Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Atmel Pulse Width Modulation Controller
 *
 * Copyright (C) 2013 Atmel Corporation
 *		 Bo Shen <voice.shen@atmel.com>
 *
 * Links to reference manuals for the supported PWM chips can be found in
 * Documentation/arm/microchip.rst.
 *
 * Limitations:
 * - Periods start with the inactive level.
 * - Hardware has to be stopped in general to update settings.
 *
 * Software bugs/possible improvements:
 * - When atmel_pwm_apply() is called with state->enabled=false a change in
 *   state->polarity isn't honored.
 * - Instead of sleeping to wait for a completed period, the interrupt
 *   functionality could be used.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>

/* The following is global registers for PWM controller */
#define PWM_ENA			0x04
#define PWM_DIS			0x08
#define PWM_SR			0x0C
#define PWM_ISR			0x1C
/* Bit field in SR */
#define PWM_SR_ALL_CH_ON	0x0F

/* The following register is PWM channel related registers */
#define PWM_CH_REG_OFFSET	0x200
#define PWM_CH_REG_SIZE		0x20

#define PWM_CMR			0x0
/* Bit field in CMR */
#define PWM_CMR_CPOL		(1 << 9)
#define PWM_CMR_UPD_CDTY	(1 << 10)
#define PWM_CMR_CPRE_MSK	0xF

/* The following registers for PWM v1 */
#define PWMV1_CDTY		0x04
#define PWMV1_CPRD		0x08
#define PWMV1_CUPD		0x10

/* The following registers for PWM v2 */
#define PWMV2_CDTY		0x04
#define PWMV2_CDTYUPD		0x08
#define PWMV2_CPRD		0x0C
#define PWMV2_CPRDUPD		0x10

#define PWM_MAX_PRES		10

struct atmel_pwm_registers {
	u8 period;
	u8 period_upd;
	u8 duty;
	u8 duty_upd;
};

struct atmel_pwm_config {
	u32 period_bits;
};

struct atmel_pwm_data {
	struct atmel_pwm_registers regs;
	struct atmel_pwm_config cfg;
};

struct atmel_pwm_chip {
	struct pwm_chip chip;
	struct clk *clk;
	void __iomem *base;
	const struct atmel_pwm_data *data;

	unsigned int updated_pwms;
	/* ISR is cleared when read, ensure only one thread does that */
	struct mutex isr_lock;
};

static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct atmel_pwm_chip, chip);
}

static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
				  unsigned long offset)
{
	return readl_relaxed(chip->base + offset);
}

static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
				    unsigned long offset, unsigned long val)
{
	writel_relaxed(val, chip->base + offset);
}

static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
				     unsigned int ch, unsigned long offset)
{
	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;

	return atmel_pwm_readl(chip, base + offset);
}

static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
				       unsigned int ch, unsigned long offset,
				       unsigned long val)
{
	unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;

	atmel_pwm_writel(chip, base + offset, val);
}

static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
					     const struct pwm_state *state,
					     unsigned long *cprd, u32 *pres)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
	unsigned long long cycles = state->period;
	int shift;

	/* Calculate the period cycles and prescale value */
	cycles *= clk_get_rate(atmel_pwm->clk);
	do_div(cycles, NSEC_PER_SEC);

	/*
	 * The register for the period length is cfg.period_bits bits wide.
	 * So for each bit the number of clock cycles is wider divide the input
	 * clock frequency by two using pres and shift cprd accordingly.
	 */
	shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;

	if (shift > PWM_MAX_PRES) {
		dev_err(chip->dev, "pres exceeds the maximum value\n");
		return -EINVAL;
	} else if (shift > 0) {
		*pres = shift;
		cycles >>= *pres;
	} else {
		*pres = 0;
	}

	*cprd = cycles;

	return 0;
}

static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
				     unsigned long cprd, unsigned long *cdty)
{
	unsigned long long cycles = state->duty_cycle;

	cycles *= cprd;
	do_div(cycles, state->period);
	*cdty = cprd - cycles;
}

static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
				  unsigned long cdty)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
	u32 val;

	if (atmel_pwm->data->regs.duty_upd ==
	    atmel_pwm->data->regs.period_upd) {
		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
		val &= ~PWM_CMR_UPD_CDTY;
		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
	}

	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
			    atmel_pwm->data->regs.duty_upd, cdty);
}

static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
				    struct pwm_device *pwm,
				    unsigned long cprd, unsigned long cdty)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);

	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
			    atmel_pwm->data->regs.duty, cdty);
	atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
			    atmel_pwm->data->regs.period, cprd);
}

static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
			      bool disable_clk)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
	unsigned long timeout = jiffies + 2 * HZ;

	/*
	 * Wait for at least a complete period to have passed before disabling a
	 * channel to be sure that CDTY has been updated
	 */
	mutex_lock(&atmel_pwm->isr_lock);
	atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);

	while (!(atmel_pwm->updated_pwms & (1 << pwm->hwpwm)) &&
	       time_before(jiffies, timeout)) {
		usleep_range(10, 100);
		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
	}

	mutex_unlock(&atmel_pwm->isr_lock);
	atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);

	/*
	 * Wait for the PWM channel disable operation to be effective before
	 * stopping the clock.
	 */
	timeout = jiffies + 2 * HZ;

	while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
	       time_before(jiffies, timeout))
		usleep_range(10, 100);

	if (disable_clk)
		clk_disable(atmel_pwm->clk);
}

static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			   const struct pwm_state *state)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
	struct pwm_state cstate;
	unsigned long cprd, cdty;
	u32 pres, val;
	int ret;

	pwm_get_state(pwm, &cstate);

	if (state->enabled) {
		if (cstate.enabled &&
		    cstate.polarity == state->polarity &&
		    cstate.period == state->period) {
			cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
						  atmel_pwm->data->regs.period);
			atmel_pwm_calculate_cdty(state, cprd, &cdty);
			atmel_pwm_update_cdty(chip, pwm, cdty);
			return 0;
		}

		ret = atmel_pwm_calculate_cprd_and_pres(chip, state, &cprd,
							&pres);
		if (ret) {
			dev_err(chip->dev,
				"failed to calculate cprd and prescaler\n");
			return ret;
		}

		atmel_pwm_calculate_cdty(state, cprd, &cdty);

		if (cstate.enabled) {
			atmel_pwm_disable(chip, pwm, false);
		} else {
			ret = clk_enable(atmel_pwm->clk);
			if (ret) {
				dev_err(chip->dev, "failed to enable clock\n");
				return ret;
			}
		}

		/* It is necessary to preserve CPOL, inside CMR */
		val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
		val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
		if (state->polarity == PWM_POLARITY_NORMAL)
			val &= ~PWM_CMR_CPOL;
		else
			val |= PWM_CMR_CPOL;
		atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
		atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
		mutex_lock(&atmel_pwm->isr_lock);
		atmel_pwm->updated_pwms |= atmel_pwm_readl(atmel_pwm, PWM_ISR);
		atmel_pwm->updated_pwms &= ~(1 << pwm->hwpwm);
		mutex_unlock(&atmel_pwm->isr_lock);
		atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
	} else if (cstate.enabled) {
		atmel_pwm_disable(chip, pwm, true);
	}

	return 0;
}

static void atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
				struct pwm_state *state)
{
	struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
	u32 sr, cmr;

	sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
	cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);

	if (sr & (1 << pwm->hwpwm)) {
		unsigned long rate = clk_get_rate(atmel_pwm->clk);
		u32 cdty, cprd, pres;
		u64 tmp;

		pres = cmr & PWM_CMR_CPRE_MSK;

		cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
					  atmel_pwm->data->regs.period);
		tmp = (u64)cprd * NSEC_PER_SEC;
		tmp <<= pres;
		state->period = DIV64_U64_ROUND_UP(tmp, rate);

		cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
					  atmel_pwm->data->regs.duty);
		tmp = (u64)cdty * NSEC_PER_SEC;
		tmp <<= pres;
		state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);

		state->enabled = true;
	} else {
		state->enabled = false;
	}

	if (cmr & PWM_CMR_CPOL)
		state->polarity = PWM_POLARITY_INVERSED;
	else
		state->polarity = PWM_POLARITY_NORMAL;
}

static const struct pwm_ops atmel_pwm_ops = {
	.apply = atmel_pwm_apply,
	.get_state = atmel_pwm_get_state,
	.owner = THIS_MODULE,
};

static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
	.regs = {
		.period		= PWMV1_CPRD,
		.period_upd	= PWMV1_CUPD,
		.duty		= PWMV1_CDTY,
		.duty_upd	= PWMV1_CUPD,
	},
	.cfg = {
		/* 16 bits to keep period and duty. */
		.period_bits	= 16,
	},
};

static const struct atmel_pwm_data atmel_sama5_pwm_data = {
	.regs = {
		.period		= PWMV2_CPRD,
		.period_upd	= PWMV2_CPRDUPD,
		.duty		= PWMV2_CDTY,
		.duty_upd	= PWMV2_CDTYUPD,
	},
	.cfg = {
		/* 16 bits to keep period and duty. */
		.period_bits	= 16,
	},
};

static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
	.regs = {
		.period		= PWMV1_CPRD,
		.period_upd	= PWMV1_CUPD,
		.duty		= PWMV1_CDTY,
		.duty_upd	= PWMV1_CUPD,
	},
	.cfg = {
		/* 32 bits to keep period and duty. */
		.period_bits	= 32,
	},
};

static const struct of_device_id atmel_pwm_dt_ids[] = {
	{
		.compatible = "atmel,at91sam9rl-pwm",
		.data = &atmel_sam9rl_pwm_data,
	}, {
		.compatible = "atmel,sama5d3-pwm",
		.data = &atmel_sama5_pwm_data,
	}, {
		.compatible = "atmel,sama5d2-pwm",
		.data = &atmel_sama5_pwm_data,
	}, {
		.compatible = "microchip,sam9x60-pwm",
		.data = &mchp_sam9x60_pwm_data,
	}, {
		/* sentinel */
	},
};
MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);

static int atmel_pwm_probe(struct platform_device *pdev)
{
	struct atmel_pwm_chip *atmel_pwm;
	struct resource *res;
	int ret;

	atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
	if (!atmel_pwm)
		return -ENOMEM;

	mutex_init(&atmel_pwm->isr_lock);
	atmel_pwm->data = of_device_get_match_data(&pdev->dev);
	atmel_pwm->updated_pwms = 0;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	atmel_pwm->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(atmel_pwm->base))
		return PTR_ERR(atmel_pwm->base);

	atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(atmel_pwm->clk))
		return PTR_ERR(atmel_pwm->clk);

	ret = clk_prepare(atmel_pwm->clk);
	if (ret) {
		dev_err(&pdev->dev, "failed to prepare PWM clock\n");
		return ret;
	}

	atmel_pwm->chip.dev = &pdev->dev;
	atmel_pwm->chip.ops = &atmel_pwm_ops;
	atmel_pwm->chip.of_xlate = of_pwm_xlate_with_flags;
	atmel_pwm->chip.of_pwm_n_cells = 3;
	atmel_pwm->chip.base = -1;
	atmel_pwm->chip.npwm = 4;

	ret = pwmchip_add(&atmel_pwm->chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
		goto unprepare_clk;
	}

	platform_set_drvdata(pdev, atmel_pwm);

	return ret;

unprepare_clk:
	clk_unprepare(atmel_pwm->clk);
	return ret;
}

static int atmel_pwm_remove(struct platform_device *pdev)
{
	struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);

	clk_unprepare(atmel_pwm->clk);
	mutex_destroy(&atmel_pwm->isr_lock);

	return pwmchip_remove(&atmel_pwm->chip);
}

static struct platform_driver atmel_pwm_driver = {
	.driver = {
		.name = "atmel-pwm",
		.of_match_table = of_match_ptr(atmel_pwm_dt_ids),
	},
	.probe = atmel_pwm_probe,
	.remove = atmel_pwm_remove,
};
module_platform_driver(atmel_pwm_driver);

MODULE_ALIAS("platform:atmel-pwm");
MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
MODULE_DESCRIPTION("Atmel PWM driver");
MODULE_LICENSE("GPL v2");