Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
/*
 * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/*
 * Secure boot is the process by which NVIDIA-signed firmware is loaded into
 * some of the falcons of a GPU. For production devices this is the only way
 * for the firmware to access useful (but sensitive) registers.
 *
 * A Falcon microprocessor supporting advanced security modes can run in one of
 * three modes:
 *
 * - Non-secure (NS). In this mode, functionality is similar to Falcon
 *   architectures before security modes were introduced (pre-Maxwell), but
 *   capability is restricted. In particular, certain registers may be
 *   inaccessible for reads and/or writes, and physical memory access may be
 *   disabled (on certain Falcon instances). This is the only possible mode that
 *   can be used if you don't have microcode cryptographically signed by NVIDIA.
 *
 * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
 *   not possible to read or write any Falcon internal state or Falcon registers
 *   from outside the Falcon (for example, from the host system). The only way
 *   to enable this mode is by loading microcode that has been signed by NVIDIA.
 *   (The loading process involves tagging the IMEM block as secure, writing the
 *   signature into a Falcon register, and starting execution. The hardware will
 *   validate the signature, and if valid, grant HS privileges.)
 *
 * - Light Secure (LS). In this mode, the microprocessor has more privileges
 *   than NS but fewer than HS. Some of the microprocessor state is visible to
 *   host software to ease debugging. The only way to enable this mode is by HS
 *   microcode enabling LS mode. Some privileges available to HS mode are not
 *   available here. LS mode is introduced in GM20x.
 *
 * Secure boot consists in temporarily switching a HS-capable falcon (typically
 * PMU) into HS mode in order to validate the LS firmwares of managed falcons,
 * load them, and switch managed falcons into LS mode. Once secure boot
 * completes, no falcon remains in HS mode.
 *
 * Secure boot requires a write-protected memory region (WPR) which can only be
 * written by the secure falcon. On dGPU, the driver sets up the WPR region in
 * video memory. On Tegra, it is set up by the bootloader and its location and
 * size written into memory controller registers.
 *
 * The secure boot process takes place as follows:
 *
 * 1) A LS blob is constructed that contains all the LS firmwares we want to
 *    load, along with their signatures and bootloaders.
 *
 * 2) A HS blob (also called ACR) is created that contains the signed HS
 *    firmware in charge of loading the LS firmwares into their respective
 *    falcons.
 *
 * 3) The HS blob is loaded (via its own bootloader) and executed on the
 *    HS-capable falcon. It authenticates itself, switches the secure falcon to
 *    HS mode and setup the WPR region around the LS blob (dGPU) or copies the
 *    LS blob into the WPR region (Tegra).
 *
 * 4) The LS blob is now secure from all external tampering. The HS falcon
 *    checks the signatures of the LS firmwares and, if valid, switches the
 *    managed falcons to LS mode and makes them ready to run the LS firmware.
 *
 * 5) The managed falcons remain in LS mode and can be started.
 *
 */

#include "priv.h"

#include <core/gpuobj.h>
#include <core/firmware.h>
#include <subdev/fb.h>

enum {
	FALCON_DMAIDX_UCODE		= 0,
	FALCON_DMAIDX_VIRT		= 1,
	FALCON_DMAIDX_PHYS_VID		= 2,
	FALCON_DMAIDX_PHYS_SYS_COH	= 3,
	FALCON_DMAIDX_PHYS_SYS_NCOH	= 4,
};

/**
 * struct fw_bin_header - header of firmware files
 * @bin_magic:		always 0x3b1d14f0
 * @bin_ver:		version of the bin format
 * @bin_size:		entire image size including this header
 * @header_offset:	offset of the firmware/bootloader header in the file
 * @data_offset:	offset of the firmware/bootloader payload in the file
 * @data_size:		size of the payload
 *
 * This header is located at the beginning of the HS firmware and HS bootloader
 * files, to describe where the headers and data can be found.
 */
struct fw_bin_header {
	u32 bin_magic;
	u32 bin_ver;
	u32 bin_size;
	u32 header_offset;
	u32 data_offset;
	u32 data_size;
};

/**
 * struct fw_bl_desc - firmware bootloader descriptor
 * @start_tag:		starting tag of bootloader
 * @desc_dmem_load_off:	DMEM offset of flcn_bl_dmem_desc
 * @code_off:		offset of code section
 * @code_size:		size of code section
 * @data_off:		offset of data section
 * @data_size:		size of data section
 *
 * This structure is embedded in bootloader firmware files at to describe the
 * IMEM and DMEM layout expected by the bootloader.
 */
struct fw_bl_desc {
	u32 start_tag;
	u32 dmem_load_off;
	u32 code_off;
	u32 code_size;
	u32 data_off;
	u32 data_size;
};


/*
 *
 * LS blob structures
 *
 */

/**
 * struct lsf_ucode_desc - LS falcon signatures
 * @prd_keys:		signature to use when the GPU is in production mode
 * @dgb_keys:		signature to use when the GPU is in debug mode
 * @b_prd_present:	whether the production key is present
 * @b_dgb_present:	whether the debug key is present
 * @falcon_id:		ID of the falcon the ucode applies to
 *
 * Directly loaded from a signature file.
 */
struct lsf_ucode_desc {
	u8  prd_keys[2][16];
	u8  dbg_keys[2][16];
	u32 b_prd_present;
	u32 b_dbg_present;
	u32 falcon_id;
};

/**
 * struct lsf_lsb_header - LS firmware header
 * @signature:		signature to verify the firmware against
 * @ucode_off:		offset of the ucode blob in the WPR region. The ucode
 *                      blob contains the bootloader, code and data of the
 *                      LS falcon
 * @ucode_size:		size of the ucode blob, including bootloader
 * @data_size:		size of the ucode blob data
 * @bl_code_size:	size of the bootloader code
 * @bl_imem_off:	offset in imem of the bootloader
 * @bl_data_off:	offset of the bootloader data in WPR region
 * @bl_data_size:	size of the bootloader data
 * @app_code_off:	offset of the app code relative to ucode_off
 * @app_code_size:	size of the app code
 * @app_data_off:	offset of the app data relative to ucode_off
 * @app_data_size:	size of the app data
 * @flags:		flags for the secure bootloader
 *
 * This structure is written into the WPR region for each managed falcon. Each
 * instance is referenced by the lsb_offset member of the corresponding
 * lsf_wpr_header.
 */
struct lsf_lsb_header {
	struct lsf_ucode_desc signature;
	u32 ucode_off;
	u32 ucode_size;
	u32 data_size;
	u32 bl_code_size;
	u32 bl_imem_off;
	u32 bl_data_off;
	u32 bl_data_size;
	u32 app_code_off;
	u32 app_code_size;
	u32 app_data_off;
	u32 app_data_size;
	u32 flags;
#define LSF_FLAG_LOAD_CODE_AT_0		1
#define LSF_FLAG_DMACTL_REQ_CTX		4
#define LSF_FLAG_FORCE_PRIV_LOAD	8
};

/**
 * struct lsf_wpr_header - LS blob WPR Header
 * @falcon_id:		LS falcon ID
 * @lsb_offset:		offset of the lsb_lsf_header in the WPR region
 * @bootstrap_owner:	secure falcon reponsible for bootstrapping the LS falcon
 * @lazy_bootstrap:	skip bootstrapping by ACR
 * @status:		bootstrapping status
 *
 * An array of these is written at the beginning of the WPR region, one for
 * each managed falcon. The array is terminated by an instance which falcon_id
 * is LSF_FALCON_ID_INVALID.
 */
struct lsf_wpr_header {
	u32  falcon_id;
	u32  lsb_offset;
	u32  bootstrap_owner;
	u32  lazy_bootstrap;
	u32  status;
#define LSF_IMAGE_STATUS_NONE				0
#define LSF_IMAGE_STATUS_COPY				1
#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED		2
#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED		3
#define LSF_IMAGE_STATUS_VALIDATION_DONE		4
#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED		5
#define LSF_IMAGE_STATUS_BOOTSTRAP_READY		6
};


/**
 * struct ls_ucode_img_desc - descriptor of firmware image
 * @descriptor_size:		size of this descriptor
 * @image_size:			size of the whole image
 * @bootloader_start_offset:	start offset of the bootloader in ucode image
 * @bootloader_size:		size of the bootloader
 * @bootloader_imem_offset:	start off set of the bootloader in IMEM
 * @bootloader_entry_point:	entry point of the bootloader in IMEM
 * @app_start_offset:		start offset of the LS firmware
 * @app_size:			size of the LS firmware's code and data
 * @app_imem_offset:		offset of the app in IMEM
 * @app_imem_entry:		entry point of the app in IMEM
 * @app_dmem_offset:		offset of the data in DMEM
 * @app_resident_code_offset:	offset of app code from app_start_offset
 * @app_resident_code_size:	size of the code
 * @app_resident_data_offset:	offset of data from app_start_offset
 * @app_resident_data_size:	size of data
 *
 * A firmware image contains the code, data, and bootloader of a given LS
 * falcon in a single blob. This structure describes where everything is.
 *
 * This can be generated from a (bootloader, code, data) set if they have
 * been loaded separately, or come directly from a file.
 */
struct ls_ucode_img_desc {
	u32 descriptor_size;
	u32 image_size;
	u32 tools_version;
	u32 app_version;
	char date[64];
	u32 bootloader_start_offset;
	u32 bootloader_size;
	u32 bootloader_imem_offset;
	u32 bootloader_entry_point;
	u32 app_start_offset;
	u32 app_size;
	u32 app_imem_offset;
	u32 app_imem_entry;
	u32 app_dmem_offset;
	u32 app_resident_code_offset;
	u32 app_resident_code_size;
	u32 app_resident_data_offset;
	u32 app_resident_data_size;
	u32 nb_overlays;
	struct {u32 start; u32 size; } load_ovl[64];
	u32 compressed;
};

/**
 * struct ls_ucode_img - temporary storage for loaded LS firmwares
 * @node:		to link within lsf_ucode_mgr
 * @falcon_id:		ID of the falcon this LS firmware is for
 * @ucode_desc:		loaded or generated map of ucode_data
 * @ucode_header:	header of the firmware
 * @ucode_data:		firmware payload (code and data)
 * @ucode_size:		size in bytes of data in ucode_data
 * @wpr_header:		WPR header to be written to the LS blob
 * @lsb_header:		LSB header to be written to the LS blob
 *
 * Preparing the WPR LS blob requires information about all the LS firmwares
 * (size, etc) to be known. This structure contains all the data of one LS
 * firmware.
 */
struct ls_ucode_img {
	struct list_head node;
	enum nvkm_secboot_falcon falcon_id;

	struct ls_ucode_img_desc ucode_desc;
	u32 *ucode_header;
	u8 *ucode_data;
	u32 ucode_size;

	struct lsf_wpr_header wpr_header;
	struct lsf_lsb_header lsb_header;
};

/**
 * struct ls_ucode_mgr - manager for all LS falcon firmwares
 * @count:	number of managed LS falcons
 * @wpr_size:	size of the required WPR region in bytes
 * @img_list:	linked list of lsf_ucode_img
 */
struct ls_ucode_mgr {
	u16 count;
	u32 wpr_size;
	struct list_head img_list;
};


/*
 *
 * HS blob structures
 *
 */

/**
 * struct hsf_fw_header - HS firmware descriptor
 * @sig_dbg_offset:	offset of the debug signature
 * @sig_dbg_size:	size of the debug signature
 * @sig_prod_offset:	offset of the production signature
 * @sig_prod_size:	size of the production signature
 * @patch_loc:		offset of the offset (sic) of where the signature is
 * @patch_sig:		offset of the offset (sic) to add to sig_*_offset
 * @hdr_offset:		offset of the load header (see struct hs_load_header)
 * @hdr_size:		size of above header
 *
 * This structure is embedded in the HS firmware image at
 * hs_bin_hdr.header_offset.
 */
struct hsf_fw_header {
	u32 sig_dbg_offset;
	u32 sig_dbg_size;
	u32 sig_prod_offset;
	u32 sig_prod_size;
	u32 patch_loc;
	u32 patch_sig;
	u32 hdr_offset;
	u32 hdr_size;
};

/**
 * struct hsf_load_header - HS firmware load header
 */
struct hsf_load_header {
	u32 non_sec_code_off;
	u32 non_sec_code_size;
	u32 data_dma_base;
	u32 data_size;
	u32 num_apps;
	struct {
		u32 sec_code_off;
		u32 sec_code_size;
	} app[0];
};

/**
 * Convenience function to duplicate a firmware file in memory and check that
 * it has the required minimum size.
 */
static void *
gm200_secboot_load_firmware(struct nvkm_subdev *subdev, const char *name,
		    size_t min_size)
{
	const struct firmware *fw;
	void *blob;
	int ret;

	ret = nvkm_firmware_get(subdev->device, name, &fw);
	if (ret)
		return ERR_PTR(ret);
	if (fw->size < min_size) {
		nvkm_error(subdev, "%s is smaller than expected size %zu\n",
			   name, min_size);
		nvkm_firmware_put(fw);
		return ERR_PTR(-EINVAL);
	}
	blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
	nvkm_firmware_put(fw);
	if (!blob)
		return ERR_PTR(-ENOMEM);

	return blob;
}


/*
 * Low-secure blob creation
 */

#define BL_DESC_BLK_SIZE 256
/**
 * Build a ucode image and descriptor from provided bootloader, code and data.
 *
 * @bl:		bootloader image, including 16-bytes descriptor
 * @code:	LS firmware code segment
 * @data:	LS firmware data segment
 * @desc:	ucode descriptor to be written
 *
 * Return: allocated ucode image with corresponding descriptor information. desc
 *         is also updated to contain the right offsets within returned image.
 */
static void *
ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
		   const struct firmware *data, struct ls_ucode_img_desc *desc)
{
	struct fw_bin_header *bin_hdr = (void *)bl->data;
	struct fw_bl_desc *bl_desc = (void *)bl->data + bin_hdr->header_offset;
	void *bl_data = (void *)bl->data + bin_hdr->data_offset;
	u32 pos = 0;
	void *image;

	desc->bootloader_start_offset = pos;
	desc->bootloader_size = ALIGN(bl_desc->code_size, sizeof(u32));
	desc->bootloader_imem_offset = bl_desc->start_tag * 256;
	desc->bootloader_entry_point = bl_desc->start_tag * 256;

	pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
	desc->app_start_offset = pos;
	desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
			 ALIGN(data->size, BL_DESC_BLK_SIZE);
	desc->app_imem_offset = 0;
	desc->app_imem_entry = 0;
	desc->app_dmem_offset = 0;
	desc->app_resident_code_offset = 0;
	desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);

	pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
	desc->app_resident_data_offset = pos - desc->app_start_offset;
	desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);

	desc->image_size = ALIGN(bl_desc->code_size, BL_DESC_BLK_SIZE) +
			   desc->app_size;

	image = kzalloc(desc->image_size, GFP_KERNEL);
	if (!image)
		return ERR_PTR(-ENOMEM);

	memcpy(image + desc->bootloader_start_offset, bl_data,
	       bl_desc->code_size);
	memcpy(image + desc->app_start_offset, code->data, code->size);
	memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
	       data->data, data->size);

	return image;
}

/**
 * ls_ucode_img_load_generic() - load and prepare a LS ucode image
 *
 * Load the LS microcode, bootloader and signature and pack them into a single
 * blob. Also generate the corresponding ucode descriptor.
 */
static int
ls_ucode_img_load_generic(struct nvkm_subdev *subdev,
			  struct ls_ucode_img *img, const char *falcon_name,
			  const u32 falcon_id)
{
	const struct firmware *bl, *code, *data;
	struct lsf_ucode_desc *lsf_desc;
	char f[64];
	int ret;

	img->ucode_header = NULL;

	snprintf(f, sizeof(f), "gr/%s_bl", falcon_name);
	ret = nvkm_firmware_get(subdev->device, f, &bl);
	if (ret)
		goto error;

	snprintf(f, sizeof(f), "gr/%s_inst", falcon_name);
	ret = nvkm_firmware_get(subdev->device, f, &code);
	if (ret)
		goto free_bl;

	snprintf(f, sizeof(f), "gr/%s_data", falcon_name);
	ret = nvkm_firmware_get(subdev->device, f, &data);
	if (ret)
		goto free_inst;

	img->ucode_data = ls_ucode_img_build(bl, code, data,
					     &img->ucode_desc);
	if (IS_ERR(img->ucode_data)) {
		ret = PTR_ERR(img->ucode_data);
		goto free_data;
	}
	img->ucode_size = img->ucode_desc.image_size;

	snprintf(f, sizeof(f), "gr/%s_sig", falcon_name);
	lsf_desc = gm200_secboot_load_firmware(subdev, f, sizeof(*lsf_desc));
	if (IS_ERR(lsf_desc)) {
		ret = PTR_ERR(lsf_desc);
		goto free_image;
	}
	/* not needed? the signature should already have the right value */
	lsf_desc->falcon_id = falcon_id;
	memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
	img->falcon_id = lsf_desc->falcon_id;
	kfree(lsf_desc);

	/* success path - only free requested firmware files */
	goto free_data;

free_image:
	kfree(img->ucode_data);
free_data:
	nvkm_firmware_put(data);
free_inst:
	nvkm_firmware_put(code);
free_bl:
	nvkm_firmware_put(bl);
error:
	return ret;
}

typedef int (*lsf_load_func)(struct nvkm_subdev *, struct ls_ucode_img *);

static int
ls_ucode_img_load_fecs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
{
	return ls_ucode_img_load_generic(subdev, img, "fecs",
					 NVKM_SECBOOT_FALCON_FECS);
}

static int
ls_ucode_img_load_gpccs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
{
	return ls_ucode_img_load_generic(subdev, img, "gpccs",
					 NVKM_SECBOOT_FALCON_GPCCS);
}

/**
 * ls_ucode_img_load() - create a lsf_ucode_img and load it
 */
static struct ls_ucode_img *
ls_ucode_img_load(struct nvkm_subdev *subdev, lsf_load_func load_func)
{
	struct ls_ucode_img *img;
	int ret;

	img = kzalloc(sizeof(*img), GFP_KERNEL);
	if (!img)
		return ERR_PTR(-ENOMEM);

	ret = load_func(subdev, img);
	if (ret) {
		kfree(img);
		return ERR_PTR(ret);
	}

	return img;
}

static const lsf_load_func lsf_load_funcs[] = {
	[NVKM_SECBOOT_FALCON_END] = NULL, /* reserve enough space */
	[NVKM_SECBOOT_FALCON_FECS] = ls_ucode_img_load_fecs,
	[NVKM_SECBOOT_FALCON_GPCCS] = ls_ucode_img_load_gpccs,
};

/**
 * ls_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image
 * @img:	ucode image to generate against
 * @desc:	descriptor to populate
 * @sb:		secure boot state to use for base addresses
 *
 * Populate the DMEM BL descriptor with the information contained in a
 * ls_ucode_desc.
 *
 */
static void
ls_ucode_img_populate_bl_desc(struct ls_ucode_img *img, u64 wpr_addr,
			      struct gm200_flcn_bl_desc *desc)
{
	struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
	u64 addr_base;

	addr_base = wpr_addr + img->lsb_header.ucode_off +
		    pdesc->app_start_offset;

	memset(desc, 0, sizeof(*desc));
	desc->ctx_dma = FALCON_DMAIDX_UCODE;
	desc->code_dma_base.lo = lower_32_bits(
		(addr_base + pdesc->app_resident_code_offset));
	desc->code_dma_base.hi = upper_32_bits(
		(addr_base + pdesc->app_resident_code_offset));
	desc->non_sec_code_size = pdesc->app_resident_code_size;
	desc->data_dma_base.lo = lower_32_bits(
		(addr_base + pdesc->app_resident_data_offset));
	desc->data_dma_base.hi = upper_32_bits(
		(addr_base + pdesc->app_resident_data_offset));
	desc->data_size = pdesc->app_resident_data_size;
	desc->code_entry_point = pdesc->app_imem_entry;
}

#define LSF_LSB_HEADER_ALIGN 256
#define LSF_BL_DATA_ALIGN 256
#define LSF_BL_DATA_SIZE_ALIGN 256
#define LSF_BL_CODE_SIZE_ALIGN 256
#define LSF_UCODE_DATA_ALIGN 4096

/**
 * ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
 * @gsb:	secure boot device used
 * @img:	image to generate for
 * @offset:	offset in the WPR region where this image starts
 *
 * Allocate space in the WPR area from offset and write the WPR and LSB headers
 * accordingly.
 *
 * Return: offset at the end of this image.
 */
static u32
ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img,
			  u32 offset)
{
	struct lsf_wpr_header *whdr = &img->wpr_header;
	struct lsf_lsb_header *lhdr = &img->lsb_header;
	struct ls_ucode_img_desc *desc = &img->ucode_desc;

	if (img->ucode_header) {
		nvkm_fatal(&gsb->base.subdev,
			    "images withough loader are not supported yet!\n");
		return offset;
	}

	/* Fill WPR header */
	whdr->falcon_id = img->falcon_id;
	whdr->bootstrap_owner = gsb->base.func->boot_falcon;
	whdr->status = LSF_IMAGE_STATUS_COPY;

	/* Align, save off, and include an LSB header size */
	offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
	whdr->lsb_offset = offset;
	offset += sizeof(struct lsf_lsb_header);

	/*
	 * Align, save off, and include the original (static) ucode
	 * image size
	 */
	offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
	lhdr->ucode_off = offset;
	offset += img->ucode_size;

	/*
	 * For falcons that use a boot loader (BL), we append a loader
	 * desc structure on the end of the ucode image and consider
	 * this the boot loader data. The host will then copy the loader
	 * desc args to this space within the WPR region (before locking
	 * down) and the HS bin will then copy them to DMEM 0 for the
	 * loader.
	 */
	lhdr->bl_code_size = ALIGN(desc->bootloader_size,
				   LSF_BL_CODE_SIZE_ALIGN);
	lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
				 LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
	lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
				lhdr->bl_code_size - lhdr->ucode_size;
	/*
	 * Though the BL is located at 0th offset of the image, the VA
	 * is different to make sure that it doesn't collide the actual
	 * OS VA range
	 */
	lhdr->bl_imem_off = desc->bootloader_imem_offset;
	lhdr->app_code_off = desc->app_start_offset +
			     desc->app_resident_code_offset;
	lhdr->app_code_size = desc->app_resident_code_size;
	lhdr->app_data_off = desc->app_start_offset +
			     desc->app_resident_data_offset;
	lhdr->app_data_size = desc->app_resident_data_size;

	lhdr->flags = 0;
	if (img->falcon_id == gsb->base.func->boot_falcon)
		lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;

	/* GPCCS will be loaded using PRI */
	if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
		lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;

	/* Align (size bloat) and save off BL descriptor size */
	lhdr->bl_data_size = ALIGN(sizeof(struct gm200_flcn_bl_desc),
				   LSF_BL_DATA_SIZE_ALIGN);
	/*
	 * Align, save off, and include the additional BL data
	 */
	offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
	lhdr->bl_data_off = offset;
	offset += lhdr->bl_data_size;

	return offset;
}

static void
ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
{
	memset(mgr, 0, sizeof(*mgr));
	INIT_LIST_HEAD(&mgr->img_list);
}

static void
ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
{
	struct ls_ucode_img *img, *t;

	list_for_each_entry_safe(img, t, &mgr->img_list, node) {
		kfree(img->ucode_data);
		kfree(img->ucode_header);
		kfree(img);
	}
}

static void
ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
{
	mgr->count++;
	list_add_tail(&img->node, &mgr->img_list);
}

/**
 * ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
 */
static void
ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr)
{
	struct ls_ucode_img *img;
	u32 offset;

	/*
	 * Start with an array of WPR headers at the base of the WPR.
	 * The expectation here is that the secure falcon will do a single DMA
	 * read of this array and cache it internally so it's ok to pack these.
	 * Also, we add 1 to the falcon count to indicate the end of the array.
	 */
	offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);

	/*
	 * Walk the managed falcons, accounting for the LSB structs
	 * as well as the ucode images.
	 */
	list_for_each_entry(img, &mgr->img_list, node) {
		offset = ls_ucode_img_fill_headers(gsb, img, offset);
	}

	mgr->wpr_size = offset;
}

/**
 * ls_ucode_mgr_write_wpr - write the WPR blob contents
 */
static int
ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr,
		       struct nvkm_gpuobj *wpr_blob)
{
	struct ls_ucode_img *img;
	u32 pos = 0;

	nvkm_kmap(wpr_blob);

	list_for_each_entry(img, &mgr->img_list, node) {
		nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
				      sizeof(img->wpr_header));

		nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
				     &img->lsb_header, sizeof(img->lsb_header));

		/* Generate and write BL descriptor */
		if (!img->ucode_header) {
			u8 desc[gsb->func->bl_desc_size];
			struct gm200_flcn_bl_desc gdesc;

			ls_ucode_img_populate_bl_desc(img, gsb->wpr_addr,
						      &gdesc);
			gsb->func->fixup_bl_desc(&gdesc, &desc);
			nvkm_gpuobj_memcpy_to(wpr_blob,
					      img->lsb_header.bl_data_off,
					      &desc, gsb->func->bl_desc_size);
		}

		/* Copy ucode */
		nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
				      img->ucode_data, img->ucode_size);

		pos += sizeof(img->wpr_header);
	}

	nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);

	nvkm_done(wpr_blob);

	return 0;
}

/* Both size and address of WPR need to be 128K-aligned */
#define WPR_ALIGNMENT	0x20000
/**
 * gm200_secboot_prepare_ls_blob() - prepare the LS blob
 *
 * For each securely managed falcon, load the FW, signatures and bootloaders and
 * prepare a ucode blob. Then, compute the offsets in the WPR region for each
 * blob, and finally write the headers and ucode blobs into a GPU object that
 * will be copied into the WPR region by the HS firmware.
 */
static int
gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb)
{
	struct nvkm_secboot *sb = &gsb->base;
	struct nvkm_device *device = sb->subdev.device;
	struct ls_ucode_mgr mgr;
	int falcon_id;
	int ret;

	ls_ucode_mgr_init(&mgr);

	/* Load all LS blobs */
	for_each_set_bit(falcon_id, &gsb->base.func->managed_falcons,
			 NVKM_SECBOOT_FALCON_END) {
		struct ls_ucode_img *img;

		img = ls_ucode_img_load(&sb->subdev, lsf_load_funcs[falcon_id]);

		if (IS_ERR(img)) {
			ret = PTR_ERR(img);
			goto cleanup;
		}
		ls_ucode_mgr_add_img(&mgr, img);
	}

	/*
	 * Fill the WPR and LSF headers with the right offsets and compute
	 * required WPR size
	 */
	ls_ucode_mgr_fill_headers(gsb, &mgr);
	mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);

	/* Allocate GPU object that will contain the WPR region */
	ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL,
			      &gsb->ls_blob);
	if (ret)
		goto cleanup;

	nvkm_debug(&sb->subdev, "%d managed LS falcons, WPR size is %d bytes\n",
		    mgr.count, mgr.wpr_size);

	/* If WPR address and size are not fixed, set them to fit the LS blob */
	if (!gsb->wpr_size) {
		gsb->wpr_addr = gsb->ls_blob->addr;
		gsb->wpr_size = gsb->ls_blob->size;
	}

	/* Write LS blob */
	ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob);
	if (ret)
		nvkm_gpuobj_del(&gsb->ls_blob);

cleanup:
	ls_ucode_mgr_cleanup(&mgr);

	return ret;
}

/*
 * High-secure blob creation
 */

/**
 * gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature
 */
static void
gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image)
{
	struct nvkm_secboot *sb = &gsb->base;
	struct fw_bin_header *hsbin_hdr = acr_image;
	struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
	void *hs_data = acr_image + hsbin_hdr->data_offset;
	void *sig;
	u32 sig_size;

	/* Falcon in debug or production mode? */
	if ((nvkm_rd32(sb->subdev.device, sb->base + 0xc08) >> 20) & 0x1) {
		sig = acr_image + fw_hdr->sig_dbg_offset;
		sig_size = fw_hdr->sig_dbg_size;
	} else {
		sig = acr_image + fw_hdr->sig_prod_offset;
		sig_size = fw_hdr->sig_prod_size;
	}

	/* Patch signature */
	memcpy(hs_data + fw_hdr->patch_loc, sig + fw_hdr->patch_sig, sig_size);
}

/**
 * gm200_secboot_populate_hsf_bl_desc() - populate BL descriptor for HS image
 */
static void
gm200_secboot_populate_hsf_bl_desc(void *acr_image,
				   struct gm200_flcn_bl_desc *bl_desc)
{
	struct fw_bin_header *hsbin_hdr = acr_image;
	struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
	struct hsf_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;

	/*
	 * Descriptor for the bootloader that will load the ACR image into
	 * IMEM/DMEM memory.
	 */
	fw_hdr = acr_image + hsbin_hdr->header_offset;
	load_hdr = acr_image + fw_hdr->hdr_offset;
	memset(bl_desc, 0, sizeof(*bl_desc));
	bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
	bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
	bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
	bl_desc->sec_code_off = load_hdr->app[0].sec_code_off;
	bl_desc->sec_code_size = load_hdr->app[0].sec_code_size;
	bl_desc->code_entry_point = 0;
	/*
	 * We need to set code_dma_base to the virtual address of the acr_blob,
	 * and add this address to data_dma_base before writing it into DMEM
	 */
	bl_desc->code_dma_base.lo = 0;
	bl_desc->data_dma_base.lo = load_hdr->data_dma_base;
	bl_desc->data_size = load_hdr->data_size;
}

/**
 * gm200_secboot_prepare_hs_blob - load and prepare a HS blob and BL descriptor
 *
 * @gsb secure boot instance to prepare for
 * @fw name of the HS firmware to load
 * @blob pointer to gpuobj that will be allocated to receive the HS FW payload
 * @bl_desc pointer to the BL descriptor to write for this firmware
 * @patch whether we should patch the HS descriptor (only for HS loaders)
 */
static int
gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb, const char *fw,
			      struct nvkm_gpuobj **blob,
			      struct gm200_flcn_bl_desc *bl_desc, bool patch)
{
	struct nvkm_subdev *subdev = &gsb->base.subdev;
	void *acr_image;
	struct fw_bin_header *hsbin_hdr;
	struct hsf_fw_header *fw_hdr;
	void *acr_data;
	struct hsf_load_header *load_hdr;
	struct hsflcn_acr_desc *desc;
	int ret;

	acr_image = gm200_secboot_load_firmware(subdev, fw, 0);
	if (IS_ERR(acr_image))
		return PTR_ERR(acr_image);
	hsbin_hdr = acr_image;

	/* Patch signature */
	gm200_secboot_hsf_patch_signature(gsb, acr_image);

	acr_data = acr_image + hsbin_hdr->data_offset;

	/* Patch descriptor? */
	if (patch) {
		fw_hdr = acr_image + hsbin_hdr->header_offset;
		load_hdr = acr_image + fw_hdr->hdr_offset;
		desc = acr_data + load_hdr->data_dma_base;
		gsb->func->fixup_hs_desc(gsb, desc);
	}

	/* Generate HS BL descriptor */
	gm200_secboot_populate_hsf_bl_desc(acr_image, bl_desc);

	/* Create ACR blob and copy HS data to it */
	ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
			      0x1000, false, NULL, blob);
	if (ret)
		goto cleanup;

	nvkm_kmap(*blob);
	nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
	nvkm_done(*blob);

cleanup:
	kfree(acr_image);

	return ret;
}

/*
 * High-secure bootloader blob creation
 */

static int
gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb)
{
	struct nvkm_subdev *subdev = &gsb->base.subdev;

	gsb->hsbl_blob = gm200_secboot_load_firmware(subdev, "acr/bl", 0);
	if (IS_ERR(gsb->hsbl_blob)) {
		int ret = PTR_ERR(gsb->hsbl_blob);

		gsb->hsbl_blob = NULL;
		return ret;
	}

	return 0;
}

/**
 * gm20x_secboot_prepare_blobs - load blobs common to all GM20X GPUs.
 *
 * This includes the LS blob, HS ucode loading blob, and HS bootloader.
 *
 * The HS ucode unload blob is only used on dGPU.
 */
int
gm20x_secboot_prepare_blobs(struct gm200_secboot *gsb)
{
	int ret;

	/* Load and prepare the managed falcon's firmwares */
	if (!gsb->ls_blob) {
		ret = gm200_secboot_prepare_ls_blob(gsb);
		if (ret)
			return ret;
	}

	/* Load the HS firmware that will load the LS firmwares */
	if (!gsb->acr_load_blob) {
		ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_load",
						&gsb->acr_load_blob,
						&gsb->acr_load_bl_desc, true);
		if (ret)
			return ret;
	}

	/* Load the HS firmware bootloader */
	if (!gsb->hsbl_blob) {
		ret = gm200_secboot_prepare_hsbl_blob(gsb);
		if (ret)
			return ret;
	}

	return 0;
}

static int
gm200_secboot_prepare_blobs(struct gm200_secboot *gsb)
{
	int ret;

	ret = gm20x_secboot_prepare_blobs(gsb);
	if (ret)
		return ret;

	/* dGPU only: load the HS firmware that unprotects the WPR region */
	if (!gsb->acr_unload_blob) {
		ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_unload",
					       &gsb->acr_unload_blob,
					       &gsb->acr_unload_bl_desc, false);
		if (ret)
			return ret;
	}

	return 0;
}

static int
gm200_secboot_blobs_ready(struct gm200_secboot *gsb)
{
	struct nvkm_subdev *subdev = &gsb->base.subdev;
	int ret;

	/* firmware already loaded, nothing to do... */
	if (gsb->firmware_ok)
		return 0;

	ret = gsb->func->prepare_blobs(gsb);
	if (ret) {
		nvkm_error(subdev, "failed to load secure firmware\n");
		return ret;
	}

	gsb->firmware_ok = true;

	return 0;
}


/*
 * Secure Boot Execution
 */

/**
 * gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM
 */
static void
gm200_secboot_load_hs_bl(struct gm200_secboot *gsb, void *data, u32 data_size)
{
	struct nvkm_device *device = gsb->base.subdev.device;
	struct fw_bin_header *hdr = gsb->hsbl_blob;
	struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
	void *blob_data = gsb->hsbl_blob + hdr->data_offset;
	void *hsbl_code = blob_data + hsbl_desc->code_off;
	void *hsbl_data = blob_data + hsbl_desc->data_off;
	u32 code_size = ALIGN(hsbl_desc->code_size, 256);
	const u32 base = gsb->base.base;
	u32 blk;
	u32 tag;
	int i;

	/*
	 * Copy HS bootloader data
	 */
	nvkm_wr32(device, base + 0x1c0, (0x00000000 | (0x1 << 24)));
	for (i = 0; i < hsbl_desc->data_size / 4; i++)
		nvkm_wr32(device, base + 0x1c4, ((u32 *)hsbl_data)[i]);

	/*
	 * Copy HS bootloader interface structure where the HS descriptor
	 * expects it to be
	 */
	nvkm_wr32(device, base + 0x1c0,
		  (hsbl_desc->dmem_load_off | (0x1 << 24)));
	for (i = 0; i < data_size / 4; i++)
		nvkm_wr32(device, base + 0x1c4, ((u32 *)data)[i]);

	/* Copy HS bootloader code to end of IMEM */
	blk = (nvkm_rd32(device, base + 0x108) & 0x1ff) - (code_size >> 8);
	tag = hsbl_desc->start_tag;
	nvkm_wr32(device, base + 0x180, ((blk & 0xff) << 8) | (0x1 << 24));
	for (i = 0; i < code_size / 4; i++) {
		/* write new tag every 256B */
		if ((i & 0x3f) == 0) {
			nvkm_wr32(device, base + 0x188, tag & 0xffff);
			tag++;
		}
		nvkm_wr32(device, base + 0x184, ((u32 *)hsbl_code)[i]);
	}
	nvkm_wr32(device, base + 0x188, 0);
}

/**
 * gm200_secboot_setup_falcon() - set up the secure falcon for secure boot
 */
static int
gm200_secboot_setup_falcon(struct gm200_secboot *gsb)
{
	struct nvkm_device *device = gsb->base.subdev.device;
	struct fw_bin_header *hdr = gsb->hsbl_blob;
	struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
	/* virtual start address for boot vector */
	u32 virt_addr = hsbl_desc->start_tag << 8;
	const u32 base = gsb->base.base;
	const u32 reg_base = base + 0xe00;
	u32 inst_loc;
	int ret;

	ret = nvkm_secboot_falcon_reset(&gsb->base);
	if (ret)
		return ret;

	/* setup apertures - virtual */
	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4);
	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0);
	/* setup apertures - physical */
	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4);
	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH),
		  0x4 | 0x1);
	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH),
		  0x4 | 0x2);

	/* Set context */
	if (nvkm_memory_target(gsb->inst->memory) == NVKM_MEM_TARGET_VRAM)
		inst_loc = 0x0; /* FB */
	else
		inst_loc = 0x3; /* Non-coherent sysmem */

	nvkm_mask(device, base + 0x048, 0x1, 0x1);
	nvkm_wr32(device, base + 0x480,
		  ((gsb->inst->addr >> 12) & 0xfffffff) |
		  (inst_loc << 28) | (1 << 30));

	/* Set boot vector to code's starting virtual address */
	nvkm_wr32(device, base + 0x104, virt_addr);

	return 0;
}

/**
 * gm200_secboot_run_hs_blob() - run the given high-secure blob
 */
static int
gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob,
			  struct gm200_flcn_bl_desc *desc)
{
	struct nvkm_vma vma;
	u64 vma_addr;
	const u32 bl_desc_size = gsb->func->bl_desc_size;
	u8 bl_desc[bl_desc_size];
	int ret;

	/* Map the HS firmware so the HS bootloader can see it */
	ret = nvkm_gpuobj_map(blob, gsb->vm, NV_MEM_ACCESS_RW, &vma);
	if (ret)
		return ret;

	/* Add the mapping address to the DMA bases */
	vma_addr = flcn64_to_u64(desc->code_dma_base) + vma.offset;
	desc->code_dma_base.lo = lower_32_bits(vma_addr);
	desc->code_dma_base.hi = upper_32_bits(vma_addr);
	vma_addr = flcn64_to_u64(desc->data_dma_base) + vma.offset;
	desc->data_dma_base.lo = lower_32_bits(vma_addr);
	desc->data_dma_base.hi = upper_32_bits(vma_addr);

	/* Fixup the BL header */
	gsb->func->fixup_bl_desc(desc, &bl_desc);

	/* Reset the falcon and make it ready to run the HS bootloader */
	ret = gm200_secboot_setup_falcon(gsb);
	if (ret)
		goto done;

	/* Load the HS bootloader into the falcon's IMEM/DMEM */
	gm200_secboot_load_hs_bl(gsb, &bl_desc, bl_desc_size);

	/* Start the HS bootloader */
	ret = nvkm_secboot_falcon_run(&gsb->base);
	if (ret)
		goto done;

done:
	/* Restore the original DMA addresses */
	vma_addr = flcn64_to_u64(desc->code_dma_base) - vma.offset;
	desc->code_dma_base.lo = lower_32_bits(vma_addr);
	desc->code_dma_base.hi = upper_32_bits(vma_addr);
	vma_addr = flcn64_to_u64(desc->data_dma_base) - vma.offset;
	desc->data_dma_base.lo = lower_32_bits(vma_addr);
	desc->data_dma_base.hi = upper_32_bits(vma_addr);

	/* We don't need the ACR firmware anymore */
	nvkm_gpuobj_unmap(&vma);

	return ret;
}

/*
 * gm200_secboot_reset() - execute secure boot from the prepared state
 *
 * Load the HS bootloader and ask the falcon to run it. This will in turn
 * load the HS firmware and run it, so once the falcon stops all the managed
 * falcons should have their LS firmware loaded and be ready to run.
 */
int
gm200_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
{
	struct gm200_secboot *gsb = gm200_secboot(sb);
	int ret;

	/* Make sure all blobs are ready */
	ret = gm200_secboot_blobs_ready(gsb);
	if (ret)
		return ret;

	/*
	 * Dummy GM200 implementation: perform secure boot each time we are
	 * called on FECS. Since only FECS and GPCCS are managed and started
	 * together, this ought to be safe.
	 *
	 * Once we have proper PMU firmware and support, this will be changed
	 * to a proper call to the PMU method.
	 */
	if (falcon != NVKM_SECBOOT_FALCON_FECS)
		goto end;

	/* If WPR is set and we have an unload blob, run it to unlock WPR */
	if (gsb->acr_unload_blob &&
	    gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE) {
		ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob,
						&gsb->acr_unload_bl_desc);
		if (ret)
			return ret;
	}

	/* Reload all managed falcons */
	ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_load_blob,
					&gsb->acr_load_bl_desc);
	if (ret)
		return ret;

end:
	gsb->falcon_state[falcon] = RESET;
	return 0;
}

int
gm200_secboot_start(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
{
	struct gm200_secboot *gsb = gm200_secboot(sb);
	int base;

	switch (falcon) {
	case NVKM_SECBOOT_FALCON_FECS:
		base = 0x409000;
		break;
	case NVKM_SECBOOT_FALCON_GPCCS:
		base = 0x41a000;
		break;
	default:
		nvkm_error(&sb->subdev, "cannot start unhandled falcon!\n");
		return -EINVAL;
	}

	nvkm_wr32(sb->subdev.device, base + 0x130, 0x00000002);
	gsb->falcon_state[falcon] = RUNNING;

	return 0;
}



int
gm200_secboot_init(struct nvkm_secboot *sb)
{
	struct gm200_secboot *gsb = gm200_secboot(sb);
	struct nvkm_device *device = sb->subdev.device;
	struct nvkm_vm *vm;
	const u64 vm_area_len = 600 * 1024;
	int ret;

	/* Allocate instance block and VM */
	ret = nvkm_gpuobj_new(device, 0x1000, 0, true, NULL, &gsb->inst);
	if (ret)
		return ret;

	ret = nvkm_gpuobj_new(device, 0x8000, 0, true, NULL, &gsb->pgd);
	if (ret)
		return ret;

	ret = nvkm_vm_new(device, 0, vm_area_len, 0, NULL, &vm);
	if (ret)
		return ret;

	atomic_inc(&vm->engref[NVKM_SUBDEV_PMU]);

	ret = nvkm_vm_ref(vm, &gsb->vm, gsb->pgd);
	nvkm_vm_ref(NULL, &vm, NULL);
	if (ret)
		return ret;

	nvkm_kmap(gsb->inst);
	nvkm_wo32(gsb->inst, 0x200, lower_32_bits(gsb->pgd->addr));
	nvkm_wo32(gsb->inst, 0x204, upper_32_bits(gsb->pgd->addr));
	nvkm_wo32(gsb->inst, 0x208, lower_32_bits(vm_area_len - 1));
	nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
	nvkm_done(gsb->inst);

	return 0;
}

int
gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend)
{
	struct gm200_secboot *gsb = gm200_secboot(sb);
	int ret = 0;
	int i;

	/* Run the unload blob to unprotect the WPR region */
	if (gsb->acr_unload_blob &&
	    gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE)
		ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob,
						&gsb->acr_unload_bl_desc);

	for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
		gsb->falcon_state[i] = NON_SECURE;

	return ret;
}

void *
gm200_secboot_dtor(struct nvkm_secboot *sb)
{
	struct gm200_secboot *gsb = gm200_secboot(sb);

	nvkm_gpuobj_del(&gsb->acr_unload_blob);

	kfree(gsb->hsbl_blob);
	nvkm_gpuobj_del(&gsb->acr_load_blob);
	nvkm_gpuobj_del(&gsb->ls_blob);

	nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd);
	nvkm_gpuobj_del(&gsb->pgd);
	nvkm_gpuobj_del(&gsb->inst);

	return gsb;
}


static const struct nvkm_secboot_func
gm200_secboot = {
	.dtor = gm200_secboot_dtor,
	.init = gm200_secboot_init,
	.fini = gm200_secboot_fini,
	.reset = gm200_secboot_reset,
	.start = gm200_secboot_start,
	.managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) |
			   BIT(NVKM_SECBOOT_FALCON_GPCCS),
	.boot_falcon = NVKM_SECBOOT_FALCON_PMU,
};

/**
 * gm200_fixup_bl_desc - just copy the BL descriptor
 *
 * Use the GM200 descriptor format by default.
 */
static void
gm200_secboot_fixup_bl_desc(const struct gm200_flcn_bl_desc *desc, void *ret)
{
	memcpy(ret, desc, sizeof(*desc));
}

static void
gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb,
			    struct hsflcn_acr_desc *desc)
{
	desc->ucode_blob_base = gsb->ls_blob->addr;
	desc->ucode_blob_size = gsb->ls_blob->size;

	desc->wpr_offset = 0;

	/* WPR region information for the HS binary to set up */
	desc->wpr_region_id = 1;
	desc->regions.no_regions = 1;
	desc->regions.region_props[0].region_id = 1;
	desc->regions.region_props[0].start_addr = gsb->wpr_addr >> 8;
	desc->regions.region_props[0].end_addr =
		(gsb->wpr_addr + gsb->wpr_size) >> 8;
}

static const struct gm200_secboot_func
gm200_secboot_func = {
	.bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
	.fixup_bl_desc = gm200_secboot_fixup_bl_desc,
	.fixup_hs_desc = gm200_secboot_fixup_hs_desc,
	.prepare_blobs = gm200_secboot_prepare_blobs,
};

int
gm200_secboot_new(struct nvkm_device *device, int index,
		  struct nvkm_secboot **psb)
{
	int ret;
	struct gm200_secboot *gsb;

	gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
	if (!gsb) {
		psb = NULL;
		return -ENOMEM;
	}
	*psb = &gsb->base;

	ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base);
	if (ret)
		return ret;

	gsb->func = &gm200_secboot_func;

	return 0;
}

MODULE_FIRMWARE("nvidia/gm200/acr/bl.bin");
MODULE_FIRMWARE("nvidia/gm200/acr/ucode_load.bin");
MODULE_FIRMWARE("nvidia/gm200/acr/ucode_unload.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/fecs_bl.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/fecs_inst.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/fecs_data.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/fecs_sig.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_bl.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_inst.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_data.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_sig.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/sw_ctx.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/sw_nonctx.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/sw_bundle_init.bin");
MODULE_FIRMWARE("nvidia/gm200/gr/sw_method_init.bin");

MODULE_FIRMWARE("nvidia/gm204/acr/bl.bin");
MODULE_FIRMWARE("nvidia/gm204/acr/ucode_load.bin");
MODULE_FIRMWARE("nvidia/gm204/acr/ucode_unload.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/fecs_bl.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/fecs_inst.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/fecs_data.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/fecs_sig.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_bl.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_inst.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_data.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_sig.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/sw_ctx.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/sw_nonctx.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/sw_bundle_init.bin");
MODULE_FIRMWARE("nvidia/gm204/gr/sw_method_init.bin");

MODULE_FIRMWARE("nvidia/gm206/acr/bl.bin");
MODULE_FIRMWARE("nvidia/gm206/acr/ucode_load.bin");
MODULE_FIRMWARE("nvidia/gm206/acr/ucode_unload.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/fecs_bl.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/fecs_inst.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/fecs_data.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/fecs_sig.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_bl.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_inst.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_data.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_sig.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/sw_ctx.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/sw_nonctx.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/sw_bundle_init.bin");
MODULE_FIRMWARE("nvidia/gm206/gr/sw_method_init.bin");

MODULE_FIRMWARE("nvidia/gp100/acr/bl.bin");
MODULE_FIRMWARE("nvidia/gp100/acr/ucode_load.bin");
MODULE_FIRMWARE("nvidia/gp100/acr/ucode_unload.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/fecs_bl.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/fecs_inst.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/fecs_data.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/fecs_sig.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/gpccs_bl.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/gpccs_inst.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/gpccs_data.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/gpccs_sig.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/sw_ctx.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/sw_nonctx.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/sw_bundle_init.bin");
MODULE_FIRMWARE("nvidia/gp100/gr/sw_method_init.bin");