Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>

#ifdef CONFIG_LANTIQ
#include <lantiq_soc.h>
#endif

#define LTQ_SPI_RX_IRQ_NAME	"spi_rx"
#define LTQ_SPI_TX_IRQ_NAME	"spi_tx"
#define LTQ_SPI_ERR_IRQ_NAME	"spi_err"
#define LTQ_SPI_FRM_IRQ_NAME	"spi_frm"

#define LTQ_SPI_CLC		0x00
#define LTQ_SPI_PISEL		0x04
#define LTQ_SPI_ID		0x08
#define LTQ_SPI_CON		0x10
#define LTQ_SPI_STAT		0x14
#define LTQ_SPI_WHBSTATE	0x18
#define LTQ_SPI_TB		0x20
#define LTQ_SPI_RB		0x24
#define LTQ_SPI_RXFCON		0x30
#define LTQ_SPI_TXFCON		0x34
#define LTQ_SPI_FSTAT		0x38
#define LTQ_SPI_BRT		0x40
#define LTQ_SPI_BRSTAT		0x44
#define LTQ_SPI_SFCON		0x60
#define LTQ_SPI_SFSTAT		0x64
#define LTQ_SPI_GPOCON		0x70
#define LTQ_SPI_GPOSTAT		0x74
#define LTQ_SPI_FPGO		0x78
#define LTQ_SPI_RXREQ		0x80
#define LTQ_SPI_RXCNT		0x84
#define LTQ_SPI_DMACON		0xec
#define LTQ_SPI_IRNEN		0xf4

#define LTQ_SPI_CLC_SMC_S	16	/* Clock divider for sleep mode */
#define LTQ_SPI_CLC_SMC_M	(0xFF << LTQ_SPI_CLC_SMC_S)
#define LTQ_SPI_CLC_RMC_S	8	/* Clock divider for normal run mode */
#define LTQ_SPI_CLC_RMC_M	(0xFF << LTQ_SPI_CLC_RMC_S)
#define LTQ_SPI_CLC_DISS	BIT(1)	/* Disable status bit */
#define LTQ_SPI_CLC_DISR	BIT(0)	/* Disable request bit */

#define LTQ_SPI_ID_TXFS_S	24	/* Implemented TX FIFO size */
#define LTQ_SPI_ID_RXFS_S	16	/* Implemented RX FIFO size */
#define LTQ_SPI_ID_MOD_S	8	/* Module ID */
#define LTQ_SPI_ID_MOD_M	(0xff << LTQ_SPI_ID_MOD_S)
#define LTQ_SPI_ID_CFG_S	5	/* DMA interface support */
#define LTQ_SPI_ID_CFG_M	(1 << LTQ_SPI_ID_CFG_S)
#define LTQ_SPI_ID_REV_M	0x1F	/* Hardware revision number */

#define LTQ_SPI_CON_BM_S	16	/* Data width selection */
#define LTQ_SPI_CON_BM_M	(0x1F << LTQ_SPI_CON_BM_S)
#define LTQ_SPI_CON_EM		BIT(24)	/* Echo mode */
#define LTQ_SPI_CON_IDLE	BIT(23)	/* Idle bit value */
#define LTQ_SPI_CON_ENBV	BIT(22)	/* Enable byte valid control */
#define LTQ_SPI_CON_RUEN	BIT(12)	/* Receive underflow error enable */
#define LTQ_SPI_CON_TUEN	BIT(11)	/* Transmit underflow error enable */
#define LTQ_SPI_CON_AEN		BIT(10)	/* Abort error enable */
#define LTQ_SPI_CON_REN		BIT(9)	/* Receive overflow error enable */
#define LTQ_SPI_CON_TEN		BIT(8)	/* Transmit overflow error enable */
#define LTQ_SPI_CON_LB		BIT(7)	/* Loopback control */
#define LTQ_SPI_CON_PO		BIT(6)	/* Clock polarity control */
#define LTQ_SPI_CON_PH		BIT(5)	/* Clock phase control */
#define LTQ_SPI_CON_HB		BIT(4)	/* Heading control */
#define LTQ_SPI_CON_RXOFF	BIT(1)	/* Switch receiver off */
#define LTQ_SPI_CON_TXOFF	BIT(0)	/* Switch transmitter off */

#define LTQ_SPI_STAT_RXBV_S	28
#define LTQ_SPI_STAT_RXBV_M	(0x7 << LTQ_SPI_STAT_RXBV_S)
#define LTQ_SPI_STAT_BSY	BIT(13)	/* Busy flag */
#define LTQ_SPI_STAT_RUE	BIT(12)	/* Receive underflow error flag */
#define LTQ_SPI_STAT_TUE	BIT(11)	/* Transmit underflow error flag */
#define LTQ_SPI_STAT_AE		BIT(10)	/* Abort error flag */
#define LTQ_SPI_STAT_RE		BIT(9)	/* Receive error flag */
#define LTQ_SPI_STAT_TE		BIT(8)	/* Transmit error flag */
#define LTQ_SPI_STAT_ME		BIT(7)	/* Mode error flag */
#define LTQ_SPI_STAT_MS		BIT(1)	/* Master/slave select bit */
#define LTQ_SPI_STAT_EN		BIT(0)	/* Enable bit */
#define LTQ_SPI_STAT_ERRORS	(LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
				 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
				 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)

#define LTQ_SPI_WHBSTATE_SETTUE	BIT(15)	/* Set transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_SETAE	BIT(14)	/* Set abort error flag */
#define LTQ_SPI_WHBSTATE_SETRE	BIT(13)	/* Set receive error flag */
#define LTQ_SPI_WHBSTATE_SETTE	BIT(12)	/* Set transmit error flag */
#define LTQ_SPI_WHBSTATE_CLRTUE	BIT(11)	/* Clear transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRAE	BIT(10)	/* Clear abort error flag */
#define LTQ_SPI_WHBSTATE_CLRRE	BIT(9)	/* Clear receive error flag */
#define LTQ_SPI_WHBSTATE_CLRTE	BIT(8)	/* Clear transmit error flag */
#define LTQ_SPI_WHBSTATE_SETME	BIT(7)	/* Set mode error flag */
#define LTQ_SPI_WHBSTATE_CLRME	BIT(6)	/* Clear mode error flag */
#define LTQ_SPI_WHBSTATE_SETRUE	BIT(5)	/* Set receive underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRRUE	BIT(4)	/* Clear receive underflow error flag */
#define LTQ_SPI_WHBSTATE_SETMS	BIT(3)	/* Set master select bit */
#define LTQ_SPI_WHBSTATE_CLRMS	BIT(2)	/* Clear master select bit */
#define LTQ_SPI_WHBSTATE_SETEN	BIT(1)	/* Set enable bit (operational mode) */
#define LTQ_SPI_WHBSTATE_CLREN	BIT(0)	/* Clear enable bit (config mode */
#define LTQ_SPI_WHBSTATE_CLR_ERRORS	(LTQ_SPI_WHBSTATE_CLRRUE | \
					 LTQ_SPI_WHBSTATE_CLRME | \
					 LTQ_SPI_WHBSTATE_CLRTE | \
					 LTQ_SPI_WHBSTATE_CLRRE | \
					 LTQ_SPI_WHBSTATE_CLRAE | \
					 LTQ_SPI_WHBSTATE_CLRTUE)

#define LTQ_SPI_RXFCON_RXFITL_S	8	/* FIFO interrupt trigger level */
#define LTQ_SPI_RXFCON_RXFLU	BIT(1)	/* FIFO flush */
#define LTQ_SPI_RXFCON_RXFEN	BIT(0)	/* FIFO enable */

#define LTQ_SPI_TXFCON_TXFITL_S	8	/* FIFO interrupt trigger level */
#define LTQ_SPI_TXFCON_TXFLU	BIT(1)	/* FIFO flush */
#define LTQ_SPI_TXFCON_TXFEN	BIT(0)	/* FIFO enable */

#define LTQ_SPI_FSTAT_RXFFL_S	0
#define LTQ_SPI_FSTAT_TXFFL_S	8

#define LTQ_SPI_GPOCON_ISCSBN_S	8
#define LTQ_SPI_GPOCON_INVOUTN_S	0

#define LTQ_SPI_FGPO_SETOUTN_S	8
#define LTQ_SPI_FGPO_CLROUTN_S	0

#define LTQ_SPI_RXREQ_RXCNT_M	0xFFFF	/* Receive count value */
#define LTQ_SPI_RXCNT_TODO_M	0xFFFF	/* Recevie to-do value */

#define LTQ_SPI_IRNEN_TFI	BIT(4)	/* TX finished interrupt */
#define LTQ_SPI_IRNEN_F		BIT(3)	/* Frame end interrupt request */
#define LTQ_SPI_IRNEN_E		BIT(2)	/* Error end interrupt request */
#define LTQ_SPI_IRNEN_T_XWAY	BIT(1)	/* Transmit end interrupt request */
#define LTQ_SPI_IRNEN_R_XWAY	BIT(0)	/* Receive end interrupt request */
#define LTQ_SPI_IRNEN_R_XRX	BIT(1)	/* Transmit end interrupt request */
#define LTQ_SPI_IRNEN_T_XRX	BIT(0)	/* Receive end interrupt request */
#define LTQ_SPI_IRNEN_ALL	0x1F

struct lantiq_ssc_spi;

struct lantiq_ssc_hwcfg {
	int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
	unsigned int	irnen_r;
	unsigned int	irnen_t;
	unsigned int	irncr;
	unsigned int	irnicr;
	bool		irq_ack;
	u32		fifo_size_mask;
};

struct lantiq_ssc_spi {
	struct spi_master		*master;
	struct device			*dev;
	void __iomem			*regbase;
	struct clk			*spi_clk;
	struct clk			*fpi_clk;
	const struct lantiq_ssc_hwcfg	*hwcfg;

	spinlock_t			lock;
	struct workqueue_struct		*wq;
	struct work_struct		work;

	const u8			*tx;
	u8				*rx;
	unsigned int			tx_todo;
	unsigned int			rx_todo;
	unsigned int			bits_per_word;
	unsigned int			speed_hz;
	unsigned int			tx_fifo_size;
	unsigned int			rx_fifo_size;
	unsigned int			base_cs;
	unsigned int			fdx_tx_level;
};

static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
{
	return __raw_readl(spi->regbase + reg);
}

static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
			      u32 reg)
{
	__raw_writel(val, spi->regbase + reg);
}

static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
			     u32 set, u32 reg)
{
	u32 val = __raw_readl(spi->regbase + reg);

	val &= ~clr;
	val |= set;
	__raw_writel(val, spi->regbase + reg);
}

static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
{
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);

	return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
}

static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
{
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
	u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);

	return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
}

static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
{
	return spi->tx_fifo_size - tx_fifo_level(spi);
}

static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
	u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;

	val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
	lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
}

static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
	u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;

	val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
	lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
}

static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
	lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
}

static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
	lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
}

static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
{
	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
}

static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
{
	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
}

static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
			      unsigned int max_speed_hz)
{
	u32 spi_clk, brt;

	/*
	 * SPI module clock is derived from FPI bus clock dependent on
	 * divider value in CLC.RMS which is always set to 1.
	 *
	 *                 f_SPI
	 * baudrate = --------------
	 *             2 * (BR + 1)
	 */
	spi_clk = clk_get_rate(spi->fpi_clk) / 2;

	if (max_speed_hz > spi_clk)
		brt = 0;
	else
		brt = spi_clk / max_speed_hz - 1;

	if (brt > 0xFFFF)
		brt = 0xFFFF;

	dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
		spi_clk, max_speed_hz, brt);

	lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
}

static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
				   unsigned int bits_per_word)
{
	u32 bm;

	/* CON.BM value = bits_per_word - 1 */
	bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;

	lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
}

static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
				unsigned int mode)
{
	u32 con_set = 0, con_clr = 0;

	/*
	 * SPI mode mapping in CON register:
	 * Mode CPOL CPHA CON.PO CON.PH
	 *  0    0    0      0      1
	 *  1    0    1      0      0
	 *  2    1    0      1      1
	 *  3    1    1      1      0
	 */
	if (mode & SPI_CPHA)
		con_clr |= LTQ_SPI_CON_PH;
	else
		con_set |= LTQ_SPI_CON_PH;

	if (mode & SPI_CPOL)
		con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
	else
		con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;

	/* Set heading control */
	if (mode & SPI_LSB_FIRST)
		con_clr |= LTQ_SPI_CON_HB;
	else
		con_set |= LTQ_SPI_CON_HB;

	/* Set loopback mode */
	if (mode & SPI_LOOP)
		con_set |= LTQ_SPI_CON_LB;
	else
		con_clr |= LTQ_SPI_CON_LB;

	lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
}

static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
{
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;

	/*
	 * Set clock divider for run mode to 1 to
	 * run at same frequency as FPI bus
	 */
	lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);

	/* Put controller into config mode */
	hw_enter_config_mode(spi);

	/* Clear error flags */
	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);

	/* Enable error checking, disable TX/RX */
	lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
		LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
		LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);

	/* Setup default SPI mode */
	hw_setup_bits_per_word(spi, spi->bits_per_word);
	hw_setup_clock_mode(spi, SPI_MODE_0);

	/* Enable master mode and clear error flags */
	lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
			       LTQ_SPI_WHBSTATE_CLR_ERRORS,
			       LTQ_SPI_WHBSTATE);

	/* Reset GPIO/CS registers */
	lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
	lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);

	/* Enable and flush FIFOs */
	rx_fifo_reset(spi);
	tx_fifo_reset(spi);

	/* Enable interrupts */
	lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
			  LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
}

static int lantiq_ssc_setup(struct spi_device *spidev)
{
	struct spi_master *master = spidev->master;
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
	unsigned int cs = spidev->chip_select;
	u32 gpocon;

	/* GPIOs are used for CS */
	if (spidev->cs_gpiod)
		return 0;

	dev_dbg(spi->dev, "using internal chipselect %u\n", cs);

	if (cs < spi->base_cs) {
		dev_err(spi->dev,
			"chipselect %i too small (min %i)\n", cs, spi->base_cs);
		return -EINVAL;
	}

	/* set GPO pin to CS mode */
	gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);

	/* invert GPO pin */
	if (spidev->mode & SPI_CS_HIGH)
		gpocon |= 1 << (cs - spi->base_cs);

	lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);

	return 0;
}

static int lantiq_ssc_prepare_message(struct spi_master *master,
				      struct spi_message *message)
{
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);

	hw_enter_config_mode(spi);
	hw_setup_clock_mode(spi, message->spi->mode);
	hw_enter_active_mode(spi);

	return 0;
}

static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
			      struct spi_device *spidev, struct spi_transfer *t)
{
	unsigned int speed_hz = t->speed_hz;
	unsigned int bits_per_word = t->bits_per_word;
	u32 con;

	if (bits_per_word != spi->bits_per_word ||
		speed_hz != spi->speed_hz) {
		hw_enter_config_mode(spi);
		hw_setup_speed_hz(spi, speed_hz);
		hw_setup_bits_per_word(spi, bits_per_word);
		hw_enter_active_mode(spi);

		spi->speed_hz = speed_hz;
		spi->bits_per_word = bits_per_word;
	}

	/* Configure transmitter and receiver */
	con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
	if (t->tx_buf)
		con &= ~LTQ_SPI_CON_TXOFF;
	else
		con |= LTQ_SPI_CON_TXOFF;

	if (t->rx_buf)
		con &= ~LTQ_SPI_CON_RXOFF;
	else
		con |= LTQ_SPI_CON_RXOFF;

	lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
}

static int lantiq_ssc_unprepare_message(struct spi_master *master,
					struct spi_message *message)
{
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);

	flush_workqueue(spi->wq);

	/* Disable transmitter and receiver while idle */
	lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
			 LTQ_SPI_CON);

	return 0;
}

static void tx_fifo_write(struct lantiq_ssc_spi *spi)
{
	const u8 *tx8;
	const u16 *tx16;
	const u32 *tx32;
	u32 data;
	unsigned int tx_free = tx_fifo_free(spi);

	spi->fdx_tx_level = 0;
	while (spi->tx_todo && tx_free) {
		switch (spi->bits_per_word) {
		case 2 ... 8:
			tx8 = spi->tx;
			data = *tx8;
			spi->tx_todo--;
			spi->tx++;
			break;
		case 16:
			tx16 = (u16 *) spi->tx;
			data = *tx16;
			spi->tx_todo -= 2;
			spi->tx += 2;
			break;
		case 32:
			tx32 = (u32 *) spi->tx;
			data = *tx32;
			spi->tx_todo -= 4;
			spi->tx += 4;
			break;
		default:
			WARN_ON(1);
			data = 0;
			break;
		}

		lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
		tx_free--;
		spi->fdx_tx_level++;
	}
}

static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
{
	u8 *rx8;
	u16 *rx16;
	u32 *rx32;
	u32 data;
	unsigned int rx_fill = rx_fifo_level(spi);

	/*
	 * Wait until all expected data to be shifted in.
	 * Otherwise, rx overrun may occur.
	 */
	while (rx_fill != spi->fdx_tx_level)
		rx_fill = rx_fifo_level(spi);

	while (rx_fill) {
		data = lantiq_ssc_readl(spi, LTQ_SPI_RB);

		switch (spi->bits_per_word) {
		case 2 ... 8:
			rx8 = spi->rx;
			*rx8 = data;
			spi->rx_todo--;
			spi->rx++;
			break;
		case 16:
			rx16 = (u16 *) spi->rx;
			*rx16 = data;
			spi->rx_todo -= 2;
			spi->rx += 2;
			break;
		case 32:
			rx32 = (u32 *) spi->rx;
			*rx32 = data;
			spi->rx_todo -= 4;
			spi->rx += 4;
			break;
		default:
			WARN_ON(1);
			break;
		}

		rx_fill--;
	}
}

static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
{
	u32 data, *rx32;
	u8 *rx8;
	unsigned int rxbv, shift;
	unsigned int rx_fill = rx_fifo_level(spi);

	/*
	 * In RX-only mode the bits per word value is ignored by HW. A value
	 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
	 * If remaining RX bytes are less than 4, the FIFO must be read
	 * differently. The amount of received and valid bytes is indicated
	 * by STAT.RXBV register value.
	 */
	while (rx_fill) {
		if (spi->rx_todo < 4)  {
			rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
				LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);

			shift = (rxbv - 1) * 8;
			rx8 = spi->rx;

			while (rxbv) {
				*rx8++ = (data >> shift) & 0xFF;
				rxbv--;
				shift -= 8;
				spi->rx_todo--;
				spi->rx++;
			}
		} else {
			data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
			rx32 = (u32 *) spi->rx;

			*rx32++ = data;
			spi->rx_todo -= 4;
			spi->rx += 4;
		}
		rx_fill--;
	}
}

static void rx_request(struct lantiq_ssc_spi *spi)
{
	unsigned int rxreq, rxreq_max;

	/*
	 * To avoid receive overflows at high clocks it is better to request
	 * only the amount of bytes that fits into all FIFOs. This value
	 * depends on the FIFO size implemented in hardware.
	 */
	rxreq = spi->rx_todo;
	rxreq_max = spi->rx_fifo_size * 4;
	if (rxreq > rxreq_max)
		rxreq = rxreq_max;

	lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
}

static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
{
	struct lantiq_ssc_spi *spi = data;
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);

	spin_lock(&spi->lock);
	if (hwcfg->irq_ack)
		lantiq_ssc_writel(spi, val, hwcfg->irncr);

	if (spi->tx) {
		if (spi->rx && spi->rx_todo)
			rx_fifo_read_full_duplex(spi);

		if (spi->tx_todo)
			tx_fifo_write(spi);
		else if (!tx_fifo_level(spi))
			goto completed;
	} else if (spi->rx) {
		if (spi->rx_todo) {
			rx_fifo_read_half_duplex(spi);

			if (spi->rx_todo)
				rx_request(spi);
			else
				goto completed;
		} else {
			goto completed;
		}
	}

	spin_unlock(&spi->lock);
	return IRQ_HANDLED;

completed:
	queue_work(spi->wq, &spi->work);
	spin_unlock(&spi->lock);

	return IRQ_HANDLED;
}

static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
{
	struct lantiq_ssc_spi *spi = data;
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
	u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);

	if (!(stat & LTQ_SPI_STAT_ERRORS))
		return IRQ_NONE;

	spin_lock(&spi->lock);
	if (hwcfg->irq_ack)
		lantiq_ssc_writel(spi, val, hwcfg->irncr);

	if (stat & LTQ_SPI_STAT_RUE)
		dev_err(spi->dev, "receive underflow error\n");
	if (stat & LTQ_SPI_STAT_TUE)
		dev_err(spi->dev, "transmit underflow error\n");
	if (stat & LTQ_SPI_STAT_AE)
		dev_err(spi->dev, "abort error\n");
	if (stat & LTQ_SPI_STAT_RE)
		dev_err(spi->dev, "receive overflow error\n");
	if (stat & LTQ_SPI_STAT_TE)
		dev_err(spi->dev, "transmit overflow error\n");
	if (stat & LTQ_SPI_STAT_ME)
		dev_err(spi->dev, "mode error\n");

	/* Clear error flags */
	lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);

	/* set bad status so it can be retried */
	if (spi->master->cur_msg)
		spi->master->cur_msg->status = -EIO;
	queue_work(spi->wq, &spi->work);
	spin_unlock(&spi->lock);

	return IRQ_HANDLED;
}

static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
{
	struct lantiq_ssc_spi *spi = data;
	const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
	u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);

	if (!(val & LTQ_SPI_IRNEN_ALL))
		return IRQ_NONE;

	if (val & LTQ_SPI_IRNEN_E)
		return lantiq_ssc_err_interrupt(irq, data);

	if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
		return lantiq_ssc_xmit_interrupt(irq, data);

	return IRQ_HANDLED;
}

static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
			  struct spi_transfer *t)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	spi->tx = t->tx_buf;
	spi->rx = t->rx_buf;

	if (t->tx_buf) {
		spi->tx_todo = t->len;

		/* initially fill TX FIFO */
		tx_fifo_write(spi);
	}

	if (spi->rx) {
		spi->rx_todo = t->len;

		/* start shift clock in RX-only mode */
		if (!spi->tx)
			rx_request(spi);
	}

	spin_unlock_irqrestore(&spi->lock, flags);

	return t->len;
}

/*
 * The driver only gets an interrupt when the FIFO is empty, but there
 * is an additional shift register from which the data is written to
 * the wire. We get the last interrupt when the controller starts to
 * write the last word to the wire, not when it is finished. Do busy
 * waiting till it finishes.
 */
static void lantiq_ssc_bussy_work(struct work_struct *work)
{
	struct lantiq_ssc_spi *spi;
	unsigned long long timeout = 8LL * 1000LL;
	unsigned long end;

	spi = container_of(work, typeof(*spi), work);

	do_div(timeout, spi->speed_hz);
	timeout += timeout + 100; /* some tolerance */

	end = jiffies + msecs_to_jiffies(timeout);
	do {
		u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);

		if (!(stat & LTQ_SPI_STAT_BSY)) {
			spi_finalize_current_transfer(spi->master);
			return;
		}

		cond_resched();
	} while (!time_after_eq(jiffies, end));

	if (spi->master->cur_msg)
		spi->master->cur_msg->status = -EIO;
	spi_finalize_current_transfer(spi->master);
}

static void lantiq_ssc_handle_err(struct spi_master *master,
				  struct spi_message *message)
{
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);

	/* flush FIFOs on timeout */
	rx_fifo_flush(spi);
	tx_fifo_flush(spi);
}

static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
{
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
	unsigned int cs = spidev->chip_select;
	u32 fgpo;

	if (!!(spidev->mode & SPI_CS_HIGH) == enable)
		fgpo = (1 << (cs - spi->base_cs));
	else
		fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));

	lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
}

static int lantiq_ssc_transfer_one(struct spi_master *master,
				   struct spi_device *spidev,
				   struct spi_transfer *t)
{
	struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);

	hw_setup_transfer(spi, spidev, t);

	return transfer_start(spi, spidev, t);
}

static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
	int irq;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
}

static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
	int irq, err;

	irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
	if (irq < 0)
		return irq;

	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
			       0, LTQ_SPI_RX_IRQ_NAME, spi);
	if (err)
		return err;

	irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
	if (irq < 0)
		return irq;

	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
			       0, LTQ_SPI_TX_IRQ_NAME, spi);

	if (err)
		return err;

	irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
	if (irq < 0)
		return irq;

	err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
			       0, LTQ_SPI_ERR_IRQ_NAME, spi);
	return err;
}

static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
	.cfg_irq	= lantiq_cfg_irq,
	.irnen_r	= LTQ_SPI_IRNEN_R_XWAY,
	.irnen_t	= LTQ_SPI_IRNEN_T_XWAY,
	.irnicr		= 0xF8,
	.irncr		= 0xFC,
	.fifo_size_mask	= GENMASK(5, 0),
	.irq_ack	= false,
};

static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
	.cfg_irq	= lantiq_cfg_irq,
	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
	.irnicr		= 0xF8,
	.irncr		= 0xFC,
	.fifo_size_mask	= GENMASK(5, 0),
	.irq_ack	= false,
};

static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
	.cfg_irq	= intel_lgm_cfg_irq,
	.irnen_r	= LTQ_SPI_IRNEN_R_XRX,
	.irnen_t	= LTQ_SPI_IRNEN_T_XRX,
	.irnicr		= 0xFC,
	.irncr		= 0xF8,
	.fifo_size_mask	= GENMASK(7, 0),
	.irq_ack	= true,
};

static const struct of_device_id lantiq_ssc_match[] = {
	{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
	{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
	{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
	{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
	{},
};
MODULE_DEVICE_TABLE(of, lantiq_ssc_match);

static int lantiq_ssc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct spi_master *master;
	struct lantiq_ssc_spi *spi;
	const struct lantiq_ssc_hwcfg *hwcfg;
	const struct of_device_id *match;
	u32 id, supports_dma, revision;
	unsigned int num_cs;
	int err;

	match = of_match_device(lantiq_ssc_match, dev);
	if (!match) {
		dev_err(dev, "no device match\n");
		return -EINVAL;
	}
	hwcfg = match->data;

	master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
	if (!master)
		return -ENOMEM;

	spi = spi_master_get_devdata(master);
	spi->master = master;
	spi->dev = dev;
	spi->hwcfg = hwcfg;
	platform_set_drvdata(pdev, spi);
	spi->regbase = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(spi->regbase)) {
		err = PTR_ERR(spi->regbase);
		goto err_master_put;
	}

	err = hwcfg->cfg_irq(pdev, spi);
	if (err)
		goto err_master_put;

	spi->spi_clk = devm_clk_get(dev, "gate");
	if (IS_ERR(spi->spi_clk)) {
		err = PTR_ERR(spi->spi_clk);
		goto err_master_put;
	}
	err = clk_prepare_enable(spi->spi_clk);
	if (err)
		goto err_master_put;

	/*
	 * Use the old clk_get_fpi() function on Lantiq platform, till it
	 * supports common clk.
	 */
#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
	spi->fpi_clk = clk_get_fpi();
#else
	spi->fpi_clk = clk_get(dev, "freq");
#endif
	if (IS_ERR(spi->fpi_clk)) {
		err = PTR_ERR(spi->fpi_clk);
		goto err_clk_disable;
	}

	num_cs = 8;
	of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);

	spi->base_cs = 1;
	of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);

	spin_lock_init(&spi->lock);
	spi->bits_per_word = 8;
	spi->speed_hz = 0;

	master->dev.of_node = pdev->dev.of_node;
	master->num_chipselect = num_cs;
	master->use_gpio_descriptors = true;
	master->setup = lantiq_ssc_setup;
	master->set_cs = lantiq_ssc_set_cs;
	master->handle_err = lantiq_ssc_handle_err;
	master->prepare_message = lantiq_ssc_prepare_message;
	master->unprepare_message = lantiq_ssc_unprepare_message;
	master->transfer_one = lantiq_ssc_transfer_one;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
				SPI_LOOP;
	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
				     SPI_BPW_MASK(16) | SPI_BPW_MASK(32);

	spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
	if (!spi->wq) {
		err = -ENOMEM;
		goto err_clk_put;
	}
	INIT_WORK(&spi->work, lantiq_ssc_bussy_work);

	id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
	spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
	spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
	supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
	revision = id & LTQ_SPI_ID_REV_M;

	lantiq_ssc_hw_init(spi);

	dev_info(dev,
		"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
		revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);

	err = devm_spi_register_master(dev, master);
	if (err) {
		dev_err(dev, "failed to register spi_master\n");
		goto err_wq_destroy;
	}

	return 0;

err_wq_destroy:
	destroy_workqueue(spi->wq);
err_clk_put:
	clk_put(spi->fpi_clk);
err_clk_disable:
	clk_disable_unprepare(spi->spi_clk);
err_master_put:
	spi_master_put(master);

	return err;
}

static int lantiq_ssc_remove(struct platform_device *pdev)
{
	struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);

	lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
	lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
	rx_fifo_flush(spi);
	tx_fifo_flush(spi);
	hw_enter_config_mode(spi);

	destroy_workqueue(spi->wq);
	clk_disable_unprepare(spi->spi_clk);
	clk_put(spi->fpi_clk);

	return 0;
}

static struct platform_driver lantiq_ssc_driver = {
	.probe = lantiq_ssc_probe,
	.remove = lantiq_ssc_remove,
	.driver = {
		.name = "spi-lantiq-ssc",
		.of_match_table = lantiq_ssc_match,
	},
};
module_platform_driver(lantiq_ssc_driver);

MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:spi-lantiq-ssc");