Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// SPDX-License-Identifier: GPL-2.0
/*
 * Rockchip VPU codec vp8 decode driver
 *
 * Copyright (C) 2014 Rockchip Electronics Co., Ltd.
 *	ZhiChao Yu <zhichao.yu@rock-chips.com>
 *
 * Copyright (C) 2014 Google LLC.
 *      Tomasz Figa <tfiga@chromium.org>
 *
 * Copyright (C) 2015 Rockchip Electronics Co., Ltd.
 *      Alpha Lin <alpha.lin@rock-chips.com>
 */

#include <media/v4l2-mem2mem.h>
#include <media/vp8-ctrls.h>

#include "hantro_hw.h"
#include "hantro.h"
#include "hantro_g1_regs.h"

#define VDPU_REG_DEC_CTRL0			0x0c8
#define VDPU_REG_STREAM_LEN			0x0cc
#define VDPU_REG_DEC_FORMAT			0x0d4
#define     VDPU_REG_DEC_CTRL0_DEC_MODE(x)		(((x) & 0xf) << 0)
#define VDPU_REG_DATA_ENDIAN			0x0d8
#define     VDPU_REG_CONFIG_DEC_STRENDIAN_E		BIT(5)
#define     VDPU_REG_CONFIG_DEC_STRSWAP32_E		BIT(4)
#define     VDPU_REG_CONFIG_DEC_OUTSWAP32_E		BIT(3)
#define     VDPU_REG_CONFIG_DEC_INSWAP32_E		BIT(2)
#define     VDPU_REG_CONFIG_DEC_OUT_ENDIAN		BIT(1)
#define     VDPU_REG_CONFIG_DEC_IN_ENDIAN		BIT(0)
#define VDPU_REG_AXI_CTRL			0x0e0
#define     VDPU_REG_CONFIG_DEC_MAX_BURST(x)		(((x) & 0x1f) << 16)
#define VDPU_REG_EN_FLAGS			0x0e4
#define     VDPU_REG_DEC_CTRL0_PIC_INTER_E		BIT(14)
#define     VDPU_REG_CONFIG_DEC_TIMEOUT_E		BIT(5)
#define     VDPU_REG_CONFIG_DEC_CLK_GATE_E		BIT(4)
#define VDPU_REG_PRED_FLT			0x0ec
#define VDPU_REG_ADDR_QTABLE			0x0f4
#define VDPU_REG_ADDR_DST			0x0fc
#define VDPU_REG_ADDR_STR			0x100
#define VDPU_REG_VP8_PIC_MB_SIZE		0x1e0
#define VDPU_REG_VP8_DCT_START_BIT		0x1e4
#define     VDPU_REG_DEC_CTRL4_VC1_HEIGHT_EXT		BIT(13)
#define     VDPU_REG_DEC_CTRL4_BILIN_MC_E		BIT(12)
#define VDPU_REG_VP8_CTRL0			0x1e8
#define VDPU_REG_VP8_DATA_VAL			0x1f0
#define VDPU_REG_PRED_FLT7			0x1f4
#define VDPU_REG_PRED_FLT8			0x1f8
#define VDPU_REG_PRED_FLT9			0x1fc
#define VDPU_REG_PRED_FLT10			0x200
#define VDPU_REG_FILTER_LEVEL			0x204
#define VDPU_REG_VP8_QUANTER0			0x208
#define VDPU_REG_VP8_ADDR_REF0			0x20c
#define VDPU_REG_FILTER_MB_ADJ			0x210
#define     VDPU_REG_REF_PIC_FILT_TYPE_E		BIT(31)
#define     VDPU_REG_REF_PIC_FILT_SHARPNESS(x)		(((x) & 0x7) << 28)
#define VDPU_REG_FILTER_REF_ADJ			0x214
#define VDPU_REG_VP8_ADDR_REF2_5(i)		(0x218 + ((i) * 0x4))
#define     VDPU_REG_VP8_GREF_SIGN_BIAS			BIT(0)
#define     VDPU_REG_VP8_AREF_SIGN_BIAS			BIT(0)
#define VDPU_REG_VP8_DCT_BASE(i)		\
		(0x230 + ((((i) < 5) ? (i) : ((i) + 1)) * 0x4))
#define VDPU_REG_VP8_ADDR_CTRL_PART		0x244
#define VDPU_REG_VP8_SEGMENT_VAL		0x254
#define     VDPU_REG_FWD_PIC1_SEGMENT_BASE(x)		((x) << 0)
#define     VDPU_REG_FWD_PIC1_SEGMENT_UPD_E		BIT(1)
#define     VDPU_REG_FWD_PIC1_SEGMENT_E			BIT(0)
#define VDPU_REG_VP8_DCT_START_BIT2		0x258
#define VDPU_REG_VP8_QUANTER1			0x25c
#define VDPU_REG_VP8_QUANTER2			0x260
#define VDPU_REG_PRED_FLT1			0x264
#define VDPU_REG_PRED_FLT2			0x268
#define VDPU_REG_PRED_FLT3			0x26c
#define VDPU_REG_PRED_FLT4			0x270
#define VDPU_REG_PRED_FLT5			0x274
#define VDPU_REG_PRED_FLT6			0x278

static const struct hantro_reg vp8_dec_dct_base[8] = {
	{ VDPU_REG_ADDR_STR, 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(0), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(1), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(2), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(3), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(4), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(5), 0, 0xffffffff },
	{ VDPU_REG_VP8_DCT_BASE(6), 0, 0xffffffff },
};

static const struct hantro_reg vp8_dec_lf_level[4] = {
	{ VDPU_REG_FILTER_LEVEL, 18, 0x3f },
	{ VDPU_REG_FILTER_LEVEL, 12, 0x3f },
	{ VDPU_REG_FILTER_LEVEL, 6, 0x3f },
	{ VDPU_REG_FILTER_LEVEL, 0, 0x3f },
};

static const struct hantro_reg vp8_dec_mb_adj[4] = {
	{ VDPU_REG_FILTER_MB_ADJ, 21, 0x7f },
	{ VDPU_REG_FILTER_MB_ADJ, 14, 0x7f },
	{ VDPU_REG_FILTER_MB_ADJ, 7, 0x7f },
	{ VDPU_REG_FILTER_MB_ADJ, 0, 0x7f },
};

static const struct hantro_reg vp8_dec_ref_adj[4] = {
	{ VDPU_REG_FILTER_REF_ADJ, 21, 0x7f },
	{ VDPU_REG_FILTER_REF_ADJ, 14, 0x7f },
	{ VDPU_REG_FILTER_REF_ADJ, 7, 0x7f },
	{ VDPU_REG_FILTER_REF_ADJ, 0, 0x7f },
};

static const struct hantro_reg vp8_dec_quant[4] = {
	{ VDPU_REG_VP8_QUANTER0, 11, 0x7ff },
	{ VDPU_REG_VP8_QUANTER0, 0, 0x7ff },
	{ VDPU_REG_VP8_QUANTER1, 11, 0x7ff },
	{ VDPU_REG_VP8_QUANTER1, 0, 0x7ff },
};

static const struct hantro_reg vp8_dec_quant_delta[5] = {
	{ VDPU_REG_VP8_QUANTER0, 27, 0x1f },
	{ VDPU_REG_VP8_QUANTER0, 22, 0x1f },
	{ VDPU_REG_VP8_QUANTER1, 27, 0x1f },
	{ VDPU_REG_VP8_QUANTER1, 22, 0x1f },
	{ VDPU_REG_VP8_QUANTER2, 27, 0x1f },
};

static const struct hantro_reg vp8_dec_dct_start_bits[8] = {
	{ VDPU_REG_VP8_CTRL0, 26, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT, 26, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT, 20, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT2, 24, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT2, 18, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT2, 12, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT2, 6, 0x3f },
	{ VDPU_REG_VP8_DCT_START_BIT2, 0, 0x3f },
};

static const struct hantro_reg vp8_dec_pred_bc_tap[8][6] = {
	{
		{ 0, 0, 0},
		{ VDPU_REG_PRED_FLT, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT1, 22, 0x3ff },
		{ 0, 0, 0},
	}, {
		{ 0, 0, 0},
		{ VDPU_REG_PRED_FLT1, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT1, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT2, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT2, 12, 0x3ff },
		{ 0, 0, 0},
	}, {
		{ VDPU_REG_PRED_FLT10, 10, 0x3 },
		{ VDPU_REG_PRED_FLT2, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT3, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT3, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT3, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT10, 8, 0x3},
	}, {
		{ 0, 0, 0},
		{ VDPU_REG_PRED_FLT4, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT4, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT4, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT5, 22, 0x3ff },
		{ 0, 0, 0},
	}, {
		{ VDPU_REG_PRED_FLT10, 6, 0x3 },
		{ VDPU_REG_PRED_FLT5, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT5, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT6, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT6, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT10, 4, 0x3 },
	}, {
		{ 0, 0, 0},
		{ VDPU_REG_PRED_FLT6, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT7, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT7, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT7, 2, 0x3ff },
		{ 0, 0, 0},
	}, {
		{ VDPU_REG_PRED_FLT10, 2, 0x3 },
		{ VDPU_REG_PRED_FLT8, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT8, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT8, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT9, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT10, 0, 0x3 },
	}, {
		{ 0, 0, 0},
		{ VDPU_REG_PRED_FLT9, 12, 0x3ff },
		{ VDPU_REG_PRED_FLT9, 2, 0x3ff },
		{ VDPU_REG_PRED_FLT10, 22, 0x3ff },
		{ VDPU_REG_PRED_FLT10, 12, 0x3ff },
		{ 0, 0, 0},
	},
};

static const struct hantro_reg vp8_dec_mb_start_bit = {
	.base = VDPU_REG_VP8_CTRL0,
	.shift = 18,
	.mask = 0x3f
};

static const struct hantro_reg vp8_dec_mb_aligned_data_len = {
	.base = VDPU_REG_VP8_DATA_VAL,
	.shift = 0,
	.mask = 0x3fffff
};

static const struct hantro_reg vp8_dec_num_dct_partitions = {
	.base = VDPU_REG_VP8_DATA_VAL,
	.shift = 24,
	.mask = 0xf
};

static const struct hantro_reg vp8_dec_stream_len = {
	.base = VDPU_REG_STREAM_LEN,
	.shift = 0,
	.mask = 0xffffff
};

static const struct hantro_reg vp8_dec_mb_width = {
	.base = VDPU_REG_VP8_PIC_MB_SIZE,
	.shift = 23,
	.mask = 0x1ff
};

static const struct hantro_reg vp8_dec_mb_height = {
	.base = VDPU_REG_VP8_PIC_MB_SIZE,
	.shift = 11,
	.mask = 0xff
};

static const struct hantro_reg vp8_dec_mb_width_ext = {
	.base = VDPU_REG_VP8_PIC_MB_SIZE,
	.shift = 3,
	.mask = 0x7
};

static const struct hantro_reg vp8_dec_mb_height_ext = {
	.base = VDPU_REG_VP8_PIC_MB_SIZE,
	.shift = 0,
	.mask = 0x7
};

static const struct hantro_reg vp8_dec_bool_range = {
	.base = VDPU_REG_VP8_CTRL0,
	.shift = 0,
	.mask = 0xff
};

static const struct hantro_reg vp8_dec_bool_value = {
	.base = VDPU_REG_VP8_CTRL0,
	.shift = 8,
	.mask = 0xff
};

static const struct hantro_reg vp8_dec_filter_disable = {
	.base = VDPU_REG_DEC_CTRL0,
	.shift = 8,
	.mask = 1
};

static const struct hantro_reg vp8_dec_skip_mode = {
	.base = VDPU_REG_DEC_CTRL0,
	.shift = 9,
	.mask = 1
};

static const struct hantro_reg vp8_dec_start_dec = {
	.base = VDPU_REG_EN_FLAGS,
	.shift = 0,
	.mask = 1
};

static void cfg_lf(struct hantro_ctx *ctx,
		   const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	const struct v4l2_vp8_loopfilter_header *lf = &hdr->lf_header;
	struct hantro_dev *vpu = ctx->dev;
	unsigned int i;
	u32 reg;

	if (!(seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED)) {
		hantro_reg_write(vpu, &vp8_dec_lf_level[0], lf->level);
	} else if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE) {
		for (i = 0; i < 4; i++) {
			u32 lf_level = clamp(lf->level + seg->lf_update[i],
					     0, 63);

			hantro_reg_write(vpu, &vp8_dec_lf_level[i], lf_level);
		}
	} else {
		for (i = 0; i < 4; i++)
			hantro_reg_write(vpu, &vp8_dec_lf_level[i],
					 seg->lf_update[i]);
	}

	reg = VDPU_REG_REF_PIC_FILT_SHARPNESS(lf->sharpness_level);
	if (lf->flags & V4L2_VP8_LF_FILTER_TYPE_SIMPLE)
		reg |= VDPU_REG_REF_PIC_FILT_TYPE_E;
	vdpu_write_relaxed(vpu, reg, VDPU_REG_FILTER_MB_ADJ);

	if (lf->flags & V4L2_VP8_LF_HEADER_ADJ_ENABLE) {
		for (i = 0; i < 4; i++) {
			hantro_reg_write(vpu, &vp8_dec_mb_adj[i],
					 lf->mb_mode_delta[i]);
			hantro_reg_write(vpu, &vp8_dec_ref_adj[i],
					 lf->ref_frm_delta[i]);
		}
	}
}

static void cfg_qp(struct hantro_ctx *ctx,
		   const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_quantization_header *q = &hdr->quant_header;
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	struct hantro_dev *vpu = ctx->dev;
	unsigned int i;

	if (!(seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED)) {
		hantro_reg_write(vpu, &vp8_dec_quant[0], q->y_ac_qi);
	} else if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_DELTA_VALUE_MODE) {
		for (i = 0; i < 4; i++) {
			u32 quant = clamp(q->y_ac_qi + seg->quant_update[i],
					  0, 127);

			hantro_reg_write(vpu, &vp8_dec_quant[i], quant);
		}
	} else {
		for (i = 0; i < 4; i++)
			hantro_reg_write(vpu, &vp8_dec_quant[i],
					 seg->quant_update[i]);
	}

	hantro_reg_write(vpu, &vp8_dec_quant_delta[0], q->y_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[1], q->y2_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[2], q->y2_ac_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[3], q->uv_dc_delta);
	hantro_reg_write(vpu, &vp8_dec_quant_delta[4], q->uv_ac_delta);
}

static void cfg_parts(struct hantro_ctx *ctx,
		      const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_src;
	u32 first_part_offset = VP8_FRAME_IS_KEY_FRAME(hdr) ? 10 : 3;
	u32 mb_size, mb_offset_bytes, mb_offset_bits, mb_start_bits;
	u32 dct_size_part_size, dct_part_offset;
	dma_addr_t src_dma;
	u32 dct_part_total_len = 0;
	u32 count = 0;
	unsigned int i;

	vb2_src = hantro_get_src_buf(ctx);
	src_dma = vb2_dma_contig_plane_dma_addr(&vb2_src->vb2_buf, 0);

	/*
	 * Calculate control partition mb data info
	 * @first_part_header_bits:	bits offset of mb data from first
	 *				part start pos
	 * @mb_offset_bits:		bits offset of mb data from src_dma
	 *				base addr
	 * @mb_offset_byte:		bytes offset of mb data from src_dma
	 *				base addr
	 * @mb_start_bits:		bits offset of mb data from mb data
	 *				64bits alignment addr
	 */
	mb_offset_bits = first_part_offset * 8 +
			 hdr->first_part_header_bits + 8;
	mb_offset_bytes = mb_offset_bits / 8;
	mb_start_bits = mb_offset_bits -
			(mb_offset_bytes & (~DEC_8190_ALIGN_MASK)) * 8;
	mb_size = hdr->first_part_size -
		  (mb_offset_bytes - first_part_offset) +
		  (mb_offset_bytes & DEC_8190_ALIGN_MASK);

	/* Macroblock data aligned base addr */
	vdpu_write_relaxed(vpu, (mb_offset_bytes & (~DEC_8190_ALIGN_MASK)) +
			   src_dma, VDPU_REG_VP8_ADDR_CTRL_PART);
	hantro_reg_write(vpu, &vp8_dec_mb_start_bit, mb_start_bits);
	hantro_reg_write(vpu, &vp8_dec_mb_aligned_data_len, mb_size);

	/*
	 * Calculate DCT partition info
	 * @dct_size_part_size: Containing sizes of DCT part, every DCT part
	 *			has 3 bytes to store its size, except the last
	 *			DCT part
	 * @dct_part_offset:	bytes offset of DCT parts from src_dma base addr
	 * @dct_part_total_len: total size of all DCT parts
	 */
	dct_size_part_size = (hdr->num_dct_parts - 1) * 3;
	dct_part_offset = first_part_offset + hdr->first_part_size;
	for (i = 0; i < hdr->num_dct_parts; i++)
		dct_part_total_len += hdr->dct_part_sizes[i];
	dct_part_total_len += dct_size_part_size;
	dct_part_total_len += (dct_part_offset & DEC_8190_ALIGN_MASK);

	/* Number of DCT partitions */
	hantro_reg_write(vpu, &vp8_dec_num_dct_partitions,
			 hdr->num_dct_parts - 1);

	/* DCT partition length */
	hantro_reg_write(vpu, &vp8_dec_stream_len, dct_part_total_len);

	/* DCT partitions base address */
	for (i = 0; i < hdr->num_dct_parts; i++) {
		u32 byte_offset = dct_part_offset + dct_size_part_size + count;
		u32 base_addr = byte_offset + src_dma;

		hantro_reg_write(vpu, &vp8_dec_dct_base[i],
				 base_addr & (~DEC_8190_ALIGN_MASK));

		hantro_reg_write(vpu, &vp8_dec_dct_start_bits[i],
				 (byte_offset & DEC_8190_ALIGN_MASK) * 8);

		count += hdr->dct_part_sizes[i];
	}
}

/*
 * prediction filter taps
 * normal 6-tap filters
 */
static void cfg_tap(struct hantro_ctx *ctx,
		    const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	int i, j;

	if ((hdr->version & 0x03) != 0)
		return; /* Tap filter not used. */

	for (i = 0; i < 8; i++) {
		for (j = 0; j < 6; j++) {
			if (vp8_dec_pred_bc_tap[i][j].base != 0)
				hantro_reg_write(vpu,
						 &vp8_dec_pred_bc_tap[i][j],
						 hantro_vp8_dec_mc_filter[i][j]);
		}
	}
}

static void cfg_ref(struct hantro_ctx *ctx,
		    const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_dst;
	dma_addr_t ref;

	vb2_dst = hantro_get_dst_buf(ctx);

	ref = hantro_get_ref(ctx, hdr->last_frame_ts);
	if (!ref) {
		vpu_debug(0, "failed to find last frame ts=%llu\n",
			  hdr->last_frame_ts);
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	}
	vdpu_write_relaxed(vpu, ref, VDPU_REG_VP8_ADDR_REF0);

	ref = hantro_get_ref(ctx, hdr->golden_frame_ts);
	if (!ref && hdr->golden_frame_ts)
		vpu_debug(0, "failed to find golden frame ts=%llu\n",
			  hdr->golden_frame_ts);
	if (!ref)
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	if (hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_GOLDEN)
		ref |= VDPU_REG_VP8_GREF_SIGN_BIAS;
	vdpu_write_relaxed(vpu, ref, VDPU_REG_VP8_ADDR_REF2_5(2));

	ref = hantro_get_ref(ctx, hdr->alt_frame_ts);
	if (!ref && hdr->alt_frame_ts)
		vpu_debug(0, "failed to find alt frame ts=%llu\n",
			  hdr->alt_frame_ts);
	if (!ref)
		ref = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	if (hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_SIGN_BIAS_ALT)
		ref |= VDPU_REG_VP8_AREF_SIGN_BIAS;
	vdpu_write_relaxed(vpu, ref, VDPU_REG_VP8_ADDR_REF2_5(3));
}

static void cfg_buffers(struct hantro_ctx *ctx,
			const struct v4l2_ctrl_vp8_frame_header *hdr)
{
	const struct v4l2_vp8_segment_header *seg = &hdr->segment_header;
	struct hantro_dev *vpu = ctx->dev;
	struct vb2_v4l2_buffer *vb2_dst;
	dma_addr_t dst_dma;
	u32 reg;

	vb2_dst = hantro_get_dst_buf(ctx);

	/* Set probability table buffer address */
	vdpu_write_relaxed(vpu, ctx->vp8_dec.prob_tbl.dma,
			   VDPU_REG_ADDR_QTABLE);

	/* Set segment map address */
	reg = VDPU_REG_FWD_PIC1_SEGMENT_BASE(ctx->vp8_dec.segment_map.dma);
	if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_ENABLED) {
		reg |= VDPU_REG_FWD_PIC1_SEGMENT_E;
		if (seg->flags & V4L2_VP8_SEGMENT_HEADER_FLAG_UPDATE_MAP)
			reg |= VDPU_REG_FWD_PIC1_SEGMENT_UPD_E;
	}
	vdpu_write_relaxed(vpu, reg, VDPU_REG_VP8_SEGMENT_VAL);

	/* set output frame buffer address */
	dst_dma = vb2_dma_contig_plane_dma_addr(&vb2_dst->vb2_buf, 0);
	vdpu_write_relaxed(vpu, dst_dma, VDPU_REG_ADDR_DST);
}

void rk3399_vpu_vp8_dec_run(struct hantro_ctx *ctx)
{
	const struct v4l2_ctrl_vp8_frame_header *hdr;
	struct hantro_dev *vpu = ctx->dev;
	size_t height = ctx->dst_fmt.height;
	size_t width = ctx->dst_fmt.width;
	u32 mb_width, mb_height;
	u32 reg;

	hantro_start_prepare_run(ctx);

	hdr = hantro_get_ctrl(ctx, V4L2_CID_MPEG_VIDEO_VP8_FRAME_HEADER);
	if (WARN_ON(!hdr))
		return;

	/* Reset segment_map buffer in keyframe */
	if (VP8_FRAME_IS_KEY_FRAME(hdr) && ctx->vp8_dec.segment_map.cpu)
		memset(ctx->vp8_dec.segment_map.cpu, 0,
		       ctx->vp8_dec.segment_map.size);

	hantro_vp8_prob_update(ctx, hdr);

	/*
	 * Extensive testing shows that the hardware does not properly
	 * clear the internal state from previous a decoding run. This
	 * causes corruption in decoded frames for multi-instance use cases.
	 * A soft reset before programming the registers has been found
	 * to resolve those problems.
	 */
	ctx->codec_ops->reset(ctx);

	reg = VDPU_REG_CONFIG_DEC_TIMEOUT_E
		| VDPU_REG_CONFIG_DEC_CLK_GATE_E;
	if (!VP8_FRAME_IS_KEY_FRAME(hdr))
		reg |= VDPU_REG_DEC_CTRL0_PIC_INTER_E;
	vdpu_write_relaxed(vpu, reg, VDPU_REG_EN_FLAGS);

	reg = VDPU_REG_CONFIG_DEC_STRENDIAN_E
		| VDPU_REG_CONFIG_DEC_INSWAP32_E
		| VDPU_REG_CONFIG_DEC_STRSWAP32_E
		| VDPU_REG_CONFIG_DEC_OUTSWAP32_E
		| VDPU_REG_CONFIG_DEC_IN_ENDIAN
		| VDPU_REG_CONFIG_DEC_OUT_ENDIAN;
	vdpu_write_relaxed(vpu, reg, VDPU_REG_DATA_ENDIAN);

	reg = VDPU_REG_CONFIG_DEC_MAX_BURST(16);
	vdpu_write_relaxed(vpu, reg, VDPU_REG_AXI_CTRL);

	reg = VDPU_REG_DEC_CTRL0_DEC_MODE(10);
	vdpu_write_relaxed(vpu, reg, VDPU_REG_DEC_FORMAT);

	if (!(hdr->flags & V4L2_VP8_FRAME_HEADER_FLAG_MB_NO_SKIP_COEFF))
		hantro_reg_write(vpu, &vp8_dec_skip_mode, 1);
	if (hdr->lf_header.level == 0)
		hantro_reg_write(vpu, &vp8_dec_filter_disable, 1);

	/* Frame dimensions */
	mb_width = MB_WIDTH(width);
	mb_height = MB_HEIGHT(height);

	hantro_reg_write(vpu, &vp8_dec_mb_width, mb_width);
	hantro_reg_write(vpu, &vp8_dec_mb_height, mb_height);
	hantro_reg_write(vpu, &vp8_dec_mb_width_ext, mb_width >> 9);
	hantro_reg_write(vpu, &vp8_dec_mb_height_ext, mb_height >> 8);

	/* Boolean decoder */
	hantro_reg_write(vpu, &vp8_dec_bool_range, hdr->coder_state.range);
	hantro_reg_write(vpu, &vp8_dec_bool_value, hdr->coder_state.value);

	reg = vdpu_read(vpu, VDPU_REG_VP8_DCT_START_BIT);
	if (hdr->version != 3)
		reg |= VDPU_REG_DEC_CTRL4_VC1_HEIGHT_EXT;
	if (hdr->version & 0x3)
		reg |= VDPU_REG_DEC_CTRL4_BILIN_MC_E;
	vdpu_write_relaxed(vpu, reg, VDPU_REG_VP8_DCT_START_BIT);

	cfg_lf(ctx, hdr);
	cfg_qp(ctx, hdr);
	cfg_parts(ctx, hdr);
	cfg_tap(ctx, hdr);
	cfg_ref(ctx, hdr);
	cfg_buffers(ctx, hdr);

	hantro_end_prepare_run(ctx);

	hantro_reg_write(vpu, &vp8_dec_start_dec, 1);
}