);
	u32 rows, row_offset, crci_cmd;
	u32 mem_addr = sg_dma_address(sg);
	u32 *incr_addr = &mem_addr;
	u32 *src, *dst;

	if (direction == DMA_DEV_TO_MEM) {
		crci_cmd = ADM_CMD_SRC_CRCI(crci);
		row_offset = burst;
		src = &achan->slave.src_addr;
		dst = &mem_addr;
	} else {
		crci_cmd = ADM_CMD_DST_CRCI(crci);
		row_offset = burst << 16;
		src = &mem_addr;
		dst = &achan->slave.dst_addr;
	}

	while (remainder >= burst) {
		box_desc = desc;
		box_desc->cmd = ADM_CMD_TYPE_BOX | crci_cmd;
		box_desc->row_offset = row_offset;
		box_desc->src_addr = *src;
		box_desc->dst_addr = *dst;

		rows = remainder / burst;
		rows = min_t(u32, rows, ADM_MAX_ROWS);
		box_desc->num_rows = rows << 16 | rows;
		box_desc->row_len = burst << 16 | burst;

		*incr_addr += burst * rows;
		remainder -= burst * rows;
		desc += sizeof(*box_desc);
	}

	/* if leftover bytes, do one single descriptor */
	if (remainder) {
		single_desc = desc;
		single_desc->cmd = ADM_CMD_TYPE_SINGLE | crci_cmd;
		single_desc->len = remainder;
		single_desc->src_addr = *src;
		single_desc->dst_addr = *dst;
		desc += sizeof(*single_desc);

		if (sg_is_last(sg))
			single_desc->cmd |= ADM_CMD_LC;
	} else {
		if (box_desc && sg_is_last(sg))
			box_desc->cmd |= ADM_CMD_LC;
	}

	return desc;
}

/**
 * adm_process_non_fc_descriptors - Process descriptors for non-fc xfers
 *
 * @achan: ADM channel
 * @desc: Descriptor memory pointer
 * @sg: Scatterlist entry
 * @direction: DMA transfer direction
 */
static void *adm_process_non_fc_descriptors(struct adm_chan *achan, void *desc,
					    struct scatterlist *sg,
					    enum dma_transfer_direction direction)
{
	struct adm_desc_hw_single *single_desc;
	u32 remainder = sg_dma_len(sg);
	u32 mem_addr = sg_dma_address(sg);
	u32 *incr_addr = &mem_addr;
	u32 *src, *dst;

	if (direction == DMA_DEV_TO_MEM) {
		src = &achan->slave.src_addr;
		dst = &mem_addr;
	} else {
		src = &mem_addr;
		dst = &achan->slave.dst_addr;
	}

	do {
		single_desc = desc;
		single_desc->cmd = ADM_CMD_TYPE_SINGLE;
		single_desc->src_addr = *src;
		single_desc->dst_addr = *dst;
		single_desc->len = (remainder > ADM_MAX_XFER) ?
				ADM_MAX_XFER : remainder;

		remainder -= single_desc->len;
		*incr_addr += single_desc->len;
		desc += sizeof(*single_desc);
	} while (remainder);

	/* set last command if this is the end of the whole transaction */
	if (sg_is_last(sg))
		single_desc->cmd |= ADM_CMD_LC;

	return desc;
}

/**
 * adm_prep_slave_sg - Prep slave sg transaction
 *
 * @chan: dma channel
 * @sgl: scatter gather list
 * @sg_len: length of sg
 * @direction: DMA transfer direction
 * @flags: DMA flags
 * @context: transfer context (unused)
 */
static struct dma_async_tx_descriptor *adm_prep_slave_sg(struct dma_chan *chan,
							 struct scatterlist *sgl,
							 unsigned int sg_len,
							 enum dma_transfer_direction direction,
							 unsigned long flags,
							 void *context)
{
	struct adm_chan *achan = to_adm_chan(chan);
	struct adm_device *adev = achan->adev;
	struct adm_async_desc *async_desc;
	struct scatterlist *sg;
	dma_addr_t cple_addr;
	u32 i, burst;
	u32 single_count = 0, box_count = 0, crci = 0;
	void *desc;
	u32 *cple;
	int blk_size = 0;

	if (!is_slave_direction(direction)) {
		dev_err(adev->dev, "invalid dma direction\n");
		return NULL;
	}

	/*
	 * get burst value from slave configuration
	 */
	burst = (direction == DMA_MEM_TO_DEV) ?
		achan->slave.dst_maxburst :
		achan->slave.src_maxburst;

	/* if using flow control, validate burst and crci values */
	if (achan->slave.device_fc) {
		blk_size = adm_get_blksize(burst);
		if (blk_size < 0) {
			dev_err(adev->dev, "invalid burst value: %d\n",
				burst);
			return ERR_PTR(-EINVAL);
		}

		crci = achan->slave.slave_id & 0xf;
		if (!crci || achan->slave.slave_id > 0x1f) {
			dev_err(adev->dev, "invalid crci value\n");
			return ERR_PTR(-EINVAL);
		}
	}

	/* iterate through sgs and compute allocation size of structures */
	for_each_sg(sgl, sg, sg_len, i) {
		if (achan->slave.device_fc) {
			box_count += DIV_ROUND_UP(sg_dma_len(sg) / burst,
						  ADM_MAX_ROWS);
			if (sg_dma_len(sg) % burst)
				single_count++;
		} else {
			single_count += DIV_ROUND_UP(sg_dma_len(sg),
						     ADM_MAX_XFER);
		}
	}

	async_desc = kzalloc(sizeof(*async_desc), GFP_NOWAIT);
	if (!async_desc)
		return ERR_PTR(-ENOMEM);

	if (crci)
		async_desc->mux = achan->slave.slave_id & ADM_CRCI_MUX_SEL ?
					ADM_CRCI_CTL_MUX_SEL : 0;
	async_desc->crci = crci;
	async_desc->blk_size = blk_size;
	async_desc->dma_len = single_count * sizeof(struct adm_desc_hw_single) +
				box_count * sizeof(struct adm_desc_hw_box) +
				sizeof(*cple) + 2 * ADM_DESC_ALIGN;

	async_desc->cpl = kzalloc(async_desc->dma_len, GFP_NOWAIT);
	if (!async_desc->cpl)
		goto free;

	async_desc->adev = adev;

	/* both command list entry and descriptors must be 8 byte aligned */
	cple = PTR_ALIGN(async_desc->cpl, ADM_DESC_ALIGN);
	desc = PTR_ALIGN(cple + 1, ADM_DESC_ALIGN);

	for_each_sg(sgl, sg, sg_len, i) {
		async_desc->length += sg_dma_len(sg);

		if (achan->slave.device_fc)
			desc = adm_process_fc_descriptors(achan, desc, sg, crci,
							  burst, direction);
		else
			desc = adm_process_non_fc_descriptors(achan, desc, sg,
							      direction);
	}

	async_desc->dma_addr = dma_map_single(adev->dev, async_desc->cpl,
					      async_desc->dma_len,
					      DMA_TO_DEVICE);
	if (dma_mapping_error(adev->dev, async_desc->dma_addr))
		goto free;

	cple_addr = async_desc->dma_addr + ((void *)cple - async_desc->cpl);

	/* init cmd list */
	dma_sync_single_for_cpu(adev->dev, cple_addr, sizeof(*cple),
				DMA_TO_DEVICE);
	*cple = ADM_CPLE_LP;
	*cple |= (async_desc->dma_addr + ADM_DESC_ALIGN) >> 3;
	dma_sync_single_for_device(adev->dev, cple_addr, sizeof(*cple),
				   DMA_TO_DEVICE);

	return vchan_tx_prep(&achan->vc, &async_desc->vd, flags);

free:
	kfree(async_desc);
	return ERR_PTR(-ENOMEM);
}

/**
 * adm_terminate_all - terminate all transactions on a channel
 * @chan: dma channel
 *
 * Dequeues and frees all transactions, aborts current transaction
 * No callbacks are done
 *
 */
static int adm_terminate_all(struct dma_chan *chan)
{
	struct adm_chan *achan = to_adm_chan(chan);
	struct adm_device *adev = achan->adev;
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&achan->vc.lock, flags);
	vchan_get_all_descriptors(&achan->vc, &head);

	/* send flush command to terminate current transaction */
	writel_relaxed(0x0,
		       adev->regs + ADM_CH_FLUSH_STATE0(achan->id, adev->ee));

	spin_unlock_irqrestore(&achan->vc.lock, flags);

	vchan_dma_desc_free_list(&achan->vc, &head);

	return 0;
}

static int adm_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
{
	struct adm_chan *achan = to_adm_chan(chan);
	unsigned long flag;

	spin_lock_irqsave(&achan->vc.lock, flag);
	memcpy(&achan->slave, cfg, sizeof(struct dma_slave_config));
	spin_unlock_irqrestore(&achan->vc.lock, flag);

	return 0;
}

/**
 * adm_start_dma - start next transaction
 * @achan: ADM dma channel
 */
static void adm_start_dma(struct adm_chan *achan)
{
	struct virt_dma_desc *vd = vchan_next_desc(&achan->vc);
	struct adm_device *adev = achan->adev;
	struct adm_async_desc *async_desc;

	lockdep_assert_held(&achan->vc.lock);

	if (!vd)
		return;

	list_del(&vd->node);

	/* write next command list out to the CMD FIFO */
	async_desc = container_of(vd, struct adm_async_desc, vd);
	achan->curr_txd = async_desc;

	/* reset channel error */
	achan->error = 0;

	if (!achan->initialized) {
		/* enable interrupts */
		writel(ADM_CH_CONF_SHADOW_EN |
		       ADM_CH_CONF_PERM_MPU_CONF |
		       ADM_CH_CONF_MPU_DISABLE |
		       ADM_CH_CONF_SEC_DOMAIN(adev->ee),
		       adev->regs + ADM_CH_CONF(achan->id));

		writel(ADM_CH_RSLT_CONF_IRQ_EN | ADM_CH_RSLT_CONF_FLUSH_EN,
		       adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));

		achan->initialized = 1;
	}

	/* set the crci block size if this transaction requires CRCI */
	if (async_desc->crci) {
		writel(async_desc->mux | async_desc->blk_size,
		       adev->regs + ADM_CRCI_CTL(async_desc->crci, adev->ee));
	}

	/* make sure IRQ enable doesn't get reordered */
	wmb();

	/* write next command list out to the CMD FIFO */
	writel(ALIGN(async_desc->dma_addr, ADM_DESC_ALIGN) >> 3,
	       adev->regs + ADM_CH_CMD_PTR(achan->id, adev->ee));
}

/**
 * adm_dma_irq - irq handler for ADM controller
 * @irq: IRQ of interrupt
 * @data: callback data
 *
 * IRQ handler for the bam controller
 */
static irqreturn_t adm_dma_irq(int irq, void *data)
{
	struct adm_device *adev = data;
	u32 srcs, i;
	struct adm_async_desc *async_desc;
	unsigned long flags;

	srcs = readl_relaxed(adev->regs +
			ADM_SEC_DOMAIN_IRQ_STATUS(adev->ee));

	for (i = 0; i < ADM_MAX_CHANNELS; i++) {
		struct adm_chan *achan = &adev->channels[i];
		u32 status, result;

		if (srcs & BIT(i)) {
			status = readl_relaxed(adev->regs +
					       ADM_CH_STATUS_SD(i, adev->ee));

			/* if no result present, skip */
			if (!(status & ADM_CH_STATUS_VALID))
				continue;

			result = readl_relaxed(adev->regs +
				ADM_CH_RSLT(i, adev->ee));

			/* no valid results, skip */
			if (!(result & ADM_CH_RSLT_VALID))
				continue;

			/* flag error if transaction was flushed or failed */
			if (result & (ADM_CH_RSLT_ERR | ADM_CH_RSLT_FLUSH))
				achan->error = 1;

			spin_lock_irqsave(&achan->vc.lock, flags);
			async_desc = achan->curr_txd;

			achan->curr_txd = NULL;

			if (async_desc) {
				vchan_cookie_complete(&async_desc->vd);

				/* kick off next DMA */
				adm_start_dma(achan);
			}

			spin_unlock_irqrestore(&achan->vc.lock, flags);
		}
	}

	return IRQ_HANDLED;
}

/**
 * adm_tx_status - returns status of transaction
 * @chan: dma channel
 * @cookie: transaction cookie
 * @txstate: DMA transaction state
 *
 * Return status of dma transaction
 */
static enum dma_status adm_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
				     struct dma_tx_state *txstate)
{
	struct adm_chan *achan = to_adm_chan(chan);
	struct virt_dma_desc *vd;
	enum dma_status ret;
	unsigned long flags;
	size_t residue = 0;

	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_COMPLETE || !txstate)
		return ret;

	spin_lock_irqsave(&achan->vc.lock, flags);

	vd = vchan_find_desc(&achan->vc, cookie);
	if (vd)
		residue = container_of(vd, struct adm_async_desc, vd)->length;

	spin_unlock_irqrestore(&achan->vc.lock, flags);

	/*
	 * residue is either the full length if it is in the issued list, or 0
	 * if it is in progress.  We have no reliable way of determining
	 * anything inbetween
	 */
	dma_set_residue(txstate, residue);

	if (achan->error)
		return DMA_ERROR;

	return ret;
}

/**
 * adm_issue_pending - starts pending transactions
 * @chan: dma channel
 *
 * Issues all pending transactions and starts DMA
 */
static void adm_issue_pending(struct dma_chan *chan)
{
	struct adm_chan *achan = to_adm_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&achan->vc.lock, flags);

	if (vchan_issue_pending(&achan->vc) && !achan->curr_txd)
		adm_start_dma(achan);
	spin_unlock_irqrestore(&achan->vc.lock, flags);
}

/**
 * adm_dma_free_desc - free descriptor memory
 * @vd: virtual descriptor
 *
 */
static void adm_dma_free_desc(struct virt_dma_desc *vd)
{
	struct adm_async_desc *async_desc = container_of(vd,
			struct adm_async_desc, vd);

	dma_unmap_single(async_desc->adev->dev, async_desc->dma_addr,
			 async_desc->dma_len, DMA_TO_DEVICE);
	kfree(async_desc->cpl);
	kfree(async_desc);
}

static void adm_channel_init(struct adm_device *adev, struct adm_chan *achan,
			     u32 index)
{
	achan->id = index;
	achan->adev = adev;

	vchan_init(&achan->vc, &adev->common);
	achan->vc.desc_free = adm_dma_free_desc;
}

static int adm_dma_probe(struct platform_device *pdev)
{
	struct adm_device *adev;
	int ret;
	u32 i;

	adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
	if (!adev)
		return -ENOMEM;

	adev->dev = &pdev->dev;

	adev->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(adev->regs))
		return PTR_ERR(adev->regs);

	adev->irq = platform_get_irq(pdev, 0);
	if (adev->irq < 0)
		return adev->irq;

	ret = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &adev->ee);
	if (ret) {
		dev_err(adev->dev, "Execution environment unspecified\n");
		return ret;
	}

	adev->core_clk = devm_clk_get(adev->dev, "core");
	if (IS_ERR(adev->core_clk))
		return PTR_ERR(adev->core_clk);

	adev->iface_clk = devm_clk_get(adev->dev, "iface");
	if (IS_ERR(adev->iface_clk))
		return PTR_ERR(adev->iface_clk);

	adev->clk_reset = devm_reset_control_get_exclusive(&pdev->dev, "clk");
	if (IS_ERR(adev->clk_reset)) {
		dev_err(adev->dev, "failed to get ADM0 reset\n");
		return PTR_ERR(adev->clk_reset);
	}

	adev->c0_reset = devm_reset_control_get_exclusive(&pdev->dev, "c0");
	if (IS_ERR(adev->c0_reset)) {
		dev_err(adev->dev, "failed to get ADM0 C0 reset\n");
		return PTR_ERR(adev->c0_reset);
	}

	adev->c1_reset = devm_reset_control_get_exclusive(&pdev->dev, "c1");
	if (IS_ERR(adev->c1_reset)) {
		dev_err(adev->dev, "failed to get ADM0 C1 reset\n");
		return PTR_ERR(adev->c1_reset);
	}

	adev->c2_reset = devm_reset_control_get_exclusive(&pdev->dev, "c2");
	if (IS_ERR(adev->c2_reset)) {
		dev_err(adev->dev, "failed to get ADM0 C2 reset\n");
		return PTR_ERR(adev->c2_reset);
	}

	ret = clk_prepare_enable(adev->core_clk);
	if (ret) {
		dev_err(adev->dev, "failed to prepare/enable core clock\n");
		return ret;
	}

	ret = clk_prepare_enable(adev->iface_clk);
	if (ret) {
		dev_err(adev->dev, "failed to prepare/enable iface clock\n");
		goto err_disable_core_clk;
	}

	reset_control_assert(adev->clk_reset);
	reset_control_assert(adev->c0_reset);
	reset_control_assert(adev->c1_reset);
	reset_control_assert(adev->c2_reset);

	udelay(2);

	reset_control_deassert(adev->clk_reset);
	reset_control_deassert(adev->c0_reset);
	reset_control_deassert(adev->c1_reset);
	reset_control_deassert(adev->c2_reset);

	adev->channels = devm_kcalloc(adev->dev, ADM_MAX_CHANNELS,
				      sizeof(*adev->channels), GFP_KERNEL);

	if (!adev->channels) {
		ret = -ENOMEM;
		goto err_disable_clks;
	}

	/* allocate and initialize channels */
	INIT_LIST_HEAD(&adev->common.channels);

	for (i = 0; i < ADM_MAX_CHANNELS; i++)
		adm_channel_init(adev, &adev->channels[i], i);

	/* reset CRCIs */
	for (i = 0; i < 16; i++)
		writel(ADM_CRCI_CTL_RST, adev->regs +
			ADM_CRCI_CTL(i, adev->ee));

	/* configure client interfaces */
	writel(ADM_CI_RANGE_START(0x40) | ADM_CI_RANGE_END(0xb0) |
	       ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(0));
	writel(ADM_CI_RANGE_START(0x2a) | ADM_CI_RANGE_END(0x2c) |
	       ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(1));
	writel(ADM_CI_RANGE_START(0x12) | ADM_CI_RANGE_END(0x28) |
	       ADM_CI_BURST_8_WORDS, adev->regs + ADM_CI_CONF(2));
	writel(ADM_GP_CTL_LP_EN | ADM_GP_CTL_LP_CNT(0xf),
	       adev->regs + ADM_GP_CTL);

	ret = devm_request_irq(adev->dev, adev->irq, adm_dma_irq,
			       0, "adm_dma", adev);
	if (ret)
		goto err_disable_clks;

	platform_set_drvdata(pdev, adev);

	adev->common.dev = adev->dev;
	adev->common.dev->dma_parms = &adev->dma_parms;

	/* set capabilities */
	dma_cap_zero(adev->common.cap_mask);
	dma_cap_set(DMA_SLAVE, adev->common.cap_mask);
	dma_cap_set(DMA_PRIVATE, adev->common.cap_mask);

	/* initialize dmaengine apis */
	adev->common.directions = BIT(DMA_DEV_TO_MEM | DMA_MEM_TO_DEV);
	adev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
	adev->common.src_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
	adev->common.dst_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES;
	adev->common.device_free_chan_resources = adm_free_chan;
	adev->common.device_prep_slave_sg = adm_prep_slave_sg;
	adev->common.device_issue_pending = adm_issue_pending;
	adev->common.device_tx_status = adm_tx_status;
	adev->common.device_terminate_all = adm_terminate_all;
	adev->common.device_config = adm_slave_config;

	ret = dma_async_device_register(&adev->common);
	if (ret) {
		dev_err(adev->dev, "failed to register dma async device\n");
		goto err_disable_clks;
	}

	ret = of_dma_controller_register(pdev->dev.of_node,
					 of_dma_xlate_by_chan_id,
					 &adev->common);
	if (ret)
		goto err_unregister_dma;

	return 0;

err_unregister_dma:
	dma_async_device_unregister(&adev->common);
err_disable_clks:
	clk_disable_unprepare(adev->iface_clk);
err_disable_core_clk:
	clk_disable_unprepare(adev->core_clk);

	return ret;
}

static int adm_dma_remove(struct platform_device *pdev)
{
	struct adm_device *adev = platform_get_drvdata(pdev);
	struct adm_chan *achan;
	u32 i;

	of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&adev->common);

	for (i = 0; i < ADM_MAX_CHANNELS; i++) {
		achan = &adev->channels[i];

		/* mask IRQs for this channel/EE pair */
		writel(0, adev->regs + ADM_CH_RSLT_CONF(achan->id, adev->ee));

		tasklet_kill(&adev->channels[i].vc.task);
		adm_terminate_all(&adev->channels[i].vc.chan);
	}

	devm_free_irq(adev->dev, adev->irq, adev);

	clk_disable_unprepare(adev->core_clk);
	clk_disable_unprepare(adev->iface_clk);

	return 0;
}

static const struct of_device_id adm_of_match[] = {
	{ .compatible = "qcom,adm", },
	{}
};
MODULE_DEVICE_TABLE(of, adm_of_match);

static struct platform_driver adm_dma_driver = {
	.probe = adm_dma_probe,
	.remove = adm_dma_remove,
	.driver = {
		.name = "adm-dma-engine",
		.of_match_table = adm_of_match,
	},
};

module_platform_driver(adm_dma_driver);

MODULE_AUTHOR("Andy Gross <agross@codeaurora.org>");
MODULE_DESCRIPTION("QCOM ADM DMA engine driver");
MODULE_LICENSE("GPL v2");