Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2019 NXP.
 *
 * Scaling algorithms were contributed by Dzung Hoang <dzung.hoang@nxp.com>
 */

#include <linux/device.h>
#include <linux/slab.h>

#include "dcss-dev.h"

#define DCSS_SCALER_CTRL			0x00
#define   SCALER_EN				BIT(0)
#define   REPEAT_EN				BIT(4)
#define   SCALE2MEM_EN				BIT(8)
#define   MEM2OFIFO_EN				BIT(12)
#define DCSS_SCALER_OFIFO_CTRL			0x04
#define   OFIFO_LOW_THRES_POS			0
#define   OFIFO_LOW_THRES_MASK			GENMASK(9, 0)
#define   OFIFO_HIGH_THRES_POS			16
#define   OFIFO_HIGH_THRES_MASK			GENMASK(25, 16)
#define   UNDERRUN_DETECT_CLR			BIT(26)
#define   LOW_THRES_DETECT_CLR			BIT(27)
#define   HIGH_THRES_DETECT_CLR			BIT(28)
#define   UNDERRUN_DETECT_EN			BIT(29)
#define   LOW_THRES_DETECT_EN			BIT(30)
#define   HIGH_THRES_DETECT_EN			BIT(31)
#define DCSS_SCALER_SDATA_CTRL			0x08
#define   YUV_EN				BIT(0)
#define   RTRAM_8LINES				BIT(1)
#define   Y_UV_BYTE_SWAP			BIT(4)
#define   A2R10G10B10_FORMAT_POS		8
#define   A2R10G10B10_FORMAT_MASK		GENMASK(11, 8)
#define DCSS_SCALER_BIT_DEPTH			0x0C
#define   LUM_BIT_DEPTH_POS			0
#define   LUM_BIT_DEPTH_MASK			GENMASK(1, 0)
#define   CHR_BIT_DEPTH_POS			4
#define   CHR_BIT_DEPTH_MASK			GENMASK(5, 4)
#define DCSS_SCALER_SRC_FORMAT			0x10
#define DCSS_SCALER_DST_FORMAT			0x14
#define   FORMAT_MASK				GENMASK(1, 0)
#define DCSS_SCALER_SRC_LUM_RES			0x18
#define DCSS_SCALER_SRC_CHR_RES			0x1C
#define DCSS_SCALER_DST_LUM_RES			0x20
#define DCSS_SCALER_DST_CHR_RES			0x24
#define   WIDTH_POS				0
#define   WIDTH_MASK				GENMASK(11, 0)
#define   HEIGHT_POS				16
#define   HEIGHT_MASK				GENMASK(27, 16)
#define DCSS_SCALER_V_LUM_START			0x48
#define   V_START_MASK				GENMASK(15, 0)
#define DCSS_SCALER_V_LUM_INC			0x4C
#define   V_INC_MASK				GENMASK(15, 0)
#define DCSS_SCALER_H_LUM_START			0x50
#define   H_START_MASK				GENMASK(18, 0)
#define DCSS_SCALER_H_LUM_INC			0x54
#define   H_INC_MASK				GENMASK(15, 0)
#define DCSS_SCALER_V_CHR_START			0x58
#define DCSS_SCALER_V_CHR_INC			0x5C
#define DCSS_SCALER_H_CHR_START			0x60
#define DCSS_SCALER_H_CHR_INC			0x64
#define DCSS_SCALER_COEF_VLUM			0x80
#define DCSS_SCALER_COEF_HLUM			0x140
#define DCSS_SCALER_COEF_VCHR			0x200
#define DCSS_SCALER_COEF_HCHR			0x300

struct dcss_scaler_ch {
	void __iomem *base_reg;
	u32 base_ofs;
	struct dcss_scaler *scl;

	u32 sdata_ctrl;
	u32 scaler_ctrl;

	bool scaler_ctrl_chgd;

	u32 c_vstart;
	u32 c_hstart;
};

struct dcss_scaler {
	struct device *dev;

	struct dcss_ctxld *ctxld;
	u32 ctx_id;

	struct dcss_scaler_ch ch[3];
};

/* scaler coefficients generator */
#define PSC_FRAC_BITS 30
#define PSC_FRAC_SCALE BIT(PSC_FRAC_BITS)
#define PSC_BITS_FOR_PHASE 4
#define PSC_NUM_PHASES 16
#define PSC_STORED_PHASES (PSC_NUM_PHASES / 2 + 1)
#define PSC_NUM_TAPS 7
#define PSC_NUM_TAPS_RGBA 5
#define PSC_COEFF_PRECISION 10
#define PSC_PHASE_FRACTION_BITS 13
#define PSC_PHASE_MASK (PSC_NUM_PHASES - 1)
#define PSC_Q_FRACTION 19
#define PSC_Q_ROUND_OFFSET (1 << (PSC_Q_FRACTION - 1))

/**
 * mult_q() - Performs fixed-point multiplication.
 * @A: multiplier
 * @B: multiplicand
 */
static int mult_q(int A, int B)
{
	int result;
	s64 temp;

	temp = (int64_t)A * (int64_t)B;
	temp += PSC_Q_ROUND_OFFSET;
	result = (int)(temp >> PSC_Q_FRACTION);
	return result;
}

/**
 * div_q() - Performs fixed-point division.
 * @A: dividend
 * @B: divisor
 */
static int div_q(int A, int B)
{
	int result;
	s64 temp;

	temp = (int64_t)A << PSC_Q_FRACTION;
	if ((temp >= 0 && B >= 0) || (temp < 0 && B < 0))
		temp += B / 2;
	else
		temp -= B / 2;

	result = (int)(temp / B);
	return result;
}

/**
 * exp_approx_q() - Compute approximation to exp(x) function using Taylor
 *		    series.
 * @x: fixed-point argument of exp function
 */
static int exp_approx_q(int x)
{
	int sum = 1 << PSC_Q_FRACTION;
	int term = 1 << PSC_Q_FRACTION;

	term = mult_q(term, div_q(x, 1 << PSC_Q_FRACTION));
	sum += term;
	term = mult_q(term, div_q(x, 2 << PSC_Q_FRACTION));
	sum += term;
	term = mult_q(term, div_q(x, 3 << PSC_Q_FRACTION));
	sum += term;
	term = mult_q(term, div_q(x, 4 << PSC_Q_FRACTION));
	sum += term;

	return sum;
}

/**
 * dcss_scaler_gaussian_filter() - Generate gaussian prototype filter.
 * @fc_q: fixed-point cutoff frequency normalized to range [0, 1]
 * @use_5_taps: indicates whether to use 5 taps or 7 taps
 * @coef: output filter coefficients
 */
static void dcss_scaler_gaussian_filter(int fc_q, bool use_5_taps,
					bool phase0_identity,
					int coef[][PSC_NUM_TAPS])
{
	int sigma_q, g0_q, g1_q, g2_q;
	int tap_cnt1, tap_cnt2, tap_idx, phase_cnt;
	int mid;
	int phase;
	int i;
	int taps;

	if (use_5_taps)
		for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
			coef[phase][0] = 0;
			coef[phase][PSC_NUM_TAPS - 1] = 0;
		}

	/* seed coefficient scanner */
	taps = use_5_taps ? PSC_NUM_TAPS_RGBA : PSC_NUM_TAPS;
	mid = (PSC_NUM_PHASES * taps) / 2 - 1;
	phase_cnt = (PSC_NUM_PHASES * (PSC_NUM_TAPS + 1)) / 2;
	tap_cnt1 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
	tap_cnt2 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;

	/* seed gaussian filter generator */
	sigma_q = div_q(PSC_Q_ROUND_OFFSET, fc_q);
	g0_q = 1 << PSC_Q_FRACTION;
	g1_q = exp_approx_q(div_q(-PSC_Q_ROUND_OFFSET,
				  mult_q(sigma_q, sigma_q)));
	g2_q = mult_q(g1_q, g1_q);
	coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = g0_q;

	for (i = 0; i < mid; i++) {
		phase_cnt++;
		tap_cnt1--;
		tap_cnt2++;

		g0_q = mult_q(g0_q, g1_q);
		g1_q = mult_q(g1_q, g2_q);

		if ((phase_cnt & PSC_PHASE_MASK) <= 8) {
			tap_idx = tap_cnt1 >> PSC_BITS_FOR_PHASE;
			coef[phase_cnt & PSC_PHASE_MASK][tap_idx] = g0_q;
		}
		if (((-phase_cnt) & PSC_PHASE_MASK) <= 8) {
			tap_idx = tap_cnt2 >> PSC_BITS_FOR_PHASE;
			coef[(-phase_cnt) & PSC_PHASE_MASK][tap_idx] = g0_q;
		}
	}

	phase_cnt++;
	tap_cnt1--;
	coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = 0;

	/* override phase 0 with identity filter if specified */
	if (phase0_identity)
		for (i = 0; i < PSC_NUM_TAPS; i++)
			coef[0][i] = i == (PSC_NUM_TAPS >> 1) ?
						(1 << PSC_COEFF_PRECISION) : 0;

	/* normalize coef */
	for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
		int sum = 0;
		s64 ll_temp;

		for (i = 0; i < PSC_NUM_TAPS; i++)
			sum += coef[phase][i];
		for (i = 0; i < PSC_NUM_TAPS; i++) {
			ll_temp = coef[phase][i];
			ll_temp <<= PSC_COEFF_PRECISION;
			ll_temp += sum >> 1;
			ll_temp /= sum;
			coef[phase][i] = (int)ll_temp;
		}
	}
}

/**
 * dcss_scaler_filter_design() - Compute filter coefficients using
 *				 Gaussian filter.
 * @src_length: length of input
 * @dst_length: length of output
 * @use_5_taps: 0 for 7 taps per phase, 1 for 5 taps
 * @coef: output coefficients
 */
static void dcss_scaler_filter_design(int src_length, int dst_length,
				      bool use_5_taps, bool phase0_identity,
				      int coef[][PSC_NUM_TAPS])
{
	int fc_q;

	/* compute cutoff frequency */
	if (dst_length >= src_length)
		fc_q = div_q(1, PSC_NUM_PHASES);
	else
		fc_q = div_q(dst_length, src_length * PSC_NUM_PHASES);

	/* compute gaussian filter coefficients */
	dcss_scaler_gaussian_filter(fc_q, use_5_taps, phase0_identity, coef);
}

static void dcss_scaler_write(struct dcss_scaler_ch *ch, u32 val, u32 ofs)
{
	struct dcss_scaler *scl = ch->scl;

	dcss_ctxld_write(scl->ctxld, scl->ctx_id, val, ch->base_ofs + ofs);
}

static int dcss_scaler_ch_init_all(struct dcss_scaler *scl,
				   unsigned long scaler_base)
{
	struct dcss_scaler_ch *ch;
	int i;

	for (i = 0; i < 3; i++) {
		ch = &scl->ch[i];

		ch->base_ofs = scaler_base + i * 0x400;

		ch->base_reg = ioremap(ch->base_ofs, SZ_4K);
		if (!ch->base_reg) {
			dev_err(scl->dev, "scaler: unable to remap ch base\n");
			return -ENOMEM;
		}

		ch->scl = scl;
	}

	return 0;
}

int dcss_scaler_init(struct dcss_dev *dcss, unsigned long scaler_base)
{
	struct dcss_scaler *scaler;

	scaler = kzalloc(sizeof(*scaler), GFP_KERNEL);
	if (!scaler)
		return -ENOMEM;

	dcss->scaler = scaler;
	scaler->dev = dcss->dev;
	scaler->ctxld = dcss->ctxld;
	scaler->ctx_id = CTX_SB_HP;

	if (dcss_scaler_ch_init_all(scaler, scaler_base)) {
		int i;

		for (i = 0; i < 3; i++) {
			if (scaler->ch[i].base_reg)
				iounmap(scaler->ch[i].base_reg);
		}

		kfree(scaler);

		return -ENOMEM;
	}

	return 0;
}

void dcss_scaler_exit(struct dcss_scaler *scl)
{
	int ch_no;

	for (ch_no = 0; ch_no < 3; ch_no++) {
		struct dcss_scaler_ch *ch = &scl->ch[ch_no];

		dcss_writel(0, ch->base_reg + DCSS_SCALER_CTRL);

		if (ch->base_reg)
			iounmap(ch->base_reg);
	}

	kfree(scl);
}

void dcss_scaler_ch_enable(struct dcss_scaler *scl, int ch_num, bool en)
{
	struct dcss_scaler_ch *ch = &scl->ch[ch_num];
	u32 scaler_ctrl;

	scaler_ctrl = en ? SCALER_EN | REPEAT_EN : 0;

	if (en)
		dcss_scaler_write(ch, ch->sdata_ctrl, DCSS_SCALER_SDATA_CTRL);

	if (ch->scaler_ctrl != scaler_ctrl)
		ch->scaler_ctrl_chgd = true;

	ch->scaler_ctrl = scaler_ctrl;
}

static void dcss_scaler_yuv_enable(struct dcss_scaler_ch *ch, bool en)
{
	ch->sdata_ctrl &= ~YUV_EN;
	ch->sdata_ctrl |= en ? YUV_EN : 0;
}

static void dcss_scaler_rtr_8lines_enable(struct dcss_scaler_ch *ch, bool en)
{
	ch->sdata_ctrl &= ~RTRAM_8LINES;
	ch->sdata_ctrl |= en ? RTRAM_8LINES : 0;
}

static void dcss_scaler_bit_depth_set(struct dcss_scaler_ch *ch, int depth)
{
	u32 val;

	val = depth == 30 ? 2 : 0;

	dcss_scaler_write(ch,
			  ((val << CHR_BIT_DEPTH_POS) & CHR_BIT_DEPTH_MASK) |
			  ((val << LUM_BIT_DEPTH_POS) & LUM_BIT_DEPTH_MASK),
			  DCSS_SCALER_BIT_DEPTH);
}

enum buffer_format {
	BUF_FMT_YUV420,
	BUF_FMT_YUV422,
	BUF_FMT_ARGB8888_YUV444,
};

enum chroma_location {
	PSC_LOC_HORZ_0_VERT_1_OVER_4 = 0,
	PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4 = 1,
	PSC_LOC_HORZ_0_VERT_0 = 2,
	PSC_LOC_HORZ_1_OVER_4_VERT_0 = 3,
	PSC_LOC_HORZ_0_VERT_1_OVER_2 = 4,
	PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2 = 5
};

static void dcss_scaler_format_set(struct dcss_scaler_ch *ch,
				   enum buffer_format src_fmt,
				   enum buffer_format dst_fmt)
{
	dcss_scaler_write(ch, src_fmt, DCSS_SCALER_SRC_FORMAT);
	dcss_scaler_write(ch, dst_fmt, DCSS_SCALER_DST_FORMAT);
}

static void dcss_scaler_res_set(struct dcss_scaler_ch *ch,
				int src_xres, int src_yres,
				int dst_xres, int dst_yres,
				u32 pix_format, enum buffer_format dst_format)
{
	u32 lsrc_xres, lsrc_yres, csrc_xres, csrc_yres;
	u32 ldst_xres, ldst_yres, cdst_xres, cdst_yres;
	bool src_is_444 = true;

	lsrc_xres = src_xres;
	csrc_xres = src_xres;
	lsrc_yres = src_yres;
	csrc_yres = src_yres;
	ldst_xres = dst_xres;
	cdst_xres = dst_xres;
	ldst_yres = dst_yres;
	cdst_yres = dst_yres;

	if (pix_format == DRM_FORMAT_UYVY || pix_format == DRM_FORMAT_VYUY ||
	    pix_format == DRM_FORMAT_YUYV || pix_format == DRM_FORMAT_YVYU) {
		csrc_xres >>= 1;
		src_is_444 = false;
	} else if (pix_format == DRM_FORMAT_NV12 ||
		   pix_format == DRM_FORMAT_NV21) {
		csrc_xres >>= 1;
		csrc_yres >>= 1;
		src_is_444 = false;
	}

	if (dst_format == BUF_FMT_YUV422)
		cdst_xres >>= 1;

	/* for 4:4:4 to 4:2:2 conversion, source height should be 1 less */
	if (src_is_444 && dst_format == BUF_FMT_YUV422) {
		lsrc_yres--;
		csrc_yres--;
	}

	dcss_scaler_write(ch, (((lsrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
			       (((lsrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
			  DCSS_SCALER_SRC_LUM_RES);
	dcss_scaler_write(ch, (((csrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
			       (((csrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
			  DCSS_SCALER_SRC_CHR_RES);
	dcss_scaler_write(ch, (((ldst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
			       (((ldst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
			  DCSS_SCALER_DST_LUM_RES);
	dcss_scaler_write(ch, (((cdst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
			       (((cdst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
			  DCSS_SCALER_DST_CHR_RES);
}

#define downscale_fp(factor, fp_pos)		((factor) << (fp_pos))
#define upscale_fp(factor, fp_pos)		((1 << (fp_pos)) / (factor))

struct dcss_scaler_factors {
	int downscale;
	int upscale;
};

static const struct dcss_scaler_factors dcss_scaler_factors[] = {
	{3, 8}, {5, 8}, {5, 8},
};

static void dcss_scaler_fractions_set(struct dcss_scaler_ch *ch,
				      int src_xres, int src_yres,
				      int dst_xres, int dst_yres,
				      u32 src_format, u32 dst_format,
				      enum chroma_location src_chroma_loc)
{
	int src_c_xres, src_c_yres, dst_c_xres, dst_c_yres;
	u32 l_vinc, l_hinc, c_vinc, c_hinc;
	u32 c_vstart, c_hstart;

	src_c_xres = src_xres;
	src_c_yres = src_yres;
	dst_c_xres = dst_xres;
	dst_c_yres = dst_yres;

	c_vstart = 0;
	c_hstart = 0;

	/* adjustments for source chroma location */
	if (src_format == BUF_FMT_YUV420) {
		/* vertical input chroma position adjustment */
		switch (src_chroma_loc) {
		case PSC_LOC_HORZ_0_VERT_1_OVER_4:
		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
			/*
			 * move chroma up to first luma line
			 * (1/4 chroma input line spacing)
			 */
			c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
			break;
		case PSC_LOC_HORZ_0_VERT_1_OVER_2:
		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
			/*
			 * move chroma up to first luma line
			 * (1/2 chroma input line spacing)
			 */
			c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 1));
			break;
		default:
			break;
		}
		/* horizontal input chroma position adjustment */
		switch (src_chroma_loc) {
		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
		case PSC_LOC_HORZ_1_OVER_4_VERT_0:
		case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
			/* move chroma left 1/4 chroma input sample spacing */
			c_hstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
			break;
		default:
			break;
		}
	}

	/* adjustments to chroma resolution */
	if (src_format == BUF_FMT_YUV420) {
		src_c_xres >>= 1;
		src_c_yres >>= 1;
	} else if (src_format == BUF_FMT_YUV422) {
		src_c_xres >>= 1;
	}

	if (dst_format == BUF_FMT_YUV422)
		dst_c_xres >>= 1;

	l_vinc = ((src_yres << 13) + (dst_yres >> 1)) / dst_yres;
	c_vinc = ((src_c_yres << 13) + (dst_c_yres >> 1)) / dst_c_yres;
	l_hinc = ((src_xres << 13) + (dst_xres >> 1)) / dst_xres;
	c_hinc = ((src_c_xres << 13) + (dst_c_xres >> 1)) / dst_c_xres;

	/* save chroma start phase */
	ch->c_vstart = c_vstart;
	ch->c_hstart = c_hstart;

	dcss_scaler_write(ch, 0, DCSS_SCALER_V_LUM_START);
	dcss_scaler_write(ch, l_vinc, DCSS_SCALER_V_LUM_INC);

	dcss_scaler_write(ch, 0, DCSS_SCALER_H_LUM_START);
	dcss_scaler_write(ch, l_hinc, DCSS_SCALER_H_LUM_INC);

	dcss_scaler_write(ch, c_vstart, DCSS_SCALER_V_CHR_START);
	dcss_scaler_write(ch, c_vinc, DCSS_SCALER_V_CHR_INC);

	dcss_scaler_write(ch, c_hstart, DCSS_SCALER_H_CHR_START);
	dcss_scaler_write(ch, c_hinc, DCSS_SCALER_H_CHR_INC);
}

int dcss_scaler_get_min_max_ratios(struct dcss_scaler *scl, int ch_num,
				   int *min, int *max)
{
	*min = upscale_fp(dcss_scaler_factors[ch_num].upscale, 16);
	*max = downscale_fp(dcss_scaler_factors[ch_num].downscale, 16);

	return 0;
}

static void dcss_scaler_program_5_coef_set(struct dcss_scaler_ch *ch,
					   int base_addr,
					   int coef[][PSC_NUM_TAPS])
{
	int i, phase;

	for (i = 0; i < PSC_STORED_PHASES; i++) {
		dcss_scaler_write(ch, ((coef[i][1] & 0xfff) << 16 |
				       (coef[i][2] & 0xfff) << 4  |
				       (coef[i][3] & 0xf00) >> 8),
				  base_addr + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[i][3] & 0x0ff) << 20 |
				       (coef[i][4] & 0xfff) << 8  |
				       (coef[i][5] & 0xff0) >> 4),
				  base_addr + 0x40 + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[i][5] & 0x00f) << 24),
				  base_addr + 0x80 + i * sizeof(u32));
	}

	/* reverse both phase and tap orderings */
	for (phase = (PSC_NUM_PHASES >> 1) - 1;
			i < PSC_NUM_PHASES; i++, phase--) {
		dcss_scaler_write(ch, ((coef[phase][5] & 0xfff) << 16 |
				       (coef[phase][4] & 0xfff) << 4  |
				       (coef[phase][3] & 0xf00) >> 8),
				  base_addr + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[phase][3] & 0x0ff) << 20 |
				       (coef[phase][2] & 0xfff) << 8  |
				       (coef[phase][1] & 0xff0) >> 4),
				  base_addr + 0x40 + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[phase][1] & 0x00f) << 24),
				  base_addr + 0x80 + i * sizeof(u32));
	}
}

static void dcss_scaler_program_7_coef_set(struct dcss_scaler_ch *ch,
					   int base_addr,
					   int coef[][PSC_NUM_TAPS])
{
	int i, phase;

	for (i = 0; i < PSC_STORED_PHASES; i++) {
		dcss_scaler_write(ch, ((coef[i][0] & 0xfff) << 16 |
				       (coef[i][1] & 0xfff) << 4  |
				       (coef[i][2] & 0xf00) >> 8),
				  base_addr + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[i][2] & 0x0ff) << 20 |
				       (coef[i][3] & 0xfff) << 8  |
				       (coef[i][4] & 0xff0) >> 4),
				  base_addr + 0x40 + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[i][4] & 0x00f) << 24 |
				       (coef[i][5] & 0xfff) << 12 |
				       (coef[i][6] & 0xfff)),
				  base_addr + 0x80 + i * sizeof(u32));
	}

	/* reverse both phase and tap orderings */
	for (phase = (PSC_NUM_PHASES >> 1) - 1;
			i < PSC_NUM_PHASES; i++, phase--) {
		dcss_scaler_write(ch, ((coef[phase][6] & 0xfff) << 16 |
				       (coef[phase][5] & 0xfff) << 4  |
				       (coef[phase][4] & 0xf00) >> 8),
				  base_addr + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[phase][4] & 0x0ff) << 20 |
				       (coef[phase][3] & 0xfff) << 8  |
				       (coef[phase][2] & 0xff0) >> 4),
				  base_addr + 0x40 + i * sizeof(u32));
		dcss_scaler_write(ch, ((coef[phase][2] & 0x00f) << 24 |
				       (coef[phase][1] & 0xfff) << 12 |
				       (coef[phase][0] & 0xfff)),
				  base_addr + 0x80 + i * sizeof(u32));
	}
}

static void dcss_scaler_yuv_coef_set(struct dcss_scaler_ch *ch,
				     enum buffer_format src_format,
				     enum buffer_format dst_format,
				     bool use_5_taps,
				     int src_xres, int src_yres, int dst_xres,
				     int dst_yres)
{
	int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
	bool program_5_taps = use_5_taps ||
			      (dst_format == BUF_FMT_YUV422 &&
			       src_format == BUF_FMT_ARGB8888_YUV444);

	/* horizontal luma */
	dcss_scaler_filter_design(src_xres, dst_xres, false,
				  src_xres == dst_xres, coef);
	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);

	/* vertical luma */
	dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
				  src_yres == dst_yres, coef);

	if (program_5_taps)
		dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
	else
		dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);

	/* adjust chroma resolution */
	if (src_format != BUF_FMT_ARGB8888_YUV444)
		src_xres >>= 1;
	if (src_format == BUF_FMT_YUV420)
		src_yres >>= 1;
	if (dst_format != BUF_FMT_ARGB8888_YUV444)
		dst_xres >>= 1;
	if (dst_format == BUF_FMT_YUV420) /* should not happen */
		dst_yres >>= 1;

	/* horizontal chroma */
	dcss_scaler_filter_design(src_xres, dst_xres, false,
				  (src_xres == dst_xres) && (ch->c_hstart == 0),
				  coef);

	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HCHR, coef);

	/* vertical chroma */
	dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
				  (src_yres == dst_yres) && (ch->c_vstart == 0),
				  coef);
	if (program_5_taps)
		dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
	else
		dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
}

static void dcss_scaler_rgb_coef_set(struct dcss_scaler_ch *ch,
				     int src_xres, int src_yres, int dst_xres,
				     int dst_yres)
{
	int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];

	/* horizontal RGB */
	dcss_scaler_filter_design(src_xres, dst_xres, false,
				  src_xres == dst_xres, coef);
	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);

	/* vertical RGB */
	dcss_scaler_filter_design(src_yres, dst_yres, false,
				  src_yres == dst_yres, coef);
	dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
}

static void dcss_scaler_set_rgb10_order(struct dcss_scaler_ch *ch,
					const struct drm_format_info *format)
{
	u32 a2r10g10b10_format;

	if (format->is_yuv)
		return;

	ch->sdata_ctrl &= ~A2R10G10B10_FORMAT_MASK;

	if (format->depth != 30)
		return;

	switch (format->format) {
	case DRM_FORMAT_ARGB2101010:
	case DRM_FORMAT_XRGB2101010:
		a2r10g10b10_format = 0;
		break;

	case DRM_FORMAT_ABGR2101010:
	case DRM_FORMAT_XBGR2101010:
		a2r10g10b10_format = 5;
		break;

	case DRM_FORMAT_RGBA1010102:
	case DRM_FORMAT_RGBX1010102:
		a2r10g10b10_format = 6;
		break;

	case DRM_FORMAT_BGRA1010102:
	case DRM_FORMAT_BGRX1010102:
		a2r10g10b10_format = 11;
		break;

	default:
		a2r10g10b10_format = 0;
		break;
	}

	ch->sdata_ctrl |= a2r10g10b10_format << A2R10G10B10_FORMAT_POS;
}

void dcss_scaler_setup(struct dcss_scaler *scl, int ch_num,
		       const struct drm_format_info *format,
		       int src_xres, int src_yres, int dst_xres, int dst_yres,
		       u32 vrefresh_hz)
{
	struct dcss_scaler_ch *ch = &scl->ch[ch_num];
	unsigned int pixel_depth = 0;
	bool rtr_8line_en = false;
	bool use_5_taps = false;
	enum buffer_format src_format = BUF_FMT_ARGB8888_YUV444;
	enum buffer_format dst_format = BUF_FMT_ARGB8888_YUV444;
	u32 pix_format = format->format;

	if (format->is_yuv) {
		dcss_scaler_yuv_enable(ch, true);

		if (pix_format == DRM_FORMAT_NV12 ||
		    pix_format == DRM_FORMAT_NV21) {
			rtr_8line_en = true;
			src_format = BUF_FMT_YUV420;
		} else if (pix_format == DRM_FORMAT_UYVY ||
			   pix_format == DRM_FORMAT_VYUY ||
			   pix_format == DRM_FORMAT_YUYV ||
			   pix_format == DRM_FORMAT_YVYU) {
			src_format = BUF_FMT_YUV422;
		}

		use_5_taps = !rtr_8line_en;
	} else {
		dcss_scaler_yuv_enable(ch, false);

		pixel_depth = format->depth;
	}

	dcss_scaler_fractions_set(ch, src_xres, src_yres, dst_xres,
				  dst_yres, src_format, dst_format,
				  PSC_LOC_HORZ_0_VERT_1_OVER_4);

	if (format->is_yuv)
		dcss_scaler_yuv_coef_set(ch, src_format, dst_format,
					 use_5_taps, src_xres, src_yres,
					 dst_xres, dst_yres);
	else
		dcss_scaler_rgb_coef_set(ch, src_xres, src_yres,
					 dst_xres, dst_yres);

	dcss_scaler_rtr_8lines_enable(ch, rtr_8line_en);
	dcss_scaler_bit_depth_set(ch, pixel_depth);
	dcss_scaler_set_rgb10_order(ch, format);
	dcss_scaler_format_set(ch, src_format, dst_format);
	dcss_scaler_res_set(ch, src_xres, src_yres, dst_xres, dst_yres,
			    pix_format, dst_format);
}

/* This function will be called from interrupt context. */
void dcss_scaler_write_sclctrl(struct dcss_scaler *scl)
{
	int chnum;

	dcss_ctxld_assert_locked(scl->ctxld);

	for (chnum = 0; chnum < 3; chnum++) {
		struct dcss_scaler_ch *ch = &scl->ch[chnum];

		if (ch->scaler_ctrl_chgd) {
			dcss_ctxld_write_irqsafe(scl->ctxld, scl->ctx_id,
						 ch->scaler_ctrl,
						 ch->base_ofs +
						 DCSS_SCALER_CTRL);
			ch->scaler_ctrl_chgd = false;
		}
	}
}