Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Admin Function driver
 *
 * Copyright (C) 2018 Marvell International Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/pci.h>

#include "rvu_struct.h"
#include "rvu_reg.h"
#include "rvu.h"

static int npa_aq_enqueue_wait(struct rvu *rvu, struct rvu_block *block,
			       struct npa_aq_inst_s *inst)
{
	struct admin_queue *aq = block->aq;
	struct npa_aq_res_s *result;
	int timeout = 1000;
	u64 reg, head;

	result = (struct npa_aq_res_s *)aq->res->base;

	/* Get current head pointer where to append this instruction */
	reg = rvu_read64(rvu, block->addr, NPA_AF_AQ_STATUS);
	head = (reg >> 4) & AQ_PTR_MASK;

	memcpy((void *)(aq->inst->base + (head * aq->inst->entry_sz)),
	       (void *)inst, aq->inst->entry_sz);
	memset(result, 0, sizeof(*result));
	/* sync into memory */
	wmb();

	/* Ring the doorbell and wait for result */
	rvu_write64(rvu, block->addr, NPA_AF_AQ_DOOR, 1);
	while (result->compcode == NPA_AQ_COMP_NOTDONE) {
		cpu_relax();
		udelay(1);
		timeout--;
		if (!timeout)
			return -EBUSY;
	}

	if (result->compcode != NPA_AQ_COMP_GOOD)
		/* TODO: Replace this with some error code */
		return -EBUSY;

	return 0;
}

int rvu_npa_aq_enq_inst(struct rvu *rvu, struct npa_aq_enq_req *req,
			struct npa_aq_enq_rsp *rsp)
{
	struct rvu_hwinfo *hw = rvu->hw;
	u16 pcifunc = req->hdr.pcifunc;
	int blkaddr, npalf, rc = 0;
	struct npa_aq_inst_s inst;
	struct rvu_block *block;
	struct admin_queue *aq;
	struct rvu_pfvf *pfvf;
	void *ctx, *mask;
	bool ena;

	pfvf = rvu_get_pfvf(rvu, pcifunc);
	if (!pfvf->aura_ctx || req->aura_id >= pfvf->aura_ctx->qsize)
		return NPA_AF_ERR_AQ_ENQUEUE;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
	if (!pfvf->npalf || blkaddr < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	block = &hw->block[blkaddr];
	aq = block->aq;
	if (!aq) {
		dev_warn(rvu->dev, "%s: NPA AQ not initialized\n", __func__);
		return NPA_AF_ERR_AQ_ENQUEUE;
	}

	npalf = rvu_get_lf(rvu, block, pcifunc, 0);
	if (npalf < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	memset(&inst, 0, sizeof(struct npa_aq_inst_s));
	inst.cindex = req->aura_id;
	inst.lf = npalf;
	inst.ctype = req->ctype;
	inst.op = req->op;
	/* Currently we are not supporting enqueuing multiple instructions,
	 * so always choose first entry in result memory.
	 */
	inst.res_addr = (u64)aq->res->iova;

	/* Hardware uses same aq->res->base for updating result of
	 * previous instruction hence wait here till it is done.
	 */
	spin_lock(&aq->lock);

	/* Clean result + context memory */
	memset(aq->res->base, 0, aq->res->entry_sz);
	/* Context needs to be written at RES_ADDR + 128 */
	ctx = aq->res->base + 128;
	/* Mask needs to be written at RES_ADDR + 256 */
	mask = aq->res->base + 256;

	switch (req->op) {
	case NPA_AQ_INSTOP_WRITE:
		/* Copy context and write mask */
		if (req->ctype == NPA_AQ_CTYPE_AURA) {
			memcpy(mask, &req->aura_mask,
			       sizeof(struct npa_aura_s));
			memcpy(ctx, &req->aura, sizeof(struct npa_aura_s));
		} else {
			memcpy(mask, &req->pool_mask,
			       sizeof(struct npa_pool_s));
			memcpy(ctx, &req->pool, sizeof(struct npa_pool_s));
		}
		break;
	case NPA_AQ_INSTOP_INIT:
		if (req->ctype == NPA_AQ_CTYPE_AURA) {
			if (req->aura.pool_addr >= pfvf->pool_ctx->qsize) {
				rc = NPA_AF_ERR_AQ_FULL;
				break;
			}
			/* Set pool's context address */
			req->aura.pool_addr = pfvf->pool_ctx->iova +
			(req->aura.pool_addr * pfvf->pool_ctx->entry_sz);
			memcpy(ctx, &req->aura, sizeof(struct npa_aura_s));
		} else { /* POOL's context */
			memcpy(ctx, &req->pool, sizeof(struct npa_pool_s));
		}
		break;
	case NPA_AQ_INSTOP_NOP:
	case NPA_AQ_INSTOP_READ:
	case NPA_AQ_INSTOP_LOCK:
	case NPA_AQ_INSTOP_UNLOCK:
		break;
	default:
		rc = NPA_AF_ERR_AQ_FULL;
		break;
	}

	if (rc) {
		spin_unlock(&aq->lock);
		return rc;
	}

	/* Submit the instruction to AQ */
	rc = npa_aq_enqueue_wait(rvu, block, &inst);
	if (rc) {
		spin_unlock(&aq->lock);
		return rc;
	}

	/* Set aura bitmap if aura hw context is enabled */
	if (req->ctype == NPA_AQ_CTYPE_AURA) {
		if (req->op == NPA_AQ_INSTOP_INIT && req->aura.ena)
			__set_bit(req->aura_id, pfvf->aura_bmap);
		if (req->op == NPA_AQ_INSTOP_WRITE) {
			ena = (req->aura.ena & req->aura_mask.ena) |
				(test_bit(req->aura_id, pfvf->aura_bmap) &
				~req->aura_mask.ena);
			if (ena)
				__set_bit(req->aura_id, pfvf->aura_bmap);
			else
				__clear_bit(req->aura_id, pfvf->aura_bmap);
		}
	}

	/* Set pool bitmap if pool hw context is enabled */
	if (req->ctype == NPA_AQ_CTYPE_POOL) {
		if (req->op == NPA_AQ_INSTOP_INIT && req->pool.ena)
			__set_bit(req->aura_id, pfvf->pool_bmap);
		if (req->op == NPA_AQ_INSTOP_WRITE) {
			ena = (req->pool.ena & req->pool_mask.ena) |
				(test_bit(req->aura_id, pfvf->pool_bmap) &
				~req->pool_mask.ena);
			if (ena)
				__set_bit(req->aura_id, pfvf->pool_bmap);
			else
				__clear_bit(req->aura_id, pfvf->pool_bmap);
		}
	}
	spin_unlock(&aq->lock);

	if (rsp) {
		/* Copy read context into mailbox */
		if (req->op == NPA_AQ_INSTOP_READ) {
			if (req->ctype == NPA_AQ_CTYPE_AURA)
				memcpy(&rsp->aura, ctx,
				       sizeof(struct npa_aura_s));
			else
				memcpy(&rsp->pool, ctx,
				       sizeof(struct npa_pool_s));
		}
	}

	return 0;
}

static int npa_lf_hwctx_disable(struct rvu *rvu, struct hwctx_disable_req *req)
{
	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
	struct npa_aq_enq_req aq_req;
	unsigned long *bmap;
	int id, cnt = 0;
	int err = 0, rc;

	if (!pfvf->pool_ctx || !pfvf->aura_ctx)
		return NPA_AF_ERR_AQ_ENQUEUE;

	memset(&aq_req, 0, sizeof(struct npa_aq_enq_req));
	aq_req.hdr.pcifunc = req->hdr.pcifunc;

	if (req->ctype == NPA_AQ_CTYPE_POOL) {
		aq_req.pool.ena = 0;
		aq_req.pool_mask.ena = 1;
		cnt = pfvf->pool_ctx->qsize;
		bmap = pfvf->pool_bmap;
	} else if (req->ctype == NPA_AQ_CTYPE_AURA) {
		aq_req.aura.ena = 0;
		aq_req.aura_mask.ena = 1;
		aq_req.aura.bp_ena = 0;
		aq_req.aura_mask.bp_ena = 1;
		cnt = pfvf->aura_ctx->qsize;
		bmap = pfvf->aura_bmap;
	}

	aq_req.ctype = req->ctype;
	aq_req.op = NPA_AQ_INSTOP_WRITE;

	for (id = 0; id < cnt; id++) {
		if (!test_bit(id, bmap))
			continue;
		aq_req.aura_id = id;
		rc = rvu_npa_aq_enq_inst(rvu, &aq_req, NULL);
		if (rc) {
			err = rc;
			dev_err(rvu->dev, "Failed to disable %s:%d context\n",
				(req->ctype == NPA_AQ_CTYPE_AURA) ?
				"Aura" : "Pool", id);
		}
	}

	return err;
}

#ifdef CONFIG_NDC_DIS_DYNAMIC_CACHING
static int npa_lf_hwctx_lockdown(struct rvu *rvu, struct npa_aq_enq_req *req)
{
	struct npa_aq_enq_req lock_ctx_req;
	int err;

	if (req->op != NPA_AQ_INSTOP_INIT)
		return 0;

	memset(&lock_ctx_req, 0, sizeof(struct npa_aq_enq_req));
	lock_ctx_req.hdr.pcifunc = req->hdr.pcifunc;
	lock_ctx_req.ctype = req->ctype;
	lock_ctx_req.op = NPA_AQ_INSTOP_LOCK;
	lock_ctx_req.aura_id = req->aura_id;
	err = rvu_npa_aq_enq_inst(rvu, &lock_ctx_req, NULL);
	if (err)
		dev_err(rvu->dev,
			"PFUNC 0x%x: Failed to lock NPA context %s:%d\n",
			req->hdr.pcifunc,
			(req->ctype == NPA_AQ_CTYPE_AURA) ?
			"Aura" : "Pool", req->aura_id);
	return err;
}

int rvu_mbox_handler_npa_aq_enq(struct rvu *rvu,
				struct npa_aq_enq_req *req,
				struct npa_aq_enq_rsp *rsp)
{
	int err;

	err = rvu_npa_aq_enq_inst(rvu, req, rsp);
	if (!err)
		err = npa_lf_hwctx_lockdown(rvu, req);
	return err;
}
#else

int rvu_mbox_handler_npa_aq_enq(struct rvu *rvu,
				struct npa_aq_enq_req *req,
				struct npa_aq_enq_rsp *rsp)
{
	return rvu_npa_aq_enq_inst(rvu, req, rsp);
}
#endif

int rvu_mbox_handler_npa_hwctx_disable(struct rvu *rvu,
				       struct hwctx_disable_req *req,
				       struct msg_rsp *rsp)
{
	return npa_lf_hwctx_disable(rvu, req);
}

static void npa_ctx_free(struct rvu *rvu, struct rvu_pfvf *pfvf)
{
	kfree(pfvf->aura_bmap);
	pfvf->aura_bmap = NULL;

	qmem_free(rvu->dev, pfvf->aura_ctx);
	pfvf->aura_ctx = NULL;

	kfree(pfvf->pool_bmap);
	pfvf->pool_bmap = NULL;

	qmem_free(rvu->dev, pfvf->pool_ctx);
	pfvf->pool_ctx = NULL;

	qmem_free(rvu->dev, pfvf->npa_qints_ctx);
	pfvf->npa_qints_ctx = NULL;
}

int rvu_mbox_handler_npa_lf_alloc(struct rvu *rvu,
				  struct npa_lf_alloc_req *req,
				  struct npa_lf_alloc_rsp *rsp)
{
	int npalf, qints, hwctx_size, err, rc = 0;
	struct rvu_hwinfo *hw = rvu->hw;
	u16 pcifunc = req->hdr.pcifunc;
	struct rvu_block *block;
	struct rvu_pfvf *pfvf;
	u64 cfg, ctx_cfg;
	int blkaddr;

	if (req->aura_sz > NPA_AURA_SZ_MAX ||
	    req->aura_sz == NPA_AURA_SZ_0 || !req->nr_pools)
		return NPA_AF_ERR_PARAM;

	if (req->way_mask)
		req->way_mask &= 0xFFFF;

	pfvf = rvu_get_pfvf(rvu, pcifunc);
	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
	if (!pfvf->npalf || blkaddr < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	block = &hw->block[blkaddr];
	npalf = rvu_get_lf(rvu, block, pcifunc, 0);
	if (npalf < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	/* Reset this NPA LF */
	err = rvu_lf_reset(rvu, block, npalf);
	if (err) {
		dev_err(rvu->dev, "Failed to reset NPALF%d\n", npalf);
		return NPA_AF_ERR_LF_RESET;
	}

	ctx_cfg = rvu_read64(rvu, blkaddr, NPA_AF_CONST1);

	/* Alloc memory for aura HW contexts */
	hwctx_size = 1UL << (ctx_cfg & 0xF);
	err = qmem_alloc(rvu->dev, &pfvf->aura_ctx,
			 NPA_AURA_COUNT(req->aura_sz), hwctx_size);
	if (err)
		goto free_mem;

	pfvf->aura_bmap = kcalloc(NPA_AURA_COUNT(req->aura_sz), sizeof(long),
				  GFP_KERNEL);
	if (!pfvf->aura_bmap)
		goto free_mem;

	/* Alloc memory for pool HW contexts */
	hwctx_size = 1UL << ((ctx_cfg >> 4) & 0xF);
	err = qmem_alloc(rvu->dev, &pfvf->pool_ctx, req->nr_pools, hwctx_size);
	if (err)
		goto free_mem;

	pfvf->pool_bmap = kcalloc(NPA_AURA_COUNT(req->aura_sz), sizeof(long),
				  GFP_KERNEL);
	if (!pfvf->pool_bmap)
		goto free_mem;

	/* Get no of queue interrupts supported */
	cfg = rvu_read64(rvu, blkaddr, NPA_AF_CONST);
	qints = (cfg >> 28) & 0xFFF;

	/* Alloc memory for Qints HW contexts */
	hwctx_size = 1UL << ((ctx_cfg >> 8) & 0xF);
	err = qmem_alloc(rvu->dev, &pfvf->npa_qints_ctx, qints, hwctx_size);
	if (err)
		goto free_mem;

	cfg = rvu_read64(rvu, blkaddr, NPA_AF_LFX_AURAS_CFG(npalf));
	/* Clear way partition mask and set aura offset to '0' */
	cfg &= ~(BIT_ULL(34) - 1);
	/* Set aura size & enable caching of contexts */
	cfg |= (req->aura_sz << 16) | BIT_ULL(34) | req->way_mask;

	rvu_write64(rvu, blkaddr, NPA_AF_LFX_AURAS_CFG(npalf), cfg);

	/* Configure aura HW context's base */
	rvu_write64(rvu, blkaddr, NPA_AF_LFX_LOC_AURAS_BASE(npalf),
		    (u64)pfvf->aura_ctx->iova);

	/* Enable caching of qints hw context */
	rvu_write64(rvu, blkaddr, NPA_AF_LFX_QINTS_CFG(npalf),
		    BIT_ULL(36) | req->way_mask << 20);
	rvu_write64(rvu, blkaddr, NPA_AF_LFX_QINTS_BASE(npalf),
		    (u64)pfvf->npa_qints_ctx->iova);

	goto exit;

free_mem:
	npa_ctx_free(rvu, pfvf);
	rc = -ENOMEM;

exit:
	/* set stack page info */
	cfg = rvu_read64(rvu, blkaddr, NPA_AF_CONST);
	rsp->stack_pg_ptrs = (cfg >> 8) & 0xFF;
	rsp->stack_pg_bytes = cfg & 0xFF;
	rsp->qints = (cfg >> 28) & 0xFFF;
	return rc;
}

int rvu_mbox_handler_npa_lf_free(struct rvu *rvu, struct msg_req *req,
				 struct msg_rsp *rsp)
{
	struct rvu_hwinfo *hw = rvu->hw;
	u16 pcifunc = req->hdr.pcifunc;
	struct rvu_block *block;
	struct rvu_pfvf *pfvf;
	int npalf, err;
	int blkaddr;

	pfvf = rvu_get_pfvf(rvu, pcifunc);
	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
	if (!pfvf->npalf || blkaddr < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	block = &hw->block[blkaddr];
	npalf = rvu_get_lf(rvu, block, pcifunc, 0);
	if (npalf < 0)
		return NPA_AF_ERR_AF_LF_INVALID;

	/* Reset this NPA LF */
	err = rvu_lf_reset(rvu, block, npalf);
	if (err) {
		dev_err(rvu->dev, "Failed to reset NPALF%d\n", npalf);
		return NPA_AF_ERR_LF_RESET;
	}

	npa_ctx_free(rvu, pfvf);

	return 0;
}

static int npa_aq_init(struct rvu *rvu, struct rvu_block *block)
{
	u64 cfg;
	int err;

	/* Set admin queue endianness */
	cfg = rvu_read64(rvu, block->addr, NPA_AF_GEN_CFG);
#ifdef __BIG_ENDIAN
	cfg |= BIT_ULL(1);
	rvu_write64(rvu, block->addr, NPA_AF_GEN_CFG, cfg);
#else
	cfg &= ~BIT_ULL(1);
	rvu_write64(rvu, block->addr, NPA_AF_GEN_CFG, cfg);
#endif

	/* Do not bypass NDC cache */
	cfg = rvu_read64(rvu, block->addr, NPA_AF_NDC_CFG);
	cfg &= ~0x03DULL;
#ifdef CONFIG_NDC_DIS_DYNAMIC_CACHING
	/* Disable caching of stack pages */
	cfg |= 0x10ULL;
#endif
	rvu_write64(rvu, block->addr, NPA_AF_NDC_CFG, cfg);

	/* Result structure can be followed by Aura/Pool context at
	 * RES + 128bytes and a write mask at RES + 256 bytes, depending on
	 * operation type. Alloc sufficient result memory for all operations.
	 */
	err = rvu_aq_alloc(rvu, &block->aq,
			   Q_COUNT(AQ_SIZE), sizeof(struct npa_aq_inst_s),
			   ALIGN(sizeof(struct npa_aq_res_s), 128) + 256);
	if (err)
		return err;

	rvu_write64(rvu, block->addr, NPA_AF_AQ_CFG, AQ_SIZE);
	rvu_write64(rvu, block->addr,
		    NPA_AF_AQ_BASE, (u64)block->aq->inst->iova);
	return 0;
}

int rvu_npa_init(struct rvu *rvu)
{
	struct rvu_hwinfo *hw = rvu->hw;
	int blkaddr, err;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, 0);
	if (blkaddr < 0)
		return 0;

	/* Initialize admin queue */
	err = npa_aq_init(rvu, &hw->block[blkaddr]);
	if (err)
		return err;

	return 0;
}

void rvu_npa_freemem(struct rvu *rvu)
{
	struct rvu_hwinfo *hw = rvu->hw;
	struct rvu_block *block;
	int blkaddr;

	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, 0);
	if (blkaddr < 0)
		return;

	block = &hw->block[blkaddr];
	rvu_aq_free(rvu, block->aq);
}

void rvu_npa_lf_teardown(struct rvu *rvu, u16 pcifunc, int npalf)
{
	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
	struct hwctx_disable_req ctx_req;

	/* Disable all pools */
	ctx_req.hdr.pcifunc = pcifunc;
	ctx_req.ctype = NPA_AQ_CTYPE_POOL;
	npa_lf_hwctx_disable(rvu, &ctx_req);

	/* Disable all auras */
	ctx_req.ctype = NPA_AQ_CTYPE_AURA;
	npa_lf_hwctx_disable(rvu, &ctx_req);

	npa_ctx_free(rvu, pfvf);
}