Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*
 * Copyright © 2014-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_drv.h"

void chv_set_phy_signal_level(struct intel_encoder *encoder,
			      u32 deemph_reg_value, u32 margin_reg_value,
			      bool uniq_trans_scale)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;
	int i;

	mutex_lock(&dev_priv->sb_lock);

	/* Clear calc init */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
	}

	/* Program swing deemph */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}

	/* Program swing margin */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));

		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}

	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		if (uniq_trans_scale)
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
		else
			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}

	/* Start swing calculation */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
	}

	mutex_unlock(&dev_priv->sb_lock);

}

void chv_data_lane_soft_reset(struct intel_encoder *encoder,
			      bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	unsigned int lane_mask =
		intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
	u32 val;

	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

	chv_phy_powergate_lanes(encoder, true, lane_mask);

	mutex_lock(&dev_priv->sb_lock);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
		if (pipe != PIPE_B)
			val &= ~CHV_PCS_USEDCLKCHANNEL;
		else
			val |= CHV_PCS_USEDCLKCHANNEL;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
	}

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

	mutex_unlock(&dev_priv->sb_lock);
}

void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
	int data, i, stagger;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	/* Program Tx lane latency optimal setting*/
	for (i = 0; i < intel_crtc->config->lane_count; i++) {
		/* Set the upar bit */
		if (intel_crtc->config->lane_count == 1)
			data = 0x0;
		else
			data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	if (intel_crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
		val |= DPIO_TX2_STAGGER_MASK(0x1f);
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
	}

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	if (intel_crtc->config->lane_count > 2) {
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
			       DPIO_LANESTAGGER_STRAP(stagger) |
			       DPIO_LANESTAGGER_STRAP_OVRD |
			       DPIO_TX1_STAGGER_MASK(0x1f) |
			       DPIO_TX1_STAGGER_MULT(7) |
			       DPIO_TX2_STAGGER_MULT(5));
	}

	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

	mutex_unlock(&dev_priv->sb_lock);
}

void chv_phy_release_cl2_override(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
}

void chv_phy_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);

	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
	chv_phy_powergate_lanes(encoder, false, 0x0);
}

void vlv_set_phy_signal_level(struct intel_encoder *encoder,
			      u32 demph_reg_value, u32 preemph_reg_value,
			      u32 uniqtranscale_reg_value, u32 tx3_demph)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
			 uniqtranscale_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);

	if (tx3_demph)
		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	/* Program Tx lane resets to default */
	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
				 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* Enable clock channels for this port */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);

	/* Program lane clock */
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);

	mutex_unlock(&dev_priv->sb_lock);
}

void vlv_phy_reset_lanes(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel port = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;

	mutex_lock(&dev_priv->sb_lock);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
	mutex_unlock(&dev_priv->sb_lock);
}