Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
/*
 * fp_util.S
 *
 * Copyright Roman Zippel, 1997.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fp_emu.h"

/*
 * Here are lots of conversion and normalization functions mainly
 * used by fp_scan.S
 * Note that these functions are optimized for "normal" numbers,
 * these are handled first and exit as fast as possible, this is
 * especially important for fp_normalize_ext/fp_conv_ext2ext, as
 * it's called very often.
 * The register usage is optimized for fp_scan.S and which register
 * is currently at that time unused, be careful if you want change
 * something here. %d0 and %d1 is always usable, sometimes %d2 (or
 * only the lower half) most function have to return the %a0
 * unmodified, so that the caller can immediately reuse it.
 */

	.globl	fp_ill, fp_end

	| exits from fp_scan:
	| illegal instruction
fp_ill:
	printf	,"fp_illegal\n"
	rts
	| completed instruction
fp_end:
	tst.l	(TASK_MM-8,%a2)
	jmi	1f
	tst.l	(TASK_MM-4,%a2)
	jmi	1f
	tst.l	(TASK_MM,%a2)
	jpl	2f
1:	printf	,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
2:	clr.l	%d0
	rts

	.globl	fp_conv_long2ext, fp_conv_single2ext
	.globl	fp_conv_double2ext, fp_conv_ext2ext
	.globl	fp_normalize_ext, fp_normalize_double
	.globl	fp_normalize_single, fp_normalize_single_fast
	.globl	fp_conv_ext2double, fp_conv_ext2single
	.globl	fp_conv_ext2long, fp_conv_ext2short
	.globl	fp_conv_ext2byte
	.globl	fp_finalrounding_single, fp_finalrounding_single_fast
	.globl	fp_finalrounding_double
	.globl	fp_finalrounding, fp_finaltest, fp_final

/*
 * First several conversion functions from a source operand
 * into the extended format. Note, that only fp_conv_ext2ext
 * normalizes the number and is always called after the other
 * conversion functions, which only move the information into
 * fp_ext structure.
 */

	| fp_conv_long2ext:
	|
	| args:	%d0 = source (32-bit long)
	|	%a0 = destination (ptr to struct fp_ext)

fp_conv_long2ext:
	printf	PCONV,"l2e: %p -> %p(",2,%d0,%a0
	clr.l	%d1			| sign defaults to zero
	tst.l	%d0
	jeq	fp_l2e_zero		| is source zero?
	jpl	1f			| positive?
	moveq	#1,%d1
	neg.l	%d0
1:	swap	%d1
	move.w	#0x3fff+31,%d1
	move.l	%d1,(%a0)+		| set sign / exp
	move.l	%d0,(%a0)+		| set mantissa
	clr.l	(%a0)
	subq.l	#8,%a0			| restore %a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	rts
	| source is zero
fp_l2e_zero:
	clr.l	(%a0)+
	clr.l	(%a0)+
	clr.l	(%a0)
	subq.l	#8,%a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	rts

	| fp_conv_single2ext
	| args:	%d0 = source (single-precision fp value)
	|	%a0 = dest (struct fp_ext *)

fp_conv_single2ext:
	printf	PCONV,"s2e: %p -> %p(",2,%d0,%a0
	move.l	%d0,%d1
	lsl.l	#8,%d0			| shift mantissa
	lsr.l	#8,%d1			| exponent / sign
	lsr.l	#7,%d1
	lsr.w	#8,%d1
	jeq	fp_s2e_small		| zero / denormal?
	cmp.w	#0xff,%d1		| NaN / Inf?
	jeq	fp_s2e_large
	bset	#31,%d0			| set explizit bit
	add.w	#0x3fff-0x7f,%d1	| re-bias the exponent.
9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp
	move.l	%d0,(%a0)+		| high lword of fp_ext.mant
	clr.l	(%a0)			| low lword = 0
	subq.l	#8,%a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	rts
	| zeros and denormalized
fp_s2e_small:
	| exponent is zero, so explizit bit is already zero too
	tst.l	%d0
	jeq	9b
	move.w	#0x4000-0x7f,%d1
	jra	9b
	| infinities and NAN
fp_s2e_large:
	bclr	#31,%d0			| clear explizit bit
	move.w	#0x7fff,%d1
	jra	9b

fp_conv_double2ext:
#ifdef FPU_EMU_DEBUG
	getuser.l %a1@(0),%d0,fp_err_ua2,%a1
	getuser.l %a1@(4),%d1,fp_err_ua2,%a1
	printf	PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
#endif
	getuser.l (%a1)+,%d0,fp_err_ua2,%a1
	move.l	%d0,%d1
	lsl.l	#8,%d0			| shift high mantissa
	lsl.l	#3,%d0
	lsr.l	#8,%d1			| exponent / sign
	lsr.l	#7,%d1
	lsr.w	#5,%d1
	jeq	fp_d2e_small		| zero / denormal?
	cmp.w	#0x7ff,%d1		| NaN / Inf?
	jeq	fp_d2e_large
	bset	#31,%d0			| set explizit bit
	add.w	#0x3fff-0x3ff,%d1	| re-bias the exponent.
9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp
	move.l	%d0,(%a0)+
	getuser.l (%a1)+,%d0,fp_err_ua2,%a1
	move.l	%d0,%d1
	lsl.l	#8,%d0
	lsl.l	#3,%d0
	move.l	%d0,(%a0)
	moveq	#21,%d0
	lsr.l	%d0,%d1
	or.l	%d1,-(%a0)
	subq.l	#4,%a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	rts
	| zeros and denormalized
fp_d2e_small:
	| exponent is zero, so explizit bit is already zero too
	tst.l	%d0
	jeq	9b
	move.w	#0x4000-0x3ff,%d1
	jra	9b
	| infinities and NAN
fp_d2e_large:
	bclr	#31,%d0			| clear explizit bit
	move.w	#0x7fff,%d1
	jra	9b

	| fp_conv_ext2ext:
	| originally used to get longdouble from userspace, now it's
	| called before arithmetic operations to make sure the number
	| is normalized [maybe rename it?].
	| args:	%a0 = dest (struct fp_ext *)
	| returns 0 in %d0 for a NaN, otherwise 1

fp_conv_ext2ext:
	printf	PCONV,"e2e: %p(",1,%a0
	printx	PCONV,%a0@
	printf	PCONV,"), "
	move.l	(%a0)+,%d0
	cmp.w	#0x7fff,%d0		| Inf / NaN?
	jeq	fp_e2e_large
	move.l	(%a0),%d0
	jpl	fp_e2e_small		| zero / denorm?
	| The high bit is set, so normalization is irrelevant.
fp_e2e_checkround:
	subq.l	#4,%a0
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	move.b	(%a0),%d0
	jne	fp_e2e_round
#endif
	printf	PCONV,"%p(",1,%a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	moveq	#1,%d0
	rts
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
fp_e2e_round:
	fp_set_sr FPSR_EXC_INEX2
	clr.b	(%a0)
	move.w	(FPD_RND,FPDATA),%d2
	jne	fp_e2e_roundother	| %d2 == 0, round to nearest
	tst.b	%d0			| test guard bit
	jpl	9f			| zero is closer
	btst	#0,(11,%a0)		| test lsb bit
	jne	fp_e2e_doroundup	| round to infinity
	lsl.b	#1,%d0			| check low bits
	jeq	9f			| round to zero
fp_e2e_doroundup:
	addq.l	#1,(8,%a0)
	jcc	9f
	addq.l	#1,(4,%a0)
	jcc	9f
	move.w	#0x8000,(4,%a0)
	addq.w	#1,(2,%a0)
9:	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
fp_e2e_roundother:
	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	1f			| %d2 > 2, round to +infinity
	tst.b	(1,%a0)			| to -inf
	jne	fp_e2e_doroundup	| negative, round to infinity
	jra	9b			| positive, round to zero
1:	tst.b	(1,%a0)			| to +inf
	jeq	fp_e2e_doroundup	| positive, round to infinity
	jra	9b			| negative, round to zero
#endif
	| zeros and subnormals:
	| try to normalize these anyway.
fp_e2e_small:
	jne	fp_e2e_small1		| high lword zero?
	move.l	(4,%a0),%d0
	jne	fp_e2e_small2
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	clr.l	%d0
	move.b	(-4,%a0),%d0
	jne	fp_e2e_small3
#endif
	| Genuine zero.
	clr.w	-(%a0)
	subq.l	#2,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	moveq	#1,%d0
	rts
	| definitely subnormal, need to shift all 64 bits
fp_e2e_small1:
	bfffo	%d0{#0,#32},%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
1:	move.w	%d2,(%a0)+
	move.w	%d1,%d2
	jeq	fp_e2e_checkround
	| fancy 64-bit double-shift begins here
	lsl.l	%d2,%d0
	move.l	%d0,(%a0)+
	move.l	(%a0),%d0
	move.l	%d0,%d1
	lsl.l	%d2,%d0
	move.l	%d0,(%a0)
	neg.w	%d2
	and.w	#0x1f,%d2
	lsr.l	%d2,%d1
	or.l	%d1,-(%a0)
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
fp_e2e_extra1:
	clr.l	%d0
	move.b	(-4,%a0),%d0
	neg.w	%d2
	add.w	#24,%d2
	jcc	1f
	clr.b	(-4,%a0)
	lsl.l	%d2,%d0
	or.l	%d0,(4,%a0)
	jra	fp_e2e_checkround
1:	addq.w	#8,%d2
	lsl.l	%d2,%d0
	move.b	%d0,(-4,%a0)
	lsr.l	#8,%d0
	or.l	%d0,(4,%a0)
#endif
	jra	fp_e2e_checkround
	| pathologically small subnormal
fp_e2e_small2:
	bfffo	%d0{#0,#32},%d1
	add.w	#32,%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Beyond pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
1:	move.w	%d2,(%a0)+
	ext.l	%d1
	jeq	fp_e2e_checkround
	clr.l	(4,%a0)
	sub.w	#32,%d2
	jcs	1f
	lsl.l	%d1,%d0			| lower lword needs only to be shifted
	move.l	%d0,(%a0)		| into the higher lword
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	clr.l	%d0
	move.b	(-4,%a0),%d0
	clr.b	(-4,%a0)
	neg.w	%d1
	add.w	#32,%d1
	bfins	%d0,(%a0){%d1,#8}
#endif
	jra	fp_e2e_checkround
1:	neg.w	%d1			| lower lword is splitted between
	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword
#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
	jra	fp_e2e_checkround
#else
	move.w	%d1,%d2
	jra	fp_e2e_extra1
	| These are extremely small numbers, that will mostly end up as zero
	| anyway, so this is only important for correct rounding.
fp_e2e_small3:
	bfffo	%d0{#24,#8},%d1
	add.w	#40,%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
1:	move.w	%d2,(%a0)+
	ext.l	%d1
	jeq	fp_e2e_checkround
	cmp.w	#8,%d1
	jcs	2f
1:	clr.b	(-4,%a0)
	sub.w	#64,%d1
	jcs	1f
	add.w	#24,%d1
	lsl.l	%d1,%d0
	move.l	%d0,(%a0)
	jra	fp_e2e_checkround
1:	neg.w	%d1
	bfins	%d0,(%a0){%d1,#8}
	jra	fp_e2e_checkround
2:	lsl.l	%d1,%d0
	move.b	%d0,(-4,%a0)
	lsr.l	#8,%d0
	move.b	%d0,(7,%a0)
	jra	fp_e2e_checkround
#endif
1:	move.l	%d0,%d1			| lower lword is splitted between
	lsl.l	%d2,%d0			| higher and lower lword
	move.l	%d0,(%a0)
	move.l	%d1,%d0
	neg.w	%d2
	add.w	#32,%d2
	lsr.l	%d2,%d0
	move.l	%d0,-(%a0)
	jra	fp_e2e_checkround
	| Infinities and NaNs
fp_e2e_large:
	move.l	(%a0)+,%d0
	jne	3f
1:	tst.l	(%a0)
	jne	4f
	moveq	#1,%d0
2:	subq.l	#8,%a0
	printf	PCONV,"%p(",1,%a0
	printx	PCONV,%a0@
	printf	PCONV,")\n"
	rts
	| we have maybe a NaN, shift off the highest bit
3:	lsl.l	#1,%d0
	jeq	1b
	| we have a NaN, clear the return value
4:	clrl	%d0
	jra	2b


/*
 * Normalization functions.  Call these on the output of general
 * FP operators, and before any conversion into the destination
 * formats. fp_normalize_ext has always to be called first, the
 * following conversion functions expect an already normalized
 * number.
 */

	| fp_normalize_ext:
	| normalize an extended in extended (unpacked) format, basically
	| it does the same as fp_conv_ext2ext, additionally it also does
	| the necessary postprocessing checks.
	| args:	%a0 (struct fp_ext *)
	| NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2

fp_normalize_ext:
	printf	PNORM,"ne: %p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,"), "
	move.l	(%a0)+,%d0
	cmp.w	#0x7fff,%d0		| Inf / NaN?
	jeq	fp_ne_large
	move.l	(%a0),%d0
	jpl	fp_ne_small		| zero / denorm?
	| The high bit is set, so normalization is irrelevant.
fp_ne_checkround:
	subq.l	#4,%a0
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	move.b	(%a0),%d0
	jne	fp_ne_round
#endif
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
fp_ne_round:
	fp_set_sr FPSR_EXC_INEX2
	clr.b	(%a0)
	move.w	(FPD_RND,FPDATA),%d2
	jne	fp_ne_roundother	| %d2 == 0, round to nearest
	tst.b	%d0			| test guard bit
	jpl	9f			| zero is closer
	btst	#0,(11,%a0)		| test lsb bit
	jne	fp_ne_doroundup		| round to infinity
	lsl.b	#1,%d0			| check low bits
	jeq	9f			| round to zero
fp_ne_doroundup:
	addq.l	#1,(8,%a0)
	jcc	9f
	addq.l	#1,(4,%a0)
	jcc	9f
	addq.w	#1,(2,%a0)
	move.w	#0x8000,(4,%a0)
9:	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
fp_ne_roundother:
	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	1f			| %d2 > 2, round to +infinity
	tst.b	(1,%a0)			| to -inf
	jne	fp_ne_doroundup		| negative, round to infinity
	jra	9b			| positive, round to zero
1:	tst.b	(1,%a0)			| to +inf
	jeq	fp_ne_doroundup		| positive, round to infinity
	jra	9b			| negative, round to zero
#endif
	| Zeros and subnormal numbers
	| These are probably merely subnormal, rather than "denormalized"
	|  numbers, so we will try to make them normal again.
fp_ne_small:
	jne	fp_ne_small1		| high lword zero?
	move.l	(4,%a0),%d0
	jne	fp_ne_small2
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	clr.l	%d0
	move.b	(-4,%a0),%d0
	jne	fp_ne_small3
#endif
	| Genuine zero.
	clr.w	-(%a0)
	subq.l	#2,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
	| Subnormal.
fp_ne_small1:
	bfffo	%d0{#0,#32},%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
	fp_set_sr FPSR_EXC_UNFL
1:	move.w	%d2,(%a0)+
	move.w	%d1,%d2
	jeq	fp_ne_checkround
	| This is exactly the same 64-bit double shift as seen above.
	lsl.l	%d2,%d0
	move.l	%d0,(%a0)+
	move.l	(%a0),%d0
	move.l	%d0,%d1
	lsl.l	%d2,%d0
	move.l	%d0,(%a0)
	neg.w	%d2
	and.w	#0x1f,%d2
	lsr.l	%d2,%d1
	or.l	%d1,-(%a0)
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
fp_ne_extra1:
	clr.l	%d0
	move.b	(-4,%a0),%d0
	neg.w	%d2
	add.w	#24,%d2
	jcc	1f
	clr.b	(-4,%a0)
	lsl.l	%d2,%d0
	or.l	%d0,(4,%a0)
	jra	fp_ne_checkround
1:	addq.w	#8,%d2
	lsl.l	%d2,%d0
	move.b	%d0,(-4,%a0)
	lsr.l	#8,%d0
	or.l	%d0,(4,%a0)
#endif
	jra	fp_ne_checkround
	| May or may not be subnormal, if so, only 32 bits to shift.
fp_ne_small2:
	bfffo	%d0{#0,#32},%d1
	add.w	#32,%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Beyond pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
	fp_set_sr FPSR_EXC_UNFL
1:	move.w	%d2,(%a0)+
	ext.l	%d1
	jeq	fp_ne_checkround
	clr.l	(4,%a0)
	sub.w	#32,%d1
	jcs	1f
	lsl.l	%d1,%d0			| lower lword needs only to be shifted
	move.l	%d0,(%a0)		| into the higher lword
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
	clr.l	%d0
	move.b	(-4,%a0),%d0
	clr.b	(-4,%a0)
	neg.w	%d1
	add.w	#32,%d1
	bfins	%d0,(%a0){%d1,#8}
#endif
	jra	fp_ne_checkround
1:	neg.w	%d1			| lower lword is splitted between
	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword
#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
	jra	fp_ne_checkround
#else
	move.w	%d1,%d2
	jra	fp_ne_extra1
	| These are extremely small numbers, that will mostly end up as zero
	| anyway, so this is only important for correct rounding.
fp_ne_small3:
	bfffo	%d0{#24,#8},%d1
	add.w	#40,%d1
	move.w	-(%a0),%d2
	sub.w	%d1,%d2
	jcc	1f
	| Pathologically small, denormalize.
	add.w	%d2,%d1
	clr.w	%d2
1:	move.w	%d2,(%a0)+
	ext.l	%d1
	jeq	fp_ne_checkround
	cmp.w	#8,%d1
	jcs	2f
1:	clr.b	(-4,%a0)
	sub.w	#64,%d1
	jcs	1f
	add.w	#24,%d1
	lsl.l	%d1,%d0
	move.l	%d0,(%a0)
	jra	fp_ne_checkround
1:	neg.w	%d1
	bfins	%d0,(%a0){%d1,#8}
	jra	fp_ne_checkround
2:	lsl.l	%d1,%d0
	move.b	%d0,(-4,%a0)
	lsr.l	#8,%d0
	move.b	%d0,(7,%a0)
	jra	fp_ne_checkround
#endif
	| Infinities and NaNs, again, same as above.
fp_ne_large:
	move.l	(%a0)+,%d0
	jne	3f
1:	tst.l	(%a0)
	jne	4f
2:	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
	| we have maybe a NaN, shift off the highest bit
3:	move.l	%d0,%d1
	lsl.l	#1,%d1
	jne	4f
	clr.l	(-4,%a0)
	jra	1b
	| we have a NaN, test if it is signaling
4:	bset	#30,%d0
	jne	2b
	fp_set_sr FPSR_EXC_SNAN
	move.l	%d0,(-4,%a0)
	jra	2b

	| these next two do rounding as per the IEEE standard.
	| values for the rounding modes appear to be:
	| 0:	Round to nearest
	| 1:	Round to zero
	| 2:	Round to -Infinity
	| 3:	Round to +Infinity
	| both functions expect that fp_normalize was already
	| called (and extended argument is already normalized
	| as far as possible), these are used if there is different
	| rounding precision is selected and before converting
	| into single/double

	| fp_normalize_double:
	| normalize an extended with double (52-bit) precision
	| args:	 %a0 (struct fp_ext *)

fp_normalize_double:
	printf	PNORM,"nd: %p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,"), "
	move.l	(%a0)+,%d2
	tst.w	%d2
	jeq	fp_nd_zero		| zero / denormalized
	cmp.w	#0x7fff,%d2
	jeq	fp_nd_huge		| NaN / infinitive.
	sub.w	#0x4000-0x3ff,%d2	| will the exponent fit?
	jcs	fp_nd_small		| too small.
	cmp.w	#0x7fe,%d2
	jcc	fp_nd_large		| too big.
	addq.l	#4,%a0
	move.l	(%a0),%d0		| low lword of mantissa
	| now, round off the low 11 bits.
fp_nd_round:
	moveq	#21,%d1
	lsl.l	%d1,%d0			| keep 11 low bits.
	jne	fp_nd_checkround	| Are they non-zero?
	| nothing to do here
9:	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
	| Be careful with the X bit! It contains the lsb
	| from the shift above, it is needed for round to nearest.
fp_nd_checkround:
	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
	and.w	#0xf800,(2,%a0)		| clear bits 0-10
	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	jne	2f			| %d2 == 0, round to nearest
	tst.l	%d0			| test guard bit
	jpl	9b			| zero is closer
	| here we test the X bit by adding it to %d2
	clr.w	%d2			| first set z bit, addx only clears it
	addx.w	%d2,%d2			| test lsb bit
	| IEEE754-specified "round to even" behaviour.  If the guard
	| bit is set, then the number is odd, so rounding works like
	| in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
	| Otherwise, an equal distance rounds towards zero, so as not
	| to produce an odd number.  This is strange, but it is what
	| the standard says.
	jne	fp_nd_doroundup		| round to infinity
	lsl.l	#1,%d0			| check low bits
	jeq	9b			| round to zero
fp_nd_doroundup:
	| round (the mantissa, that is) towards infinity
	add.l	#0x800,(%a0)
	jcc	9b			| no overflow, good.
	addq.l	#1,-(%a0)		| extend to high lword
	jcc	1f			| no overflow, good.
	| Yow! we have managed to overflow the mantissa.  Since this
	| only happens when %d1 was 0xfffff800, it is now zero, so
	| reset the high bit, and increment the exponent.
	move.w	#0x8000,(%a0)
	addq.w	#1,-(%a0)
	cmp.w	#0x43ff,(%a0)+		| exponent now overflown?
	jeq	fp_nd_large		| yes, so make it infinity.
1:	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
2:	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	3f			| %d2 > 2, round to +infinity
	| Round to +Inf or -Inf.  High word of %d2 contains the
	| sign of the number, by the way.
	swap	%d2			| to -inf
	tst.b	%d2
	jne	fp_nd_doroundup		| negative, round to infinity
	jra	9b			| positive, round to zero
3:	swap	%d2			| to +inf
	tst.b	%d2
	jeq	fp_nd_doroundup		| positive, round to infinity
	jra	9b			| negative, round to zero
	| Exponent underflow.  Try to make a denormal, and set it to
	| the smallest possible fraction if this fails.
fp_nd_small:
	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit
	move.w	#0x3c01,(-2,%a0)	| 2**-1022
	neg.w	%d2			| degree of underflow
	cmp.w	#32,%d2			| single or double shift?
	jcc	1f
	| Again, another 64-bit double shift.
	move.l	(%a0),%d0
	move.l	%d0,%d1
	lsr.l	%d2,%d0
	move.l	%d0,(%a0)+
	move.l	(%a0),%d0
	lsr.l	%d2,%d0
	neg.w	%d2
	add.w	#32,%d2
	lsl.l	%d2,%d1
	or.l	%d1,%d0
	move.l	(%a0),%d1
	move.l	%d0,(%a0)
	| Check to see if we shifted off any significant bits
	lsl.l	%d2,%d1
	jeq	fp_nd_round		| Nope, round.
	bset	#0,%d0			| Yes, so set the "sticky bit".
	jra	fp_nd_round		| Now, round.
	| Another 64-bit single shift and store
1:	sub.w	#32,%d2
	cmp.w	#32,%d2			| Do we really need to shift?
	jcc	2f			| No, the number is too small.
	move.l	(%a0),%d0
	clr.l	(%a0)+
	move.l	%d0,%d1
	lsr.l	%d2,%d0
	neg.w	%d2
	add.w	#32,%d2
	| Again, check to see if we shifted off any significant bits.
	tst.l	(%a0)
	jeq	1f
	bset	#0,%d0			| Sticky bit.
1:	move.l	%d0,(%a0)
	lsl.l	%d2,%d1
	jeq	fp_nd_round
	bset	#0,%d0
	jra	fp_nd_round
	| Sorry, the number is just too small.
2:	clr.l	(%a0)+
	clr.l	(%a0)
	moveq	#1,%d0			| Smallest possible fraction,
	jra	fp_nd_round		| round as desired.
	| zero and denormalized
fp_nd_zero:
	tst.l	(%a0)+
	jne	1f
	tst.l	(%a0)
	jne	1f
	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts				| zero.  nothing to do.
	| These are not merely subnormal numbers, but true denormals,
	| i.e. pathologically small (exponent is 2**-16383) numbers.
	| It is clearly impossible for even a normal extended number
	| with that exponent to fit into double precision, so just
	| write these ones off as "too darn small".
1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit
	clr.l	(%a0)
	clr.l	-(%a0)
	move.w	#0x3c01,-(%a0)		| i.e. 2**-1022
	addq.l	#6,%a0
	moveq	#1,%d0
	jra	fp_nd_round		| round.
	| Exponent overflow.  Just call it infinity.
fp_nd_large:
	move.w	#0x7ff,%d0
	and.w	(6,%a0),%d0
	jeq	1f
	fp_set_sr FPSR_EXC_INEX2
1:	fp_set_sr FPSR_EXC_OVFL
	move.w	(FPD_RND,FPDATA),%d2
	jne	3f			| %d2 = 0 round to nearest
1:	move.w	#0x7fff,(-2,%a0)
	clr.l	(%a0)+
	clr.l	(%a0)
2:	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
3:	subq.w	#2,%d2
	jcs	5f			| %d2 < 2, round to zero
	jhi	4f			| %d2 > 2, round to +infinity
	tst.b	(-3,%a0)		| to -inf
	jne	1b
	jra	5f
4:	tst.b	(-3,%a0)		| to +inf
	jeq	1b
5:	move.w	#0x43fe,(-2,%a0)
	moveq	#-1,%d0
	move.l	%d0,(%a0)+
	move.w	#0xf800,%d0
	move.l	%d0,(%a0)
	jra	2b
	| Infinities or NaNs
fp_nd_huge:
	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts

	| fp_normalize_single:
	| normalize an extended with single (23-bit) precision
	| args:	 %a0 (struct fp_ext *)

fp_normalize_single:
	printf	PNORM,"ns: %p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,") "
	addq.l	#2,%a0
	move.w	(%a0)+,%d2
	jeq	fp_ns_zero		| zero / denormalized
	cmp.w	#0x7fff,%d2
	jeq	fp_ns_huge		| NaN / infinitive.
	sub.w	#0x4000-0x7f,%d2	| will the exponent fit?
	jcs	fp_ns_small		| too small.
	cmp.w	#0xfe,%d2
	jcc	fp_ns_large		| too big.
	move.l	(%a0)+,%d0		| get high lword of mantissa
fp_ns_round:
	tst.l	(%a0)			| check the low lword
	jeq	1f
	| Set a sticky bit if it is non-zero.  This should only
	| affect the rounding in what would otherwise be equal-
	| distance situations, which is what we want it to do.
	bset	#0,%d0
1:	clr.l	(%a0)			| zap it from memory.
	| now, round off the low 8 bits of the hi lword.
	tst.b	%d0			| 8 low bits.
	jne	fp_ns_checkround	| Are they non-zero?
	| nothing to do here
	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
fp_ns_checkround:
	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
	clr.b	-(%a0)			| clear low byte of high lword
	subq.l	#3,%a0
	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	jne	2f			| %d2 == 0, round to nearest
	tst.b	%d0			| test guard bit
	jpl	9f			| zero is closer
	btst	#8,%d0			| test lsb bit
	| round to even behaviour, see above.
	jne	fp_ns_doroundup		| round to infinity
	lsl.b	#1,%d0			| check low bits
	jeq	9f			| round to zero
fp_ns_doroundup:
	| round (the mantissa, that is) towards infinity
	add.l	#0x100,(%a0)
	jcc	9f			| no overflow, good.
	| Overflow.  This means that the %d1 was 0xffffff00, so it
	| is now zero.  We will set the mantissa to reflect this, and
	| increment the exponent (checking for overflow there too)
	move.w	#0x8000,(%a0)
	addq.w	#1,-(%a0)
	cmp.w	#0x407f,(%a0)+		| exponent now overflown?
	jeq	fp_ns_large		| yes, so make it infinity.
9:	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
	| check nondefault rounding modes
2:	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	3f			| %d2 > 2, round to +infinity
	tst.b	(-3,%a0)		| to -inf
	jne	fp_ns_doroundup		| negative, round to infinity
	jra	9b			| positive, round to zero
3:	tst.b	(-3,%a0)		| to +inf
	jeq	fp_ns_doroundup		| positive, round to infinity
	jra	9b			| negative, round to zero
	| Exponent underflow.  Try to make a denormal, and set it to
	| the smallest possible fraction if this fails.
fp_ns_small:
	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit
	move.w	#0x3f81,(-2,%a0)	| 2**-126
	neg.w	%d2			| degree of underflow
	cmp.w	#32,%d2			| single or double shift?
	jcc	2f
	| a 32-bit shift.
	move.l	(%a0),%d0
	move.l	%d0,%d1
	lsr.l	%d2,%d0
	move.l	%d0,(%a0)+
	| Check to see if we shifted off any significant bits.
	neg.w	%d2
	add.w	#32,%d2
	lsl.l	%d2,%d1
	jeq	1f
	bset	#0,%d0			| Sticky bit.
	| Check the lower lword
1:	tst.l	(%a0)
	jeq	fp_ns_round
	clr	(%a0)
	bset	#0,%d0			| Sticky bit.
	jra	fp_ns_round
	| Sorry, the number is just too small.
2:	clr.l	(%a0)+
	clr.l	(%a0)
	moveq	#1,%d0			| Smallest possible fraction,
	jra	fp_ns_round		| round as desired.
	| Exponent overflow.  Just call it infinity.
fp_ns_large:
	tst.b	(3,%a0)
	jeq	1f
	fp_set_sr FPSR_EXC_INEX2
1:	fp_set_sr FPSR_EXC_OVFL
	move.w	(FPD_RND,FPDATA),%d2
	jne	3f			| %d2 = 0 round to nearest
1:	move.w	#0x7fff,(-2,%a0)
	clr.l	(%a0)+
	clr.l	(%a0)
2:	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
3:	subq.w	#2,%d2
	jcs	5f			| %d2 < 2, round to zero
	jhi	4f			| %d2 > 2, round to +infinity
	tst.b	(-3,%a0)		| to -inf
	jne	1b
	jra	5f
4:	tst.b	(-3,%a0)		| to +inf
	jeq	1b
5:	move.w	#0x407e,(-2,%a0)
	move.l	#0xffffff00,(%a0)+
	clr.l	(%a0)
	jra	2b
	| zero and denormalized
fp_ns_zero:
	tst.l	(%a0)+
	jne	1f
	tst.l	(%a0)
	jne	1f
	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts				| zero.  nothing to do.
	| These are not merely subnormal numbers, but true denormals,
	| i.e. pathologically small (exponent is 2**-16383) numbers.
	| It is clearly impossible for even a normal extended number
	| with that exponent to fit into single precision, so just
	| write these ones off as "too darn small".
1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit
	clr.l	(%a0)
	clr.l	-(%a0)
	move.w	#0x3f81,-(%a0)		| i.e. 2**-126
	addq.l	#6,%a0
	moveq	#1,%d0
	jra	fp_ns_round		| round.
	| Infinities or NaNs
fp_ns_huge:
	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts

	| fp_normalize_single_fast:
	| normalize an extended with single (23-bit) precision
	| this is only used by fsgldiv/fsgdlmul, where the
	| operand is not completly normalized.
	| args:	 %a0 (struct fp_ext *)

fp_normalize_single_fast:
	printf	PNORM,"nsf: %p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,") "
	addq.l	#2,%a0
	move.w	(%a0)+,%d2
	cmp.w	#0x7fff,%d2
	jeq	fp_nsf_huge		| NaN / infinitive.
	move.l	(%a0)+,%d0		| get high lword of mantissa
fp_nsf_round:
	tst.l	(%a0)			| check the low lword
	jeq	1f
	| Set a sticky bit if it is non-zero.  This should only
	| affect the rounding in what would otherwise be equal-
	| distance situations, which is what we want it to do.
	bset	#0,%d0
1:	clr.l	(%a0)			| zap it from memory.
	| now, round off the low 8 bits of the hi lword.
	tst.b	%d0			| 8 low bits.
	jne	fp_nsf_checkround	| Are they non-zero?
	| nothing to do here
	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
fp_nsf_checkround:
	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
	clr.b	-(%a0)			| clear low byte of high lword
	subq.l	#3,%a0
	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	jne	2f			| %d2 == 0, round to nearest
	tst.b	%d0			| test guard bit
	jpl	9f			| zero is closer
	btst	#8,%d0			| test lsb bit
	| round to even behaviour, see above.
	jne	fp_nsf_doroundup		| round to infinity
	lsl.b	#1,%d0			| check low bits
	jeq	9f			| round to zero
fp_nsf_doroundup:
	| round (the mantissa, that is) towards infinity
	add.l	#0x100,(%a0)
	jcc	9f			| no overflow, good.
	| Overflow.  This means that the %d1 was 0xffffff00, so it
	| is now zero.  We will set the mantissa to reflect this, and
	| increment the exponent (checking for overflow there too)
	move.w	#0x8000,(%a0)
	addq.w	#1,-(%a0)
	cmp.w	#0x407f,(%a0)+		| exponent now overflown?
	jeq	fp_nsf_large		| yes, so make it infinity.
9:	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
	| check nondefault rounding modes
2:	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	3f			| %d2 > 2, round to +infinity
	tst.b	(-3,%a0)		| to -inf
	jne	fp_nsf_doroundup	| negative, round to infinity
	jra	9b			| positive, round to zero
3:	tst.b	(-3,%a0)		| to +inf
	jeq	fp_nsf_doroundup		| positive, round to infinity
	jra	9b			| negative, round to zero
	| Exponent overflow.  Just call it infinity.
fp_nsf_large:
	tst.b	(3,%a0)
	jeq	1f
	fp_set_sr FPSR_EXC_INEX2
1:	fp_set_sr FPSR_EXC_OVFL
	move.w	(FPD_RND,FPDATA),%d2
	jne	3f			| %d2 = 0 round to nearest
1:	move.w	#0x7fff,(-2,%a0)
	clr.l	(%a0)+
	clr.l	(%a0)
2:	subq.l	#8,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts
3:	subq.w	#2,%d2
	jcs	5f			| %d2 < 2, round to zero
	jhi	4f			| %d2 > 2, round to +infinity
	tst.b	(-3,%a0)		| to -inf
	jne	1b
	jra	5f
4:	tst.b	(-3,%a0)		| to +inf
	jeq	1b
5:	move.w	#0x407e,(-2,%a0)
	move.l	#0xffffff00,(%a0)+
	clr.l	(%a0)
	jra	2b
	| Infinities or NaNs
fp_nsf_huge:
	subq.l	#4,%a0
	printf	PNORM,"%p(",1,%a0
	printx	PNORM,%a0@
	printf	PNORM,")\n"
	rts

	| conv_ext2int (macro):
	| Generates a subroutine that converts an extended value to an
	| integer of a given size, again, with the appropriate type of
	| rounding.

	| Macro arguments:
	| s:	size, as given in an assembly instruction.
	| b:	number of bits in that size.

	| Subroutine arguments:
	| %a0:	source (struct fp_ext *)

	| Returns the integer in %d0 (like it should)

.macro conv_ext2int s,b
	.set	inf,(1<<(\b-1))-1	| i.e. MAXINT
	printf	PCONV,"e2i%d: %p(",2,#\b,%a0
	printx	PCONV,%a0@
	printf	PCONV,") "
	addq.l	#2,%a0
	move.w	(%a0)+,%d2		| exponent
	jeq	fp_e2i_zero\b		| zero / denorm (== 0, here)
	cmp.w	#0x7fff,%d2
	jeq	fp_e2i_huge\b		| Inf / NaN
	sub.w	#0x3ffe,%d2
	jcs	fp_e2i_small\b
	cmp.w	#\b,%d2
	jhi	fp_e2i_large\b
	move.l	(%a0),%d0
	move.l	%d0,%d1
	lsl.l	%d2,%d1
	jne	fp_e2i_round\b
	tst.l	(4,%a0)
	jne	fp_e2i_round\b
	neg.w	%d2
	add.w	#32,%d2
	lsr.l	%d2,%d0
9:	tst.w	(-4,%a0)
	jne	1f
	tst.\s	%d0
	jmi	fp_e2i_large\b
	printf	PCONV,"-> %p\n",1,%d0
	rts
1:	neg.\s	%d0
	jeq	1f
	jpl	fp_e2i_large\b
1:	printf	PCONV,"-> %p\n",1,%d0
	rts
fp_e2i_round\b:
	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit
	neg.w	%d2
	add.w	#32,%d2
	.if	\b>16
	jeq	5f
	.endif
	lsr.l	%d2,%d0
	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	jne	2f			| %d2 == 0, round to nearest
	tst.l	%d1			| test guard bit
	jpl	9b			| zero is closer
	btst	%d2,%d0			| test lsb bit (%d2 still 0)
	jne	fp_e2i_doroundup\b
	lsl.l	#1,%d1			| check low bits
	jne	fp_e2i_doroundup\b
	tst.l	(4,%a0)
	jeq	9b
fp_e2i_doroundup\b:
	addq.l	#1,%d0
	jra	9b
	| check nondefault rounding modes
2:	subq.w	#2,%d2
	jcs	9b			| %d2 < 2, round to zero
	jhi	3f			| %d2 > 2, round to +infinity
	tst.w	(-4,%a0)		| to -inf
	jne	fp_e2i_doroundup\b	| negative, round to infinity
	jra	9b			| positive, round to zero
3:	tst.w	(-4,%a0)		| to +inf
	jeq	fp_e2i_doroundup\b	| positive, round to infinity
	jra	9b	| negative, round to zero
	| we are only want -2**127 get correctly rounded here,
	| since the guard bit is in the lower lword.
	| everything else ends up anyway as overflow.
	.if	\b>16
5:	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	jne	2b			| %d2 == 0, round to nearest
	move.l	(4,%a0),%d1		| test guard bit
	jpl	9b			| zero is closer
	lsl.l	#1,%d1			| check low bits
	jne	fp_e2i_doroundup\b
	jra	9b
	.endif
fp_e2i_zero\b:
	clr.l	%d0
	tst.l	(%a0)+
	jne	1f
	tst.l	(%a0)
	jeq	3f
1:	subq.l	#4,%a0
	fp_clr_sr FPSR_EXC_UNFL		| fp_normalize_ext has set this bit
fp_e2i_small\b:
	fp_set_sr FPSR_EXC_INEX2
	clr.l	%d0
	move.w	(FPD_RND,FPDATA),%d2	| rounding mode
	subq.w	#2,%d2
	jcs	3f			| %d2 < 2, round to nearest/zero
	jhi	2f			| %d2 > 2, round to +infinity
	tst.w	(-4,%a0)		| to -inf
	jeq	3f
	subq.\s	#1,%d0
	jra	3f
2:	tst.w	(-4,%a0)		| to +inf
	jne	3f
	addq.\s	#1,%d0
3:	printf	PCONV,"-> %p\n",1,%d0
	rts
fp_e2i_large\b:
	fp_set_sr FPSR_EXC_OPERR
	move.\s	#inf,%d0
	tst.w	(-4,%a0)
	jeq	1f
	addq.\s	#1,%d0
1:	printf	PCONV,"-> %p\n",1,%d0
	rts
fp_e2i_huge\b:
	move.\s	(%a0),%d0
	tst.l	(%a0)
	jne	1f
	tst.l	(%a0)
	jeq	fp_e2i_large\b
	| fp_normalize_ext has set this bit already
	| and made the number nonsignaling
1:	fp_tst_sr FPSR_EXC_SNAN
	jne	1f
	fp_set_sr FPSR_EXC_OPERR
1:	printf	PCONV,"-> %p\n",1,%d0
	rts
.endm

fp_conv_ext2long:
	conv_ext2int l,32

fp_conv_ext2short:
	conv_ext2int w,16

fp_conv_ext2byte:
	conv_ext2int b,8

fp_conv_ext2double:
	jsr	fp_normalize_double
	printf	PCONV,"e2d: %p(",1,%a0
	printx	PCONV,%a0@
	printf	PCONV,"), "
	move.l	(%a0)+,%d2
	cmp.w	#0x7fff,%d2
	jne	1f
	move.w	#0x7ff,%d2
	move.l	(%a0)+,%d0
	jra	2f
1:	sub.w	#0x3fff-0x3ff,%d2
	move.l	(%a0)+,%d0
	jmi	2f
	clr.w	%d2
2:	lsl.w	#5,%d2
	lsl.l	#7,%d2
	lsl.l	#8,%d2
	move.l	%d0,%d1
	lsl.l	#1,%d0
	lsr.l	#4,%d0
	lsr.l	#8,%d0
	or.l	%d2,%d0
	putuser.l %d0,(%a1)+,fp_err_ua2,%a1
	moveq	#21,%d0
	lsl.l	%d0,%d1
	move.l	(%a0),%d0
	lsr.l	#4,%d0
	lsr.l	#7,%d0
	or.l	%d1,%d0
	putuser.l %d0,(%a1),fp_err_ua2,%a1
#ifdef FPU_EMU_DEBUG
	getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
	getuser.l %a1@(0),%d1,fp_err_ua2,%a1
	printf	PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1
#endif
	rts

fp_conv_ext2single:
	jsr	fp_normalize_single
	printf	PCONV,"e2s: %p(",1,%a0
	printx	PCONV,%a0@
	printf	PCONV,"), "
	move.l	(%a0)+,%d1
	cmp.w	#0x7fff,%d1
	jne	1f
	move.w	#0xff,%d1
	move.l	(%a0)+,%d0
	jra	2f
1:	sub.w	#0x3fff-0x7f,%d1
	move.l	(%a0)+,%d0
	jmi	2f
	clr.w	%d1
2:	lsl.w	#8,%d1
	lsl.l	#7,%d1
	lsl.l	#8,%d1
	bclr	#31,%d0
	lsr.l	#8,%d0
	or.l	%d1,%d0
	printf	PCONV,"%08x\n",1,%d0
	rts

	| special return addresses for instr that
	| encode the rounding precision in the opcode
	| (e.g. fsmove,fdmove)

fp_finalrounding_single:
	addq.l	#8,%sp
	jsr	fp_normalize_ext
	jsr	fp_normalize_single
	jra	fp_finaltest

fp_finalrounding_single_fast:
	addq.l	#8,%sp
	jsr	fp_normalize_ext
	jsr	fp_normalize_single_fast
	jra	fp_finaltest

fp_finalrounding_double:
	addq.l	#8,%sp
	jsr	fp_normalize_ext
	jsr	fp_normalize_double
	jra	fp_finaltest

	| fp_finaltest:
	| set the emulated status register based on the outcome of an
	| emulated instruction.

fp_finalrounding:
	addq.l	#8,%sp
|	printf	,"f: %p\n",1,%a0
	jsr	fp_normalize_ext
	move.w	(FPD_PREC,FPDATA),%d0
	subq.w	#1,%d0
	jcs	fp_finaltest
	jne	1f
	jsr	fp_normalize_single
	jra	2f
1:	jsr	fp_normalize_double
2:|	printf	,"f: %p\n",1,%a0
fp_finaltest:
	| First, we do some of the obvious tests for the exception
	| status byte and condition code bytes of fp_sr here, so that
	| they do not have to be handled individually by every
	| emulated instruction.
	clr.l	%d0
	addq.l	#1,%a0
	tst.b	(%a0)+			| sign
	jeq	1f
	bset	#FPSR_CC_NEG-24,%d0	| N bit
1:	cmp.w	#0x7fff,(%a0)+		| exponent
	jeq	2f
	| test for zero
	moveq	#FPSR_CC_Z-24,%d1
	tst.l	(%a0)+
	jne	9f
	tst.l	(%a0)
	jne	9f
	jra	8f
	| infinitiv and NAN
2:	moveq	#FPSR_CC_NAN-24,%d1
	move.l	(%a0)+,%d2
	lsl.l	#1,%d2			| ignore high bit
	jne	8f
	tst.l	(%a0)
	jne	8f
	moveq	#FPSR_CC_INF-24,%d1
8:	bset	%d1,%d0
9:	move.b	%d0,(FPD_FPSR+0,FPDATA)	| set condition test result
	| move instructions enter here
	| Here, we test things in the exception status byte, and set
	| other things in the accrued exception byte accordingly.
	| Emulated instructions can set various things in the former,
	| as defined in fp_emu.h.
fp_final:
	move.l	(FPD_FPSR,FPDATA),%d0
#if 0
	btst	#FPSR_EXC_SNAN,%d0	| EXC_SNAN
	jne	1f
	btst	#FPSR_EXC_OPERR,%d0	| EXC_OPERR
	jeq	2f
1:	bset	#FPSR_AEXC_IOP,%d0	| set IOP bit
2:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL
	jeq	1f
	bset	#FPSR_AEXC_OVFL,%d0	| set OVFL bit
1:	btst	#FPSR_EXC_UNFL,%d0	| EXC_UNFL
	jeq	1f
	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2
	jeq	1f
	bset	#FPSR_AEXC_UNFL,%d0	| set UNFL bit
1:	btst	#FPSR_EXC_DZ,%d0	| EXC_INEX1
	jeq	1f
	bset	#FPSR_AEXC_DZ,%d0	| set DZ bit
1:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL
	jne	1f
	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2
	jne	1f
	btst	#FPSR_EXC_INEX1,%d0	| EXC_INEX1
	jeq	2f
1:	bset	#FPSR_AEXC_INEX,%d0	| set INEX bit
2:	move.l	%d0,(FPD_FPSR,FPDATA)
#else
	| same as above, greatly optimized, but untested (yet)
	move.l	%d0,%d2
	lsr.l	#5,%d0
	move.l	%d0,%d1
	lsr.l	#4,%d1
	or.l	%d0,%d1
	and.b	#0x08,%d1
	move.l	%d2,%d0
	lsr.l	#6,%d0
	or.l	%d1,%d0
	move.l	%d2,%d1
	lsr.l	#4,%d1
	or.b	#0xdf,%d1
	and.b	%d1,%d0
	move.l	%d2,%d1
	lsr.l	#7,%d1
	and.b	#0x80,%d1
	or.b	%d1,%d0
	and.b	#0xf8,%d0
	or.b	%d0,%d2
	move.l	%d2,(FPD_FPSR,FPDATA)
#endif
	move.b	(FPD_FPSR+2,FPDATA),%d0
	and.b	(FPD_FPCR+2,FPDATA),%d0
	jeq	1f
	printf	,"send signal!!!\n"
1:	jra	fp_end