Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
 *
 * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
 *
 * TODO:
 *  - Support for power management
 *  - Support events and interrupts
 *  - Create channel for step count
 *  - Create channel for sensor time
 */

#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>

#include "bma400.h"

/*
 * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
 * be selected with the acc_range bits of the ACC_CONFIG1 register.
 * NB: This buffer is populated in the device init.
 */
static int bma400_scales[8];

/*
 * See the ACC_CONFIG1 section of the datasheet.
 * NB: This buffer is populated in the device init.
 */
static int bma400_sample_freqs[14];

static const int bma400_osr_range[] = { 0, 1, 3 };

/* See the ACC_CONFIG0 section of the datasheet */
enum bma400_power_mode {
	POWER_MODE_SLEEP   = 0x00,
	POWER_MODE_LOW     = 0x01,
	POWER_MODE_NORMAL  = 0x02,
	POWER_MODE_INVALID = 0x03,
};

struct bma400_sample_freq {
	int hz;
	int uhz;
};

struct bma400_data {
	struct device *dev;
	struct regmap *regmap;
	struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
	struct mutex mutex; /* data register lock */
	struct iio_mount_matrix orientation;
	enum bma400_power_mode power_mode;
	struct bma400_sample_freq sample_freq;
	int oversampling_ratio;
	int scale;
};

static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case BMA400_CHIP_ID_REG:
	case BMA400_ERR_REG:
	case BMA400_STATUS_REG:
	case BMA400_X_AXIS_LSB_REG:
	case BMA400_X_AXIS_MSB_REG:
	case BMA400_Y_AXIS_LSB_REG:
	case BMA400_Y_AXIS_MSB_REG:
	case BMA400_Z_AXIS_LSB_REG:
	case BMA400_Z_AXIS_MSB_REG:
	case BMA400_SENSOR_TIME0:
	case BMA400_SENSOR_TIME1:
	case BMA400_SENSOR_TIME2:
	case BMA400_EVENT_REG:
	case BMA400_INT_STAT0_REG:
	case BMA400_INT_STAT1_REG:
	case BMA400_INT_STAT2_REG:
	case BMA400_TEMP_DATA_REG:
	case BMA400_FIFO_LENGTH0_REG:
	case BMA400_FIFO_LENGTH1_REG:
	case BMA400_FIFO_DATA_REG:
	case BMA400_STEP_CNT0_REG:
	case BMA400_STEP_CNT1_REG:
	case BMA400_STEP_CNT3_REG:
	case BMA400_STEP_STAT_REG:
		return false;
	default:
		return true;
	}
}

static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case BMA400_ERR_REG:
	case BMA400_STATUS_REG:
	case BMA400_X_AXIS_LSB_REG:
	case BMA400_X_AXIS_MSB_REG:
	case BMA400_Y_AXIS_LSB_REG:
	case BMA400_Y_AXIS_MSB_REG:
	case BMA400_Z_AXIS_LSB_REG:
	case BMA400_Z_AXIS_MSB_REG:
	case BMA400_SENSOR_TIME0:
	case BMA400_SENSOR_TIME1:
	case BMA400_SENSOR_TIME2:
	case BMA400_EVENT_REG:
	case BMA400_INT_STAT0_REG:
	case BMA400_INT_STAT1_REG:
	case BMA400_INT_STAT2_REG:
	case BMA400_TEMP_DATA_REG:
	case BMA400_FIFO_LENGTH0_REG:
	case BMA400_FIFO_LENGTH1_REG:
	case BMA400_FIFO_DATA_REG:
	case BMA400_STEP_CNT0_REG:
	case BMA400_STEP_CNT1_REG:
	case BMA400_STEP_CNT3_REG:
	case BMA400_STEP_STAT_REG:
		return true;
	default:
		return false;
	}
}

const struct regmap_config bma400_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = BMA400_CMD_REG,
	.cache_type = REGCACHE_RBTREE,
	.writeable_reg = bma400_is_writable_reg,
	.volatile_reg = bma400_is_volatile_reg,
};
EXPORT_SYMBOL(bma400_regmap_config);

static const struct iio_mount_matrix *
bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
			      const struct iio_chan_spec *chan)
{
	struct bma400_data *data = iio_priv(indio_dev);

	return &data->orientation;
}

static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
	{ }
};

#define BMA400_ACC_CHANNEL(_axis) { \
	.type = IIO_ACCEL, \
	.modified = 1, \
	.channel2 = IIO_MOD_##_axis, \
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
		BIT(IIO_CHAN_INFO_SCALE) | \
		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
		BIT(IIO_CHAN_INFO_SCALE) | \
		BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
	.ext_info = bma400_ext_info, \
}

static const struct iio_chan_spec bma400_channels[] = {
	BMA400_ACC_CHANNEL(X),
	BMA400_ACC_CHANNEL(Y),
	BMA400_ACC_CHANNEL(Z),
	{
		.type = IIO_TEMP,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
	},
};

static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
{
	unsigned int raw_temp;
	int host_temp;
	int ret;

	if (data->power_mode == POWER_MODE_SLEEP)
		return -EBUSY;

	ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
	if (ret)
		return ret;

	host_temp = sign_extend32(raw_temp, 7);
	/*
	 * The formula for the TEMP_DATA register in the datasheet
	 * is: x * 0.5 + 23
	 */
	*val = (host_temp >> 1) + 23;
	*val2 = (host_temp & 0x1) * 500000;
	return IIO_VAL_INT_PLUS_MICRO;
}

static int bma400_get_accel_reg(struct bma400_data *data,
				const struct iio_chan_spec *chan,
				int *val)
{
	__le16 raw_accel;
	int lsb_reg;
	int ret;

	if (data->power_mode == POWER_MODE_SLEEP)
		return -EBUSY;

	switch (chan->channel2) {
	case IIO_MOD_X:
		lsb_reg = BMA400_X_AXIS_LSB_REG;
		break;
	case IIO_MOD_Y:
		lsb_reg = BMA400_Y_AXIS_LSB_REG;
		break;
	case IIO_MOD_Z:
		lsb_reg = BMA400_Z_AXIS_LSB_REG;
		break;
	default:
		dev_err(data->dev, "invalid axis channel modifier\n");
		return -EINVAL;
	}

	/* bulk read two registers, with the base being the LSB register */
	ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
			       sizeof(raw_accel));
	if (ret)
		return ret;

	*val = sign_extend32(le16_to_cpu(raw_accel), 11);
	return IIO_VAL_INT;
}

static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
					     unsigned int *val2)
{
	*val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
	if (raw > BMA400_ACC_ODR_MIN_RAW)
		*val2 = 0;
	else
		*val2 = 500000;
}

static int bma400_get_accel_output_data_rate(struct bma400_data *data)
{
	unsigned int val;
	unsigned int odr;
	int ret;

	switch (data->power_mode) {
	case POWER_MODE_LOW:
		/*
		 * Runs at a fixed rate in low-power mode. See section 4.3
		 * in the datasheet.
		 */
		bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
						 &data->sample_freq.hz,
						 &data->sample_freq.uhz);
		return 0;
	case POWER_MODE_NORMAL:
		/*
		 * In normal mode the ODR can be found in the ACC_CONFIG1
		 * register.
		 */
		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
		if (ret)
			goto error;

		odr = val & BMA400_ACC_ODR_MASK;
		if (odr < BMA400_ACC_ODR_MIN_RAW ||
		    odr > BMA400_ACC_ODR_MAX_RAW) {
			ret = -EINVAL;
			goto error;
		}

		bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
						 &data->sample_freq.uhz);
		return 0;
	case POWER_MODE_SLEEP:
		data->sample_freq.hz = 0;
		data->sample_freq.uhz = 0;
		return 0;
	default:
		ret = 0;
		goto error;
	}
error:
	data->sample_freq.hz = -1;
	data->sample_freq.uhz = -1;
	return ret;
}

static int bma400_set_accel_output_data_rate(struct bma400_data *data,
					     int hz, int uhz)
{
	unsigned int idx;
	unsigned int odr;
	unsigned int val;
	int ret;

	if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
		if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
			return -EINVAL;

		/* Note this works because MIN_WHOLE_HZ is odd */
		idx = __ffs(hz);

		if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
			return -EINVAL;

		idx += BMA400_ACC_ODR_MIN_RAW + 1;
	} else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
		idx = BMA400_ACC_ODR_MIN_RAW;
	} else {
		return -EINVAL;
	}

	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
	if (ret)
		return ret;

	/* preserve the range and normal mode osr */
	odr = (~BMA400_ACC_ODR_MASK & val) | idx;

	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
	if (ret)
		return ret;

	bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
					 &data->sample_freq.uhz);
	return 0;
}

static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
{
	unsigned int val;
	unsigned int osr;
	int ret;

	/*
	 * The oversampling ratio is stored in a different register
	 * based on the power-mode. In normal mode the OSR is stored
	 * in ACC_CONFIG1. In low-power mode it is stored in
	 * ACC_CONFIG0.
	 */
	switch (data->power_mode) {
	case POWER_MODE_LOW:
		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
		if (ret) {
			data->oversampling_ratio = -1;
			return ret;
		}

		osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;

		data->oversampling_ratio = osr;
		return 0;
	case POWER_MODE_NORMAL:
		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
		if (ret) {
			data->oversampling_ratio = -1;
			return ret;
		}

		osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;

		data->oversampling_ratio = osr;
		return 0;
	case POWER_MODE_SLEEP:
		data->oversampling_ratio = 0;
		return 0;
	default:
		data->oversampling_ratio = -1;
		return -EINVAL;
	}
}

static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
					       int val)
{
	unsigned int acc_config;
	int ret;

	if (val & ~BMA400_TWO_BITS_MASK)
		return -EINVAL;

	/*
	 * The oversampling ratio is stored in a different register
	 * based on the power-mode.
	 */
	switch (data->power_mode) {
	case POWER_MODE_LOW:
		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
				  &acc_config);
		if (ret)
			return ret;

		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
				   (acc_config & ~BMA400_LP_OSR_MASK) |
				   (val << BMA400_LP_OSR_SHIFT));
		if (ret) {
			dev_err(data->dev, "Failed to write out OSR\n");
			return ret;
		}

		data->oversampling_ratio = val;
		return 0;
	case POWER_MODE_NORMAL:
		ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
				  &acc_config);
		if (ret)
			return ret;

		ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
				   (acc_config & ~BMA400_NP_OSR_MASK) |
				   (val << BMA400_NP_OSR_SHIFT));
		if (ret) {
			dev_err(data->dev, "Failed to write out OSR\n");
			return ret;
		}

		data->oversampling_ratio = val;
		return 0;
	default:
		return -EINVAL;
	}
	return ret;
}

static int bma400_accel_scale_to_raw(struct bma400_data *data,
				     unsigned int val)
{
	int raw;

	if (val == 0)
		return -EINVAL;

	/* Note this works because BMA400_SCALE_MIN is odd */
	raw = __ffs(val);

	if (val >> raw != BMA400_SCALE_MIN)
		return -EINVAL;

	return raw;
}

static int bma400_get_accel_scale(struct bma400_data *data)
{
	unsigned int raw_scale;
	unsigned int val;
	int ret;

	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
	if (ret)
		return ret;

	raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
	if (raw_scale > BMA400_TWO_BITS_MASK)
		return -EINVAL;

	data->scale = BMA400_SCALE_MIN << raw_scale;

	return 0;
}

static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
{
	unsigned int acc_config;
	int raw;
	int ret;

	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
	if (ret)
		return ret;

	raw = bma400_accel_scale_to_raw(data, val);
	if (raw < 0)
		return raw;

	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
			   (acc_config & ~BMA400_ACC_SCALE_MASK) |
			   (raw << BMA400_SCALE_SHIFT));
	if (ret)
		return ret;

	data->scale = val;
	return 0;
}

static int bma400_get_power_mode(struct bma400_data *data)
{
	unsigned int val;
	int ret;

	ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
	if (ret) {
		dev_err(data->dev, "Failed to read status register\n");
		return ret;
	}

	data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
	return 0;
}

static int bma400_set_power_mode(struct bma400_data *data,
				 enum bma400_power_mode mode)
{
	unsigned int val;
	int ret;

	ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
	if (ret)
		return ret;

	if (data->power_mode == mode)
		return 0;

	if (mode == POWER_MODE_INVALID)
		return -EINVAL;

	/* Preserve the low-power oversample ratio etc */
	ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
			   mode | (val & ~BMA400_TWO_BITS_MASK));
	if (ret) {
		dev_err(data->dev, "Failed to write to power-mode\n");
		return ret;
	}

	data->power_mode = mode;

	/*
	 * Update our cached osr and odr based on the new
	 * power-mode.
	 */
	bma400_get_accel_output_data_rate(data);
	bma400_get_accel_oversampling_ratio(data);
	return 0;
}

static void bma400_init_tables(void)
{
	int raw;
	int i;

	for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
		raw = (i / 2) + 5;
		bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
						 &bma400_sample_freqs[i + 1]);
	}

	for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
		raw = i / 2;
		bma400_scales[i] = 0;
		bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
	}
}

static int bma400_init(struct bma400_data *data)
{
	unsigned int val;
	int ret;

	/* Try to read chip_id register. It must return 0x90. */
	ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
	if (ret) {
		dev_err(data->dev, "Failed to read chip id register\n");
		goto out;
	}

	if (val != BMA400_ID_REG_VAL) {
		dev_err(data->dev, "Chip ID mismatch\n");
		ret = -ENODEV;
		goto out;
	}

	data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
	data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
	ret = devm_regulator_bulk_get(data->dev,
				      ARRAY_SIZE(data->regulators),
				      data->regulators);
	if (ret) {
		if (ret != -EPROBE_DEFER)
			dev_err(data->dev,
				"Failed to get regulators: %d\n",
				ret);

		goto out;
	}
	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
				    data->regulators);
	if (ret) {
		dev_err(data->dev, "Failed to enable regulators: %d\n",
			ret);
		goto out;
	}

	ret = bma400_get_power_mode(data);
	if (ret) {
		dev_err(data->dev, "Failed to get the initial power-mode\n");
		goto err_reg_disable;
	}

	if (data->power_mode != POWER_MODE_NORMAL) {
		ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
		if (ret) {
			dev_err(data->dev, "Failed to wake up the device\n");
			goto err_reg_disable;
		}
		/*
		 * TODO: The datasheet waits 1500us here in the example, but
		 * lists 2/ODR as the wakeup time.
		 */
		usleep_range(1500, 2000);
	}

	bma400_init_tables();

	ret = bma400_get_accel_output_data_rate(data);
	if (ret)
		goto err_reg_disable;

	ret = bma400_get_accel_oversampling_ratio(data);
	if (ret)
		goto err_reg_disable;

	ret = bma400_get_accel_scale(data);
	if (ret)
		goto err_reg_disable;

	/*
	 * Once the interrupt engine is supported we might use the
	 * data_src_reg, but for now ensure this is set to the
	 * variable ODR filter selectable by the sample frequency
	 * channel.
	 */
	return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);

err_reg_disable:
	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);
out:
	return ret;
}

static int bma400_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan, int *val,
			   int *val2, long mask)
{
	struct bma400_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_PROCESSED:
		mutex_lock(&data->mutex);
		ret = bma400_get_temp_reg(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&data->mutex);
		ret = bma400_get_accel_reg(data, chan, val);
		mutex_unlock(&data->mutex);
		return ret;
	case IIO_CHAN_INFO_SAMP_FREQ:
		switch (chan->type) {
		case IIO_ACCEL:
			if (data->sample_freq.hz < 0)
				return -EINVAL;

			*val = data->sample_freq.hz;
			*val2 = data->sample_freq.uhz;
			return IIO_VAL_INT_PLUS_MICRO;
		case IIO_TEMP:
			/*
			 * Runs at a fixed sampling frequency. See Section 4.4
			 * of the datasheet.
			 */
			*val = 6;
			*val2 = 250000;
			return IIO_VAL_INT_PLUS_MICRO;
		default:
			return -EINVAL;
		}
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		*val2 = data->scale;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		/*
		 * TODO: We could avoid this logic and returning -EINVAL here if
		 * we set both the low-power and normal mode OSR registers when
		 * we configure the device.
		 */
		if (data->oversampling_ratio < 0)
			return -EINVAL;

		*val = data->oversampling_ratio;
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int bma400_read_avail(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     const int **vals, int *type, int *length,
			     long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		*type = IIO_VAL_INT_PLUS_MICRO;
		*vals = bma400_scales;
		*length = ARRAY_SIZE(bma400_scales);
		return IIO_AVAIL_LIST;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*type = IIO_VAL_INT;
		*vals = bma400_osr_range;
		*length = ARRAY_SIZE(bma400_osr_range);
		return IIO_AVAIL_RANGE;
	case IIO_CHAN_INFO_SAMP_FREQ:
		*type = IIO_VAL_INT_PLUS_MICRO;
		*vals = bma400_sample_freqs;
		*length = ARRAY_SIZE(bma400_sample_freqs);
		return IIO_AVAIL_LIST;
	default:
		return -EINVAL;
	}
}

static int bma400_write_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan, int val, int val2,
			    long mask)
{
	struct bma400_data *data = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		/*
		 * The sample frequency is readonly for the temperature
		 * register and a fixed value in low-power mode.
		 */
		if (chan->type != IIO_ACCEL)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bma400_set_accel_output_data_rate(data, val, val2);
		mutex_unlock(&data->mutex);
		return ret;
	case IIO_CHAN_INFO_SCALE:
		if (val != 0 ||
		    val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
			return -EINVAL;

		mutex_lock(&data->mutex);
		ret = bma400_set_accel_scale(data, val2);
		mutex_unlock(&data->mutex);
		return ret;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		mutex_lock(&data->mutex);
		ret = bma400_set_accel_oversampling_ratio(data, val);
		mutex_unlock(&data->mutex);
		return ret;
	default:
		return -EINVAL;
	}
}

static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
				    struct iio_chan_spec const *chan,
				    long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_SCALE:
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static const struct iio_info bma400_info = {
	.read_raw          = bma400_read_raw,
	.read_avail        = bma400_read_avail,
	.write_raw         = bma400_write_raw,
	.write_raw_get_fmt = bma400_write_raw_get_fmt,
};

int bma400_probe(struct device *dev, struct regmap *regmap, const char *name)
{
	struct iio_dev *indio_dev;
	struct bma400_data *data;
	int ret;

	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
	if (!indio_dev)
		return -ENOMEM;

	data = iio_priv(indio_dev);
	data->regmap = regmap;
	data->dev = dev;

	ret = bma400_init(data);
	if (ret)
		return ret;

	ret = iio_read_mount_matrix(dev, "mount-matrix", &data->orientation);
	if (ret)
		return ret;

	mutex_init(&data->mutex);
	indio_dev->name = name;
	indio_dev->info = &bma400_info;
	indio_dev->channels = bma400_channels;
	indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
	indio_dev->modes = INDIO_DIRECT_MODE;

	dev_set_drvdata(dev, indio_dev);

	return iio_device_register(indio_dev);
}
EXPORT_SYMBOL(bma400_probe);

int bma400_remove(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct bma400_data *data = iio_priv(indio_dev);
	int ret;

	mutex_lock(&data->mutex);
	ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
	mutex_unlock(&data->mutex);

	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
			       data->regulators);

	iio_device_unregister(indio_dev);

	return ret;
}
EXPORT_SYMBOL(bma400_remove);

MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
MODULE_LICENSE("GPL");