Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
/*
 * comedi/drivers/s626.c
 * Sensoray s626 Comedi driver
 *
 * COMEDI - Linux Control and Measurement Device Interface
 * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
 *
 * Based on Sensoray Model 626 Linux driver Version 0.2
 * Copyright (C) 2002-2004 Sensoray Co., Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * Driver: s626
 * Description: Sensoray 626 driver
 * Devices: [Sensoray] 626 (s626)
 * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
 * Updated: Fri, 15 Feb 2008 10:28:42 +0000
 * Status: experimental

 * Configuration options: not applicable, uses PCI auto config

 * INSN_CONFIG instructions:
 *   analog input:
 *    none
 *
 *   analog output:
 *    none
 *
 *   digital channel:
 *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
 *    supported configuration options:
 *    INSN_CONFIG_DIO_QUERY
 *    COMEDI_INPUT
 *    COMEDI_OUTPUT
 *
 *   encoder:
 *    Every channel must be configured before reading.
 *
 *   Example code
 *
 *    insn.insn=INSN_CONFIG;   //configuration instruction
 *    insn.n=1;                //number of operation (must be 1)
 *    insn.data=&initialvalue; //initial value loaded into encoder
 *                             //during configuration
 *    insn.subdev=5;           //encoder subdevice
 *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
 *                                                         //to configure
 *
 *    comedi_do_insn(cf,&insn); //executing configuration
 */

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/types.h>

#include "../comedi_pci.h"

#include "s626.h"

struct s626_buffer_dma {
	dma_addr_t physical_base;
	void *logical_base;
};

struct s626_private {
	uint8_t ai_cmd_running;		/* ai_cmd is running */
	unsigned int ai_sample_timer;	/* time between samples in
					 * units of the timer */
	int ai_convert_count;		/* conversion counter */
	unsigned int ai_convert_timer;	/* time between conversion in
					 * units of the timer */
	uint16_t counter_int_enabs;	/* counter interrupt enable mask
					 * for MISC2 register */
	uint8_t adc_items;		/* number of items in ADC poll list */
	struct s626_buffer_dma rps_buf;	/* DMA buffer used to hold ADC (RPS1)
					 * program */
	struct s626_buffer_dma ana_buf;	/* DMA buffer used to receive ADC data
					 * and hold DAC data */
	uint32_t *dac_wbuf;		/* pointer to logical adrs of DMA buffer
					 * used to hold DAC data */
	uint16_t dacpol;		/* image of DAC polarity register */
	uint8_t trim_setpoint[12];	/* images of TrimDAC setpoints */
	uint32_t i2c_adrs;		/* I2C device address for onboard EEPROM
					 * (board rev dependent) */
};

/* Counter overflow/index event flag masks for RDMISC2. */
#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))

/*
 * Enable/disable a function or test status bit(s) that are accessed
 * through Main Control Registers 1 or 2.
 */
static void s626_mc_enable(struct comedi_device *dev,
			   unsigned int cmd, unsigned int reg)
{
	unsigned int val = (cmd << 16) | cmd;

	mmiowb();
	writel(val, dev->mmio + reg);
}

static void s626_mc_disable(struct comedi_device *dev,
			    unsigned int cmd, unsigned int reg)
{
	writel(cmd << 16, dev->mmio + reg);
	mmiowb();
}

static bool s626_mc_test(struct comedi_device *dev,
			 unsigned int cmd, unsigned int reg)
{
	unsigned int val;

	val = readl(dev->mmio + reg);

	return (val & cmd) ? true : false;
}

#define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)

/* Write a time slot control record to TSL2. */
#define S626_VECTPORT(VECTNUM)		(S626_P_TSL2 + ((VECTNUM) << 2))

static const struct comedi_lrange s626_range_table = {
	2, {
		BIP_RANGE(5),
		BIP_RANGE(10)
	}
};

/*
 * Execute a DEBI transfer.  This must be called from within a critical section.
 */
static void s626_debi_transfer(struct comedi_device *dev)
{
	static const int timeout = 10000;
	int i;

	/* Initiate upload of shadow RAM to DEBI control register */
	s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);

	/*
	 * Wait for completion of upload from shadow RAM to
	 * DEBI control register.
	 */
	for (i = 0; i < timeout; i++) {
		if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
			break;
		udelay(1);
	}
	if (i == timeout)
		dev_err(dev->class_dev,
			"Timeout while uploading to DEBI control register\n");

	/* Wait until DEBI transfer is done */
	for (i = 0; i < timeout; i++) {
		if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
			break;
		udelay(1);
	}
	if (i == timeout)
		dev_err(dev->class_dev, "DEBI transfer timeout\n");
}

/*
 * Read a value from a gate array register.
 */
static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
{
	/* Set up DEBI control register value in shadow RAM */
	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);

	/*  Execute the DEBI transfer. */
	s626_debi_transfer(dev);

	return readl(dev->mmio + S626_P_DEBIAD);
}

/*
 * Write a value to a gate array register.
 */
static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
			    uint16_t wdata)
{
	/* Set up DEBI control register value in shadow RAM */
	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
	writel(wdata, dev->mmio + S626_P_DEBIAD);

	/*  Execute the DEBI transfer. */
	s626_debi_transfer(dev);
}

/*
 * Replace the specified bits in a gate array register.  Imports: mask
 * specifies bits that are to be preserved, wdata is new value to be
 * or'd with the masked original.
 */
static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
			      unsigned int mask, unsigned int wdata)
{
	unsigned int val;

	addr &= 0xffff;
	writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
	s626_debi_transfer(dev);

	writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
	val = readl(dev->mmio + S626_P_DEBIAD);
	val &= mask;
	val |= wdata;
	writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
	s626_debi_transfer(dev);
}

/* **************  EEPROM ACCESS FUNCTIONS  ************** */

static int s626_i2c_handshake_eoc(struct comedi_device *dev,
				  struct comedi_subdevice *s,
				  struct comedi_insn *insn,
				  unsigned long context)
{
	bool status;

	status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
	if (status)
		return 0;
	return -EBUSY;
}

static int s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
{
	unsigned int ctrl;
	int ret;

	/* Write I2C command to I2C Transfer Control shadow register */
	writel(val, dev->mmio + S626_P_I2CCTRL);

	/*
	 * Upload I2C shadow registers into working registers and
	 * wait for upload confirmation.
	 */
	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
	if (ret)
		return ret;

	/* Wait until I2C bus transfer is finished or an error occurs */
	do {
		ctrl = readl(dev->mmio + S626_P_I2CCTRL);
	} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);

	/* Return non-zero if I2C error occurred */
	return ctrl & S626_I2C_ERR;
}

/* Read uint8_t from EEPROM. */
static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
{
	struct s626_private *devpriv = dev->private;

	/*
	 * Send EEPROM target address:
	 *  Byte2 = I2C command: write to I2C EEPROM device.
	 *  Byte1 = EEPROM internal target address.
	 *  Byte0 = Not sent.
	 */
	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
						devpriv->i2c_adrs) |
				    S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
		/* Abort function and declare error if handshake failed. */
		return 0;

	/*
	 * Execute EEPROM read:
	 *  Byte2 = I2C command: read from I2C EEPROM device.
	 *  Byte1 receives uint8_t from EEPROM.
	 *  Byte0 = Not sent.
	 */
	if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
						(devpriv->i2c_adrs | 1)) |
				    S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
				    S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
		/* Abort function and declare error if handshake failed. */
		return 0;

	return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
}

/* ***********  DAC FUNCTIONS *********** */

/* TrimDac LogicalChan-to-PhysicalChan mapping table. */
static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };

/* TrimDac LogicalChan-to-EepromAdrs mapping table. */
static const uint8_t s626_trimadrs[] = {
	0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
};

enum {
	s626_send_dac_wait_not_mc1_a2out,
	s626_send_dac_wait_ssr_af2_out,
	s626_send_dac_wait_fb_buffer2_msb_00,
	s626_send_dac_wait_fb_buffer2_msb_ff
};

static int s626_send_dac_eoc(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned long context)
{
	unsigned int status;

	switch (context) {
	case s626_send_dac_wait_not_mc1_a2out:
		status = readl(dev->mmio + S626_P_MC1);
		if (!(status & S626_MC1_A2OUT))
			return 0;
		break;
	case s626_send_dac_wait_ssr_af2_out:
		status = readl(dev->mmio + S626_P_SSR);
		if (status & S626_SSR_AF2_OUT)
			return 0;
		break;
	case s626_send_dac_wait_fb_buffer2_msb_00:
		status = readl(dev->mmio + S626_P_FB_BUFFER2);
		if (!(status & 0xff000000))
			return 0;
		break;
	case s626_send_dac_wait_fb_buffer2_msb_ff:
		status = readl(dev->mmio + S626_P_FB_BUFFER2);
		if (status & 0xff000000)
			return 0;
		break;
	default:
		return -EINVAL;
	}
	return -EBUSY;
}

/*
 * Private helper function: Transmit serial data to DAC via Audio
 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
 * dacpol contains valid target image.
 */
static int s626_send_dac(struct comedi_device *dev, uint32_t val)
{
	struct s626_private *devpriv = dev->private;
	int ret;

	/* START THE SERIAL CLOCK RUNNING ------------- */

	/*
	 * Assert DAC polarity control and enable gating of DAC serial clock
	 * and audio bit stream signals.  At this point in time we must be
	 * assured of being in time slot 0.  If we are not in slot 0, the
	 * serial clock and audio stream signals will be disabled; this is
	 * because the following s626_debi_write statement (which enables
	 * signals to be passed through the gate array) would execute before
	 * the trailing edge of WS1/WS3 (which turns off the signals), thus
	 * causing the signals to be inactive during the DAC write.
	 */
	s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);

	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */

	/* Copy DAC setpoint value to DAC's output DMA buffer. */
	/* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
	*devpriv->dac_wbuf = val;

	/*
	 * Enable the output DMA transfer. This will cause the DMAC to copy
	 * the DAC's data value to A2's output FIFO. The DMA transfer will
	 * then immediately terminate because the protection address is
	 * reached upon transfer of the first DWORD value.
	 */
	s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);

	/* While the DMA transfer is executing ... */

	/*
	 * Reset Audio2 output FIFO's underflow flag (along with any
	 * other FIFO underflow/overflow flags). When set, this flag
	 * will indicate that we have emerged from slot 0.
	 */
	writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);

	/*
	 * Wait for the DMA transfer to finish so that there will be data
	 * available in the FIFO when time slot 1 tries to transfer a DWORD
	 * from the FIFO to the output buffer register.  We test for DMA
	 * Done by polling the DMAC enable flag; this flag is automatically
	 * cleared when the transfer has finished.
	 */
	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
			     s626_send_dac_wait_not_mc1_a2out);
	if (ret) {
		dev_err(dev->class_dev, "DMA transfer timeout\n");
		return ret;
	}

	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */

	/*
	 * FIFO data is now available, so we enable execution of time slots
	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
	 * detection.
	 */
	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
	       dev->mmio + S626_VECTPORT(0));

	/*
	 * Wait for slot 1 to execute to ensure that the Packet will be
	 * transmitted.  This is detected by polling the Audio2 output FIFO
	 * underflow flag, which will be set when slot 1 execution has
	 * finished transferring the DAC's data DWORD from the output FIFO
	 * to the output buffer register.
	 */
	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
			     s626_send_dac_wait_ssr_af2_out);
	if (ret) {
		dev_err(dev->class_dev,
			"TSL timeout waiting for slot 1 to execute\n");
		return ret;
	}

	/*
	 * Set up to trap execution at slot 0 when the TSL sequencer cycles
	 * back to slot 0 after executing the EOS in slot 5.  Also,
	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
	 * stored in the last byte to be shifted out of the FIFO's DWORD
	 * buffer register.
	 */
	writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
	       dev->mmio + S626_VECTPORT(0));

	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */

	/*
	 * Wait for the TSL to finish executing all time slots before
	 * exiting this function.  We must do this so that the next DAC
	 * write doesn't start, thereby enabling clock/chip select signals:
	 *
	 * 1. Before the TSL sequence cycles back to slot 0, which disables
	 *    the clock/cs signal gating and traps slot // list execution.
	 *    we have not yet finished slot 5 then the clock/cs signals are
	 *    still gated and we have not finished transmitting the stream.
	 *
	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
	 *    this case, the slot sequence is currently repeating, but with
	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
	 *    execution before setting up the next DAC setpoint DMA transfer
	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
	 *    the TSL has not yet finished executing slot 5 ...
	 */
	if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
		/*
		 * The trap was set on time and we are still executing somewhere
		 * in slots 2-5, so we now wait for slot 0 to execute and trap
		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
		 */
		ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
				     s626_send_dac_wait_fb_buffer2_msb_00);
		if (ret) {
			dev_err(dev->class_dev,
				"TSL timeout waiting for slot 0 to execute\n");
			return ret;
		}
	}
	/*
	 * Either (1) we were too late setting the slot 0 trap; the TSL
	 * sequencer restarted slot 0 before we could set the EOS trap flag,
	 * or (2) we were not late and execution is now trapped at slot 0.
	 * In either case, we must now change slot 0 so that it will store
	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
	 * In order to do this, we reprogram slot 0 so that it will shift in
	 * SD3, which is driven only by a pull-up resistor.
	 */
	writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
	       dev->mmio + S626_VECTPORT(0));

	/*
	 * Wait for slot 0 to execute, at which time the TSL is setup for
	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
	 * from 0x00 to 0xFF.
	 */
	ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
			     s626_send_dac_wait_fb_buffer2_msb_ff);
	if (ret) {
		dev_err(dev->class_dev,
			"TSL timeout waiting for slot 0 to execute\n");
		return ret;
	}
	return 0;
}

/*
 * Private helper function: Write setpoint to an application DAC channel.
 */
static int s626_set_dac(struct comedi_device *dev,
			uint16_t chan, int16_t dacdata)
{
	struct s626_private *devpriv = dev->private;
	uint16_t signmask;
	uint32_t ws_image;
	uint32_t val;

	/*
	 * Adjust DAC data polarity and set up Polarity Control Register image.
	 */
	signmask = 1 << chan;
	if (dacdata < 0) {
		dacdata = -dacdata;
		devpriv->dacpol |= signmask;
	} else {
		devpriv->dacpol &= ~signmask;
	}

	/* Limit DAC setpoint value to valid range. */
	if ((uint16_t)dacdata > 0x1FFF)
		dacdata = 0x1FFF;

	/*
	 * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
	 * data to a non-existent TrimDac channel just to keep the clock
	 * running after sending data to the target DAC.  This is necessary
	 * to eliminate the clock glitch that would otherwise occur at the
	 * end of the target DAC's serial data stream.  When the sequence
	 * restarts at V0 (after executing V5), the gate array automatically
	 * disables gating for the DAC clock and all DAC chip selects.
	 */

	/* Choose DAC chip select to be asserted */
	ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
	/* Slot 2: Transmit high data byte to target DAC */
	writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
	       dev->mmio + S626_VECTPORT(2));
	/* Slot 3: Transmit low data byte to target DAC */
	writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
	       dev->mmio + S626_VECTPORT(3));
	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
	       dev->mmio + S626_VECTPORT(4));
	/* Slot 5: running after writing target DAC's low data byte */
	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
	       dev->mmio + S626_VECTPORT(5));

	/*
	 * Construct and transmit target DAC's serial packet:
	 * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
	 * to a  non-existent TrimDac channel) that serves to keep the clock
	 * running after the packet has been sent to the target DAC.
	 */
	val = 0x0F000000;	/* Continue clock after target DAC data
				 * (write to non-existent trimdac). */
	val |= 0x00004000;	/* Address the two main dual-DAC devices
				 * (TSL's chip select enables target device). */
	val |= ((uint32_t)(chan & 1) << 15);	/* Address the DAC channel
						 * within the device. */
	val |= (uint32_t)dacdata;	/* Include DAC setpoint data. */
	return s626_send_dac(dev, val);
}

static int s626_write_trim_dac(struct comedi_device *dev,
			       uint8_t logical_chan, uint8_t dac_data)
{
	struct s626_private *devpriv = dev->private;
	uint32_t chan;

	/*
	 * Save the new setpoint in case the application needs to read it back
	 * later.
	 */
	devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;

	/* Map logical channel number to physical channel number. */
	chan = s626_trimchan[logical_chan];

	/*
	 * Set up TSL2 records for TrimDac write operation.  All slots shift
	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
	 * can be detected.
	 */

	/* Slot 2: Send high uint8_t to target TrimDac */
	writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
	       dev->mmio + S626_VECTPORT(2));
	/* Slot 3: Send low uint8_t to target TrimDac */
	writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
	       dev->mmio + S626_VECTPORT(3));
	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
	writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
	       dev->mmio + S626_VECTPORT(4));
	/* Slot 5: Send NOP low  uint8_t to DAC0 */
	writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
	       dev->mmio + S626_VECTPORT(5));

	/*
	 * Construct and transmit target DAC's serial packet:
	 * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
	 * WORD value (that writes a channel 0 NOP command to a non-existent
	 * main DAC channel) that serves to keep the clock running after the
	 * packet has been sent to the target DAC.
	 */

	/*
	 * Address the DAC channel within the trimdac device.
	 * Include DAC setpoint data.
	 */
	return s626_send_dac(dev, (chan << 8) | dac_data);
}

static int s626_load_trim_dacs(struct comedi_device *dev)
{
	uint8_t i;
	int ret;

	/* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
	for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
		ret = s626_write_trim_dac(dev, i,
					  s626_i2c_read(dev, s626_trimadrs[i]));
		if (ret)
			return ret;
	}
	return 0;
}

/* ******  COUNTER FUNCTIONS  ******* */

/*
 * All counter functions address a specific counter by means of the
 * "Counter" argument, which is a logical counter number.  The Counter
 * argument may have any of the following legal values: 0=0A, 1=1A,
 * 2=2A, 3=0B, 4=1B, 5=2B.
 */

/*
 * Return/set a counter pair's latch trigger source.  0: On read
 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
 * latches B.
 */
static void s626_set_latch_source(struct comedi_device *dev,
				  unsigned int chan, uint16_t value)
{
	s626_debi_replace(dev, S626_LP_CRB(chan),
			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
			  S626_SET_CRB_LATCHSRC(value));
}

/*
 * Write value into counter preload register.
 */
static void s626_preload(struct comedi_device *dev,
			 unsigned int chan, uint32_t value)
{
	s626_debi_write(dev, S626_LP_CNTR(chan), value);
	s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
}

/* ******  PRIVATE COUNTER FUNCTIONS ****** */

/*
 * Reset a counter's index and overflow event capture flags.
 */
static void s626_reset_cap_flags(struct comedi_device *dev,
				 unsigned int chan)
{
	uint16_t set;

	set = S626_SET_CRB_INTRESETCMD(1);
	if (chan < 3)
		set |= S626_SET_CRB_INTRESET_A(1);
	else
		set |= S626_SET_CRB_INTRESET_B(1);

	s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
}

#ifdef unused
/*
 * Return counter setup in a format (COUNTER_SETUP) that is consistent
 * for both A and B counters.
 */
static uint16_t s626_get_mode_a(struct comedi_device *dev,
				unsigned int chan)
{
	uint16_t cra;
	uint16_t crb;
	uint16_t setup;
	unsigned cntsrc, clkmult, clkpol, encmode;

	/* Fetch CRA and CRB register images. */
	cra = s626_debi_read(dev, S626_LP_CRA(chan));
	crb = s626_debi_read(dev, S626_LP_CRB(chan));

	/*
	 * Populate the standardized counter setup bit fields.
	 */
	setup =
		/* LoadSrc  = LoadSrcA. */
		S626_SET_STD_LOADSRC(S626_GET_CRA_LOADSRC_A(cra)) |
		/* LatchSrc = LatchSrcA. */
		S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
		/* IntSrc   = IntSrcA. */
		S626_SET_STD_INTSRC(S626_GET_CRA_INTSRC_A(cra)) |
		/* IndxSrc  = IndxSrcA. */
		S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_A(cra)) |
		/* IndxPol  = IndxPolA. */
		S626_SET_STD_INDXPOL(S626_GET_CRA_INDXPOL_A(cra)) |
		/* ClkEnab  = ClkEnabA. */
		S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_A(crb));

	/* Adjust mode-dependent parameters. */
	cntsrc = S626_GET_CRA_CNTSRC_A(cra);
	if (cntsrc & S626_CNTSRC_SYSCLK) {
		/* Timer mode (CntSrcA<1> == 1): */
		encmode = S626_ENCMODE_TIMER;
		/* Set ClkPol to indicate count direction (CntSrcA<0>). */
		clkpol = cntsrc & 1;
		/* ClkMult must be 1x in Timer mode. */
		clkmult = S626_CLKMULT_1X;
	} else {
		/* Counter mode (CntSrcA<1> == 0): */
		encmode = S626_ENCMODE_COUNTER;
		/* Pass through ClkPol. */
		clkpol = S626_GET_CRA_CLKPOL_A(cra);
		/* Force ClkMult to 1x if not legal, else pass through. */
		clkmult = S626_GET_CRA_CLKMULT_A(cra);
		if (clkmult == S626_CLKMULT_SPECIAL)
			clkmult = S626_CLKMULT_1X;
	}
	setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
		 S626_SET_STD_CLKPOL(clkpol);

	/* Return adjusted counter setup. */
	return setup;
}

static uint16_t s626_get_mode_b(struct comedi_device *dev,
				unsigned int chan)
{
	uint16_t cra;
	uint16_t crb;
	uint16_t setup;
	unsigned cntsrc, clkmult, clkpol, encmode;

	/* Fetch CRA and CRB register images. */
	cra = s626_debi_read(dev, S626_LP_CRA(chan));
	crb = s626_debi_read(dev, S626_LP_CRB(chan));

	/*
	 * Populate the standardized counter setup bit fields.
	 */
	setup =
		/* IntSrc   = IntSrcB. */
		S626_SET_STD_INTSRC(S626_GET_CRB_INTSRC_B(crb)) |
		/* LatchSrc = LatchSrcB. */
		S626_SET_STD_LATCHSRC(S626_GET_CRB_LATCHSRC(crb)) |
		/* LoadSrc  = LoadSrcB. */
		S626_SET_STD_LOADSRC(S626_GET_CRB_LOADSRC_B(crb)) |
		/* IndxPol  = IndxPolB. */
		S626_SET_STD_INDXPOL(S626_GET_CRB_INDXPOL_B(crb)) |
		/* ClkEnab  = ClkEnabB. */
		S626_SET_STD_CLKENAB(S626_GET_CRB_CLKENAB_B(crb)) |
		/* IndxSrc  = IndxSrcB. */
		S626_SET_STD_INDXSRC(S626_GET_CRA_INDXSRC_B(cra));

	/* Adjust mode-dependent parameters. */
	cntsrc = S626_GET_CRA_CNTSRC_B(cra);
	clkmult = S626_GET_CRB_CLKMULT_B(crb);
	if (clkmult == S626_CLKMULT_SPECIAL) {
		/* Extender mode (ClkMultB == S626_CLKMULT_SPECIAL): */
		encmode = S626_ENCMODE_EXTENDER;
		/* Indicate multiplier is 1x. */
		clkmult = S626_CLKMULT_1X;
		/* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
		clkpol = cntsrc & 1;
	} else if (cntsrc & S626_CNTSRC_SYSCLK) {
		/* Timer mode (CntSrcB<1> == 1): */
		encmode = S626_ENCMODE_TIMER;
		/* Indicate multiplier is 1x. */
		clkmult = S626_CLKMULT_1X;
		/* Set ClkPol equal to Timer count direction (CntSrcB<0>). */
		clkpol = cntsrc & 1;
	} else {
		/* If Counter mode (CntSrcB<1> == 0): */
		encmode = S626_ENCMODE_COUNTER;
		/* Clock multiplier is passed through. */
		/* Clock polarity is passed through. */
		clkpol = S626_GET_CRB_CLKPOL_B(crb);
	}
	setup |= S626_SET_STD_ENCMODE(encmode) | S626_SET_STD_CLKMULT(clkmult) |
		 S626_SET_STD_CLKPOL(clkpol);

	/* Return adjusted counter setup. */
	return setup;
}

static uint16_t s626_get_mode(struct comedi_device *dev,
			      unsigned int chan)
{
	return (chan < 3) ? s626_get_mode_a(dev, chan)
			  : s626_get_mode_b(dev, chan);
}
#endif

/*
 * Set the operating mode for the specified counter.  The setup
 * parameter is treated as a COUNTER_SETUP data type.  The following
 * parameters are programmable (all other parms are ignored): ClkMult,
 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
 */
static void s626_set_mode_a(struct comedi_device *dev,
			    unsigned int chan, uint16_t setup,
			    uint16_t disable_int_src)
{
	struct s626_private *devpriv = dev->private;
	uint16_t cra;
	uint16_t crb;
	unsigned cntsrc, clkmult, clkpol;

	/* Initialize CRA and CRB images. */
	/* Preload trigger is passed through. */
	cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
	/* IndexSrc is passed through. */
	cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));

	/* Reset any pending CounterA event captures. */
	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
	/* Clock enable is passed through. */
	crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));

	/* Force IntSrc to Disabled if disable_int_src is asserted. */
	if (!disable_int_src)
		cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));

	/* Populate all mode-dependent attributes of CRA & CRB images. */
	clkpol = S626_GET_STD_CLKPOL(setup);
	switch (S626_GET_STD_ENCMODE(setup)) {
	case S626_ENCMODE_EXTENDER: /* Extender Mode: */
		/* Force to Timer mode (Extender valid only for B counters). */
		/* Fall through to case S626_ENCMODE_TIMER: */
	case S626_ENCMODE_TIMER:	/* Timer Mode: */
		/* CntSrcA<1> selects system clock */
		cntsrc = S626_CNTSRC_SYSCLK;
		/* Count direction (CntSrcA<0>) obtained from ClkPol. */
		cntsrc |= clkpol;
		/* ClkPolA behaves as always-on clock enable. */
		clkpol = 1;
		/* ClkMult must be 1x. */
		clkmult = S626_CLKMULT_1X;
		break;
	default:		/* Counter Mode: */
		/* Select ENC_C and ENC_D as clock/direction inputs. */
		cntsrc = S626_CNTSRC_ENCODER;
		/* Clock polarity is passed through. */
		/* Force multiplier to x1 if not legal, else pass through. */
		clkmult = S626_GET_STD_CLKMULT(setup);
		if (clkmult == S626_CLKMULT_SPECIAL)
			clkmult = S626_CLKMULT_1X;
		break;
	}
	cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
	       S626_SET_CRA_CLKMULT_A(clkmult);

	/*
	 * Force positive index polarity if IndxSrc is software-driven only,
	 * otherwise pass it through.
	 */
	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
		cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));

	/*
	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
	 * enable mask to indicate the counter interrupt is disabled.
	 */
	if (disable_int_src)
		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
						S626_INDXMASK(chan));

	/*
	 * While retaining CounterB and LatchSrc configurations, program the
	 * new counter operating mode.
	 */
	s626_debi_replace(dev, S626_LP_CRA(chan),
			  S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
	s626_debi_replace(dev, S626_LP_CRB(chan),
			  ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
}

static void s626_set_mode_b(struct comedi_device *dev,
			    unsigned int chan, uint16_t setup,
			    uint16_t disable_int_src)
{
	struct s626_private *devpriv = dev->private;
	uint16_t cra;
	uint16_t crb;
	unsigned cntsrc, clkmult, clkpol;

	/* Initialize CRA and CRB images. */
	/* IndexSrc is passed through. */
	cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));

	/* Reset event captures and disable interrupts. */
	crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
	/* Clock enable is passed through. */
	crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
	/* Preload trigger source is passed through. */
	crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));

	/* Force IntSrc to Disabled if disable_int_src is asserted. */
	if (!disable_int_src)
		crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));

	/* Populate all mode-dependent attributes of CRA & CRB images. */
	clkpol = S626_GET_STD_CLKPOL(setup);
	switch (S626_GET_STD_ENCMODE(setup)) {
	case S626_ENCMODE_TIMER:	/* Timer Mode: */
		/* CntSrcB<1> selects system clock */
		cntsrc = S626_CNTSRC_SYSCLK;
		/* with direction (CntSrcB<0>) obtained from ClkPol. */
		cntsrc |= clkpol;
		/* ClkPolB behaves as always-on clock enable. */
		clkpol = 1;
		/* ClkMultB must be 1x. */
		clkmult = S626_CLKMULT_1X;
		break;
	case S626_ENCMODE_EXTENDER:	/* Extender Mode: */
		/* CntSrcB source is OverflowA (same as "timer") */
		cntsrc = S626_CNTSRC_SYSCLK;
		/* with direction obtained from ClkPol. */
		cntsrc |= clkpol;
		/* ClkPolB controls IndexB -- always set to active. */
		clkpol = 1;
		/* ClkMultB selects OverflowA as the clock source. */
		clkmult = S626_CLKMULT_SPECIAL;
		break;
	default:		/* Counter Mode: */
		/* Select ENC_C and ENC_D as clock/direction inputs. */
		cntsrc = S626_CNTSRC_ENCODER;
		/* ClkPol is passed through. */
		/* Force ClkMult to x1 if not legal, otherwise pass through. */
		clkmult = S626_GET_STD_CLKMULT(setup);
		if (clkmult == S626_CLKMULT_SPECIAL)
			clkmult = S626_CLKMULT_1X;
		break;
	}
	cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
	crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);

	/*
	 * Force positive index polarity if IndxSrc is software-driven only,
	 * otherwise pass it through.
	 */
	if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
		crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));

	/*
	 * If IntSrc has been forced to Disabled, update the MISC2 interrupt
	 * enable mask to indicate the counter interrupt is disabled.
	 */
	if (disable_int_src)
		devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
						S626_INDXMASK(chan));

	/*
	 * While retaining CounterA and LatchSrc configurations, program the
	 * new counter operating mode.
	 */
	s626_debi_replace(dev, S626_LP_CRA(chan),
			  ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
	s626_debi_replace(dev, S626_LP_CRB(chan),
			  S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
}

static void s626_set_mode(struct comedi_device *dev,
			  unsigned int chan,
			  uint16_t setup, uint16_t disable_int_src)
{
	if (chan < 3)
		s626_set_mode_a(dev, chan, setup, disable_int_src);
	else
		s626_set_mode_b(dev, chan, setup, disable_int_src);
}

/*
 * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
 */
static void s626_set_enable(struct comedi_device *dev,
			    unsigned int chan, uint16_t enab)
{
	unsigned int mask = S626_CRBMSK_INTCTRL;
	unsigned int set;

	if (chan < 3) {
		mask |= S626_CRBMSK_CLKENAB_A;
		set = S626_SET_CRB_CLKENAB_A(enab);
	} else {
		mask |= S626_CRBMSK_CLKENAB_B;
		set = S626_SET_CRB_CLKENAB_B(enab);
	}
	s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
}

#ifdef unused
static uint16_t s626_get_enable(struct comedi_device *dev,
				unsigned int chan)
{
	uint16_t crb = s626_debi_read(dev, S626_LP_CRB(chan));

	return (chan < 3) ? S626_GET_CRB_CLKENAB_A(crb)
			  : S626_GET_CRB_CLKENAB_B(crb);
}
#endif

#ifdef unused
static uint16_t s626_get_latch_source(struct comedi_device *dev,
				      unsigned int chan)
{
	return S626_GET_CRB_LATCHSRC(s626_debi_read(dev, S626_LP_CRB(chan)));
}
#endif

/*
 * Return/set the event that will trigger transfer of the preload
 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
 * 2=OverflowA (B counters only), 3=disabled.
 */
static void s626_set_load_trig(struct comedi_device *dev,
			       unsigned int chan, uint16_t trig)
{
	uint16_t reg;
	uint16_t mask;
	uint16_t set;

	if (chan < 3) {
		reg = S626_LP_CRA(chan);
		mask = S626_CRAMSK_LOADSRC_A;
		set = S626_SET_CRA_LOADSRC_A(trig);
	} else {
		reg = S626_LP_CRB(chan);
		mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
		set = S626_SET_CRB_LOADSRC_B(trig);
	}
	s626_debi_replace(dev, reg, ~mask, set);
}

#ifdef unused
static uint16_t s626_get_load_trig(struct comedi_device *dev,
				   unsigned int chan)
{
	if (chan < 3)
		return S626_GET_CRA_LOADSRC_A(s626_debi_read(dev,
							S626_LP_CRA(chan)));
	else
		return S626_GET_CRB_LOADSRC_B(s626_debi_read(dev,
							S626_LP_CRB(chan)));
}
#endif

/*
 * Return/set counter interrupt source and clear any captured
 * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
 * 2=IndexOnly, 3=IndexAndOverflow.
 */
static void s626_set_int_src(struct comedi_device *dev,
			     unsigned int chan, uint16_t int_source)
{
	struct s626_private *devpriv = dev->private;
	uint16_t cra_reg = S626_LP_CRA(chan);
	uint16_t crb_reg = S626_LP_CRB(chan);

	if (chan < 3) {
		/* Reset any pending counter overflow or index captures */
		s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
				  S626_SET_CRB_INTRESETCMD(1) |
				  S626_SET_CRB_INTRESET_A(1));

		/* Program counter interrupt source */
		s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
				  S626_SET_CRA_INTSRC_A(int_source));
	} else {
		uint16_t crb;

		/* Cache writeable CRB register image */
		crb = s626_debi_read(dev, crb_reg);
		crb &= ~S626_CRBMSK_INTCTRL;

		/* Reset any pending counter overflow or index captures */
		s626_debi_write(dev, crb_reg,
				crb | S626_SET_CRB_INTRESETCMD(1) |
				S626_SET_CRB_INTRESET_B(1));

		/* Program counter interrupt source */
		s626_debi_write(dev, crb_reg,
				(crb & ~S626_CRBMSK_INTSRC_B) |
				S626_SET_CRB_INTSRC_B(int_source));
	}

	/* Update MISC2 interrupt enable mask. */
	devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
					S626_INDXMASK(chan));
	switch (int_source) {
	case 0:
	default:
		break;
	case 1:
		devpriv->counter_int_enabs |= S626_OVERMASK(chan);
		break;
	case 2:
		devpriv->counter_int_enabs |= S626_INDXMASK(chan);
		break;
	case 3:
		devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
					       S626_INDXMASK(chan));
		break;
	}
}

#ifdef unused
static uint16_t s626_get_int_src(struct comedi_device *dev,
				 unsigned int chan)
{
	if (chan < 3)
		return S626_GET_CRA_INTSRC_A(s626_debi_read(dev,
							S626_LP_CRA(chan)));
	else
		return S626_GET_CRB_INTSRC_B(s626_debi_read(dev,
							S626_LP_CRB(chan)));
}
#endif

#ifdef unused
/*
 * Return/set the clock multiplier.
 */
static void s626_set_clk_mult(struct comedi_device *dev,
			      unsigned int chan, uint16_t value)
{
	uint16_t mode;

	mode = s626_get_mode(dev, chan);
	mode &= ~S626_STDMSK_CLKMULT;
	mode |= S626_SET_STD_CLKMULT(value);

	s626_set_mode(dev, chan, mode, false);
}

static uint16_t s626_get_clk_mult(struct comedi_device *dev,
				  unsigned int chan)
{
	return S626_GET_STD_CLKMULT(s626_get_mode(dev, chan));
}

/*
 * Return/set the clock polarity.
 */
static void s626_set_clk_pol(struct comedi_device *dev,
			     unsigned int chan, uint16_t value)
{
	uint16_t mode;

	mode = s626_get_mode(dev, chan);
	mode &= ~S626_STDMSK_CLKPOL;
	mode |= S626_SET_STD_CLKPOL(value);

	s626_set_mode(dev, chan, mode, false);
}

static uint16_t s626_get_clk_pol(struct comedi_device *dev,
				 unsigned int chan)
{
	return S626_GET_STD_CLKPOL(s626_get_mode(dev, chan));
}

/*
 * Return/set the encoder mode.
 */
static void s626_set_enc_mode(struct comedi_device *dev,
			      unsigned int chan, uint16_t value)
{
	uint16_t mode;

	mode = s626_get_mode(dev, chan);
	mode &= ~S626_STDMSK_ENCMODE;
	mode |= S626_SET_STD_ENCMODE(value);

	s626_set_mode(dev, chan, mode, false);
}

static uint16_t s626_get_enc_mode(struct comedi_device *dev,
				  unsigned int chan)
{
	return S626_GET_STD_ENCMODE(s626_get_mode(dev, chan));
}

/*
 * Return/set the index polarity.
 */
static void s626_set_index_pol(struct comedi_device *dev,
			       unsigned int chan, uint16_t value)
{
	uint16_t mode;

	mode = s626_get_mode(dev, chan);
	mode &= ~S626_STDMSK_INDXPOL;
	mode |= S626_SET_STD_INDXPOL(value != 0);

	s626_set_mode(dev, chan, mode, false);
}

static uint16_t s626_get_index_pol(struct comedi_device *dev,
				   unsigned int chan)
{
	return S626_GET_STD_INDXPOL(s626_get_mode(dev, chan));
}

/*
 * Return/set the index source.
 */
static void s626_set_index_src(struct comedi_device *dev,
			       unsigned int chan, uint16_t value)
{
	uint16_t mode;

	mode = s626_get_mode(dev, chan);
	mode &= ~S626_STDMSK_INDXSRC;
	mode |= S626_SET_STD_INDXSRC(value != 0);

	s626_set_mode(dev, chan, mode, false);
}

static uint16_t s626_get_index_src(struct comedi_device *dev,
				   unsigned int chan)
{
	return S626_GET_STD_INDXSRC(s626_get_mode(dev, chan));
}
#endif

/*
 * Generate an index pulse.
 */
static void s626_pulse_index(struct comedi_device *dev,
			     unsigned int chan)
{
	if (chan < 3) {
		uint16_t cra;

		cra = s626_debi_read(dev, S626_LP_CRA(chan));

		/* Pulse index */
		s626_debi_write(dev, S626_LP_CRA(chan),
				(cra ^ S626_CRAMSK_INDXPOL_A));
		s626_debi_write(dev, S626_LP_CRA(chan), cra);
	} else {
		uint16_t crb;

		crb = s626_debi_read(dev, S626_LP_CRB(chan));
		crb &= ~S626_CRBMSK_INTCTRL;

		/* Pulse index */
		s626_debi_write(dev, S626_LP_CRB(chan),
				(crb ^ S626_CRBMSK_INDXPOL_B));
		s626_debi_write(dev, S626_LP_CRB(chan), crb);
	}
}

static unsigned int s626_ai_reg_to_uint(unsigned int data)
{
	return ((data >> 18) & 0x3fff) ^ 0x2000;
}

static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
{
	unsigned int group = chan / 16;
	unsigned int mask = 1 << (chan - (16 * group));
	unsigned int status;

	/* set channel to capture positive edge */
	status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
	s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);

	/* enable interrupt on selected channel */
	status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
	s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);

	/* enable edge capture write command */
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);

	/* enable edge capture on selected channel */
	status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);

	return 0;
}

static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
			      unsigned int mask)
{
	/* disable edge capture write command */
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);

	/* enable edge capture on selected channel */
	s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);

	return 0;
}

static int s626_dio_clear_irq(struct comedi_device *dev)
{
	unsigned int group;

	/* disable edge capture write command */
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);

	/* clear all dio pending events and interrupt */
	for (group = 0; group < S626_DIO_BANKS; group++)
		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);

	return 0;
}

static void s626_handle_dio_interrupt(struct comedi_device *dev,
				      uint16_t irqbit, uint8_t group)
{
	struct s626_private *devpriv = dev->private;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_cmd *cmd = &s->async->cmd;

	s626_dio_reset_irq(dev, group, irqbit);

	if (devpriv->ai_cmd_running) {
		/* check if interrupt is an ai acquisition start trigger */
		if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
		    cmd->start_src == TRIG_EXT) {
			/* Start executing the RPS program */
			s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);

			if (cmd->scan_begin_src == TRIG_EXT)
				s626_dio_set_irq(dev, cmd->scan_begin_arg);
		}
		if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
		    cmd->scan_begin_src == TRIG_EXT) {
			/* Trigger ADC scan loop start */
			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);

			if (cmd->convert_src == TRIG_EXT) {
				devpriv->ai_convert_count = cmd->chanlist_len;

				s626_dio_set_irq(dev, cmd->convert_arg);
			}

			if (cmd->convert_src == TRIG_TIMER) {
				devpriv->ai_convert_count = cmd->chanlist_len;
				s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
			}
		}
		if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
		    cmd->convert_src == TRIG_EXT) {
			/* Trigger ADC scan loop start */
			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);

			devpriv->ai_convert_count--;
			if (devpriv->ai_convert_count > 0)
				s626_dio_set_irq(dev, cmd->convert_arg);
		}
	}
}

static void s626_check_dio_interrupts(struct comedi_device *dev)
{
	uint16_t irqbit;
	uint8_t group;

	for (group = 0; group < S626_DIO_BANKS; group++) {
		/* read interrupt type */
		irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));

		/* check if interrupt is generated from dio channels */
		if (irqbit) {
			s626_handle_dio_interrupt(dev, irqbit, group);
			return;
		}
	}
}

static void s626_check_counter_interrupts(struct comedi_device *dev)
{
	struct s626_private *devpriv = dev->private;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_async *async = s->async;
	struct comedi_cmd *cmd = &async->cmd;
	uint16_t irqbit;

	/* read interrupt type */
	irqbit = s626_debi_read(dev, S626_LP_RDMISC2);

	/* check interrupt on counters */
	if (irqbit & S626_IRQ_COINT1A) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 0);
	}
	if (irqbit & S626_IRQ_COINT2A) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 1);
	}
	if (irqbit & S626_IRQ_COINT3A) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 2);
	}
	if (irqbit & S626_IRQ_COINT1B) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 3);
	}
	if (irqbit & S626_IRQ_COINT2B) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 4);

		if (devpriv->ai_convert_count > 0) {
			devpriv->ai_convert_count--;
			if (devpriv->ai_convert_count == 0)
				s626_set_enable(dev, 4, S626_CLKENAB_INDEX);

			if (cmd->convert_src == TRIG_TIMER) {
				/* Trigger ADC scan loop start */
				s626_mc_enable(dev, S626_MC2_ADC_RPS,
					       S626_P_MC2);
			}
		}
	}
	if (irqbit & S626_IRQ_COINT3B) {
		/* clear interrupt capture flag */
		s626_reset_cap_flags(dev, 5);

		if (cmd->scan_begin_src == TRIG_TIMER) {
			/* Trigger ADC scan loop start */
			s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
		}

		if (cmd->convert_src == TRIG_TIMER) {
			devpriv->ai_convert_count = cmd->chanlist_len;
			s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
		}
	}
}

static bool s626_handle_eos_interrupt(struct comedi_device *dev)
{
	struct s626_private *devpriv = dev->private;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_async *async = s->async;
	struct comedi_cmd *cmd = &async->cmd;
	/*
	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
	 * first uint16_t in the buffer because it contains junk data
	 * from the final ADC of the previous poll list scan.
	 */
	uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
	int i;

	/* get the data and hand it over to comedi */
	for (i = 0; i < cmd->chanlist_len; i++) {
		unsigned short tempdata;

		/*
		 * Convert ADC data to 16-bit integer values and copy
		 * to application buffer.
		 */
		tempdata = s626_ai_reg_to_uint(*readaddr);
		readaddr++;

		comedi_buf_write_samples(s, &tempdata, 1);
	}

	if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
		async->events |= COMEDI_CB_EOA;

	if (async->events & COMEDI_CB_CANCEL_MASK)
		devpriv->ai_cmd_running = 0;

	if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
		s626_dio_set_irq(dev, cmd->scan_begin_arg);

	comedi_handle_events(dev, s);

	return !devpriv->ai_cmd_running;
}

static irqreturn_t s626_irq_handler(int irq, void *d)
{
	struct comedi_device *dev = d;
	unsigned long flags;
	uint32_t irqtype, irqstatus;

	if (!dev->attached)
		return IRQ_NONE;
	/* lock to avoid race with comedi_poll */
	spin_lock_irqsave(&dev->spinlock, flags);

	/* save interrupt enable register state */
	irqstatus = readl(dev->mmio + S626_P_IER);

	/* read interrupt type */
	irqtype = readl(dev->mmio + S626_P_ISR);

	/* disable master interrupt */
	writel(0, dev->mmio + S626_P_IER);

	/* clear interrupt */
	writel(irqtype, dev->mmio + S626_P_ISR);

	switch (irqtype) {
	case S626_IRQ_RPS1:	/* end_of_scan occurs */
		if (s626_handle_eos_interrupt(dev))
			irqstatus = 0;
		break;
	case S626_IRQ_GPIO3:	/* check dio and counter interrupt */
		/* s626_dio_clear_irq(dev); */
		s626_check_dio_interrupts(dev);
		s626_check_counter_interrupts(dev);
		break;
	}

	/* enable interrupt */
	writel(irqstatus, dev->mmio + S626_P_IER);

	spin_unlock_irqrestore(&dev->spinlock, flags);
	return IRQ_HANDLED;
}

/*
 * This function builds the RPS program for hardware driven acquisition.
 */
static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
{
	struct s626_private *devpriv = dev->private;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_cmd *cmd = &s->async->cmd;
	uint32_t *rps;
	uint32_t jmp_adrs;
	uint16_t i;
	uint16_t n;
	uint32_t local_ppl;

	/* Stop RPS program in case it is currently running */
	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);

	/* Set starting logical address to write RPS commands. */
	rps = (uint32_t *)devpriv->rps_buf.logical_base;

	/* Initialize RPS instruction pointer */
	writel((uint32_t)devpriv->rps_buf.physical_base,
	       dev->mmio + S626_P_RPSADDR1);

	/* Construct RPS program in rps_buf DMA buffer */
	if (cmd->scan_begin_src != TRIG_FOLLOW) {
		/* Wait for Start trigger. */
		*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
	}

	/*
	 * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
	 * because the first RPS DEBI Write following a non-RPS DEBI write
	 * seems to always fail.  If we don't do this dummy write, the ADC
	 * gain might not be set to the value required for the first slot in
	 * the poll list; the ADC gain would instead remain unchanged from
	 * the previously programmed value.
	 */
	/* Write DEBI Write command and address to shadow RAM. */
	*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
	*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
	*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
	/* Write DEBI immediate data  to shadow RAM: */
	*rps++ = S626_GSEL_BIPOLAR5V;	/* arbitrary immediate data  value. */
	*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
	/* Reset "shadow RAM  uploaded" flag. */
	/* Invoke shadow RAM upload. */
	*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
	/* Wait for shadow upload to finish. */
	*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;

	/*
	 * Digitize all slots in the poll list. This is implemented as a
	 * for loop to limit the slot count to 16 in case the application
	 * forgot to set the S626_EOPL flag in the final slot.
	 */
	for (devpriv->adc_items = 0; devpriv->adc_items < 16;
	     devpriv->adc_items++) {
		/*
		 * Convert application's poll list item to private board class
		 * format.  Each app poll list item is an uint8_t with form
		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
		 */
		local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
					   S626_GSEL_BIPOLAR10V);

		/* Switch ADC analog gain. */
		/* Write DEBI command and address to shadow RAM. */
		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
		/* Write DEBI immediate data to shadow RAM. */
		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
		*rps++ = local_ppl;
		/* Reset "shadow RAM uploaded" flag. */
		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
		/* Invoke shadow RAM upload. */
		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
		/* Wait for shadow upload to finish. */
		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
		/* Select ADC analog input channel. */
		*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
		/* Write DEBI command and address to shadow RAM. */
		*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
		*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
		/* Write DEBI immediate data to shadow RAM. */
		*rps++ = local_ppl;
		/* Reset "shadow RAM uploaded" flag. */
		*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
		/* Invoke shadow RAM upload. */
		*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
		/* Wait for shadow upload to finish. */
		*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;

		/*
		 * Delay at least 10 microseconds for analog input settling.
		 * Instead of padding with NOPs, we use S626_RPS_JUMP
		 * instructions here; this allows us to produce a longer delay
		 * than is possible with NOPs because each S626_RPS_JUMP
		 * flushes the RPS' instruction prefetch pipeline.
		 */
		jmp_adrs =
			(uint32_t)devpriv->rps_buf.physical_base +
			(uint32_t)((unsigned long)rps -
				   (unsigned long)devpriv->
						  rps_buf.logical_base);
		for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
			jmp_adrs += 8;	/* Repeat to implement time delay: */
			/* Jump to next RPS instruction. */
			*rps++ = S626_RPS_JUMP;
			*rps++ = jmp_adrs;
		}

		if (cmd->convert_src != TRIG_NOW) {
			/* Wait for Start trigger. */
			*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
			*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
		}
		/* Start ADC by pulsing GPIO1. */
		/* Begin ADC Start pulse. */
		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
		*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
		*rps++ = S626_RPS_NOP;
		/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
		/* End ADC Start pulse. */
		*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
		*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
		/*
		 * Wait for ADC to complete (GPIO2 is asserted high when ADC not
		 * busy) and for data from previous conversion to shift into FB
		 * BUFFER 1 register.
		 */
		/* Wait for ADC done. */
		*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;

		/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
		*rps++ = S626_RPS_STREG |
			 (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
		*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
			 (devpriv->adc_items << 2);

		/*
		 * If this slot's EndOfPollList flag is set, all channels have
		 * now been processed.
		 */
		if (*ppl++ & S626_EOPL) {
			devpriv->adc_items++; /* Adjust poll list item count. */
			break;	/* Exit poll list processing loop. */
		}
	}

	/*
	 * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
	 * ADC to stabilize for 2 microseconds before starting the final
	 * (dummy) conversion.  This delay is necessary to allow sufficient
	 * time between last conversion finished and the start of the dummy
	 * conversion.  Without this delay, the last conversion's data value
	 * is sometimes set to the previous conversion's data value.
	 */
	for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
		*rps++ = S626_RPS_NOP;

	/*
	 * Start a dummy conversion to cause the data from the last
	 * conversion of interest to be shifted in.
	 */
	/* Begin ADC Start pulse. */
	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
	*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
	*rps++ = S626_RPS_NOP;
	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
	*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
	*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;

	/*
	 * Wait for the data from the last conversion of interest to arrive
	 * in FB BUFFER 1 register.
	 */
	*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;	/* Wait for ADC done. */

	/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
	*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
	*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
		 (devpriv->adc_items << 2);

	/* Indicate ADC scan loop is finished. */
	/* Signal ReadADC() that scan is done. */
	/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */

	/* invoke interrupt */
	if (devpriv->ai_cmd_running == 1)
		*rps++ = S626_RPS_IRQ;

	/* Restart RPS program at its beginning. */
	*rps++ = S626_RPS_JUMP;	/* Branch to start of RPS program. */
	*rps++ = (uint32_t)devpriv->rps_buf.physical_base;

	/* End of RPS program build */
}

#ifdef unused_code
static int s626_ai_rinsn(struct comedi_device *dev,
			 struct comedi_subdevice *s,
			 struct comedi_insn *insn,
			 unsigned int *data)
{
	struct s626_private *devpriv = dev->private;
	uint8_t i;
	int32_t *readaddr;

	/* Trigger ADC scan loop start */
	s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);

	/* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
	while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
		;

	/*
	 * Init ptr to DMA buffer that holds new ADC data.  We skip the
	 * first uint16_t in the buffer because it contains junk data from
	 * the final ADC of the previous poll list scan.
	 */
	readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;

	/*
	 * Convert ADC data to 16-bit integer values and
	 * copy to application buffer.
	 */
	for (i = 0; i < devpriv->adc_items; i++) {
		*data = s626_ai_reg_to_uint(*readaddr++);
		data++;
	}

	return i;
}
#endif

static int s626_ai_eoc(struct comedi_device *dev,
		       struct comedi_subdevice *s,
		       struct comedi_insn *insn,
		       unsigned long context)
{
	unsigned int status;

	status = readl(dev->mmio + S626_P_PSR);
	if (status & S626_PSR_GPIO2)
		return 0;
	return -EBUSY;
}

static int s626_ai_insn_read(struct comedi_device *dev,
			     struct comedi_subdevice *s,
			     struct comedi_insn *insn,
			     unsigned int *data)
{
	uint16_t chan = CR_CHAN(insn->chanspec);
	uint16_t range = CR_RANGE(insn->chanspec);
	uint16_t adc_spec = 0;
	uint32_t gpio_image;
	uint32_t tmp;
	int ret;
	int n;

	/*
	 * Convert application's ADC specification into form
	 *  appropriate for register programming.
	 */
	if (range == 0)
		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
	else
		adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);

	/* Switch ADC analog gain. */
	s626_debi_write(dev, S626_LP_GSEL, adc_spec);	/* Set gain. */

	/* Select ADC analog input channel. */
	s626_debi_write(dev, S626_LP_ISEL, adc_spec);	/* Select channel. */

	for (n = 0; n < insn->n; n++) {
		/* Delay 10 microseconds for analog input settling. */
		udelay(10);

		/* Start ADC by pulsing GPIO1 low */
		gpio_image = readl(dev->mmio + S626_P_GPIO);
		/* Assert ADC Start command */
		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
		/* and stretch it out */
		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
		writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
		/* Negate ADC Start command */
		writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);

		/*
		 * Wait for ADC to complete (GPIO2 is asserted high when
		 * ADC not busy) and for data from previous conversion to
		 * shift into FB BUFFER 1 register.
		 */

		/* Wait for ADC done */
		ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
		if (ret)
			return ret;

		/* Fetch ADC data */
		if (n != 0) {
			tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
			data[n - 1] = s626_ai_reg_to_uint(tmp);
		}

		/*
		 * Allow the ADC to stabilize for 4 microseconds before
		 * starting the next (final) conversion.  This delay is
		 * necessary to allow sufficient time between last
		 * conversion finished and the start of the next
		 * conversion.  Without this delay, the last conversion's
		 * data value is sometimes set to the previous
		 * conversion's data value.
		 */
		udelay(4);
	}

	/*
	 * Start a dummy conversion to cause the data from the
	 * previous conversion to be shifted in.
	 */
	gpio_image = readl(dev->mmio + S626_P_GPIO);
	/* Assert ADC Start command */
	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
	/* and stretch it out */
	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
	writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
	/* Negate ADC Start command */
	writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);

	/* Wait for the data to arrive in FB BUFFER 1 register. */

	/* Wait for ADC done */
	ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
	if (ret)
		return ret;

	/* Fetch ADC data from audio interface's input shift register. */

	/* Fetch ADC data */
	if (n != 0) {
		tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
		data[n - 1] = s626_ai_reg_to_uint(tmp);
	}

	return n;
}

static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
{
	int n;

	for (n = 0; n < cmd->chanlist_len; n++) {
		if (CR_RANGE(cmd->chanlist[n]) == 0)
			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
		else
			ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
	}
	if (n != 0)
		ppl[n - 1] |= S626_EOPL;

	return n;
}

static int s626_ai_inttrig(struct comedi_device *dev,
			   struct comedi_subdevice *s,
			   unsigned int trig_num)
{
	struct comedi_cmd *cmd = &s->async->cmd;

	if (trig_num != cmd->start_arg)
		return -EINVAL;

	/* Start executing the RPS program */
	s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);

	s->async->inttrig = NULL;

	return 1;
}

/*
 * This function doesn't require a particular form, this is just what
 * happens to be used in some of the drivers.  It should convert ns
 * nanoseconds to a counter value suitable for programming the device.
 * Also, it should adjust ns so that it cooresponds to the actual time
 * that the device will use.
 */
static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
{
	int divider, base;

	base = 500;		/* 2MHz internal clock */

	switch (flags & CMDF_ROUND_MASK) {
	case CMDF_ROUND_NEAREST:
	default:
		divider = DIV_ROUND_CLOSEST(*nanosec, base);
		break;
	case CMDF_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case CMDF_ROUND_UP:
		divider = DIV_ROUND_UP(*nanosec, base);
		break;
	}

	*nanosec = base * divider;
	return divider - 1;
}

static void s626_timer_load(struct comedi_device *dev,
			    unsigned int chan, int tick)
{
	uint16_t setup =
		/* Preload upon index. */
		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
		/* Disable hardware index. */
		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
		/* Operating mode is Timer. */
		S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
		/* Count direction is Down. */
		S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
		/* Clock multiplier is 1x. */
		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
		/* Enabled by index */
		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
	uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
	/* uint16_t enab = S626_CLKENAB_ALWAYS; */

	s626_set_mode(dev, chan, setup, false);

	/* Set the preload register */
	s626_preload(dev, chan, tick);

	/*
	 * Software index pulse forces the preload register to load
	 * into the counter
	 */
	s626_set_load_trig(dev, chan, 0);
	s626_pulse_index(dev, chan);

	/* set reload on counter overflow */
	s626_set_load_trig(dev, chan, 1);

	/* set interrupt on overflow */
	s626_set_int_src(dev, chan, S626_INTSRC_OVER);

	s626_set_latch_source(dev, chan, value_latchsrc);
	/* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
}

/* TO COMPLETE  */
static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct s626_private *devpriv = dev->private;
	uint8_t ppl[16];
	struct comedi_cmd *cmd = &s->async->cmd;
	int tick;

	if (devpriv->ai_cmd_running) {
		dev_err(dev->class_dev,
			"s626_ai_cmd: Another ai_cmd is running\n");
		return -EBUSY;
	}
	/* disable interrupt */
	writel(0, dev->mmio + S626_P_IER);

	/* clear interrupt request */
	writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);

	/* clear any pending interrupt */
	s626_dio_clear_irq(dev);
	/* s626_enc_clear_irq(dev); */

	/* reset ai_cmd_running flag */
	devpriv->ai_cmd_running = 0;

	s626_ai_load_polllist(ppl, cmd);
	devpriv->ai_cmd_running = 1;
	devpriv->ai_convert_count = 0;

	switch (cmd->scan_begin_src) {
	case TRIG_FOLLOW:
		break;
	case TRIG_TIMER:
		/*
		 * set a counter to generate adc trigger at scan_begin_arg
		 * interval
		 */
		tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);

		/* load timer value and enable interrupt */
		s626_timer_load(dev, 5, tick);
		s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
		break;
	case TRIG_EXT:
		/* set the digital line and interrupt for scan trigger */
		if (cmd->start_src != TRIG_EXT)
			s626_dio_set_irq(dev, cmd->scan_begin_arg);
		break;
	}

	switch (cmd->convert_src) {
	case TRIG_NOW:
		break;
	case TRIG_TIMER:
		/*
		 * set a counter to generate adc trigger at convert_arg
		 * interval
		 */
		tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);

		/* load timer value and enable interrupt */
		s626_timer_load(dev, 4, tick);
		s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
		break;
	case TRIG_EXT:
		/* set the digital line and interrupt for convert trigger */
		if (cmd->scan_begin_src != TRIG_EXT &&
		    cmd->start_src == TRIG_EXT)
			s626_dio_set_irq(dev, cmd->convert_arg);
		break;
	}

	s626_reset_adc(dev, ppl);

	switch (cmd->start_src) {
	case TRIG_NOW:
		/* Trigger ADC scan loop start */
		/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */

		/* Start executing the RPS program */
		s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
		s->async->inttrig = NULL;
		break;
	case TRIG_EXT:
		/* configure DIO channel for acquisition trigger */
		s626_dio_set_irq(dev, cmd->start_arg);
		s->async->inttrig = NULL;
		break;
	case TRIG_INT:
		s->async->inttrig = s626_ai_inttrig;
		break;
	}

	/* enable interrupt */
	writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);

	return 0;
}

static int s626_ai_cmdtest(struct comedi_device *dev,
			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
{
	int err = 0;
	unsigned int arg;

	/* Step 1 : check if triggers are trivially valid */

	err |= comedi_check_trigger_src(&cmd->start_src,
					TRIG_NOW | TRIG_INT | TRIG_EXT);
	err |= comedi_check_trigger_src(&cmd->scan_begin_src,
					TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
	err |= comedi_check_trigger_src(&cmd->convert_src,
					TRIG_TIMER | TRIG_EXT | TRIG_NOW);
	err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= comedi_check_trigger_is_unique(cmd->start_src);
	err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
	err |= comedi_check_trigger_is_unique(cmd->convert_src);
	err |= comedi_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	switch (cmd->start_src) {
	case TRIG_NOW:
	case TRIG_INT:
		err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
		break;
	case TRIG_EXT:
		err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
		break;
	}

	if (cmd->scan_begin_src == TRIG_EXT)
		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
	if (cmd->convert_src == TRIG_EXT)
		err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);

#define S626_MAX_SPEED	200000	/* in nanoseconds */
#define S626_MIN_SPEED	2000000000	/* in nanoseconds */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
						    S626_MAX_SPEED);
		err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
						    S626_MIN_SPEED);
	} else {
		/*
		 * external trigger
		 * should be level/edge, hi/lo specification here
		 * should specify multiple external triggers
		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
		 */
	}
	if (cmd->convert_src == TRIG_TIMER) {
		err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
						    S626_MAX_SPEED);
		err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
						    S626_MIN_SPEED);
	} else {
		/*
		 * external trigger - see above
		 * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
		 */
	}

	err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
					   cmd->chanlist_len);

	if (cmd->stop_src == TRIG_COUNT)
		err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
	else	/* TRIG_NONE */
		err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		arg = cmd->scan_begin_arg;
		s626_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
	}

	if (cmd->convert_src == TRIG_TIMER) {
		arg = cmd->convert_arg;
		s626_ns_to_timer(&arg, cmd->flags);
		err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);

		if (cmd->scan_begin_src == TRIG_TIMER) {
			arg = cmd->convert_arg * cmd->scan_end_arg;
			err |= comedi_check_trigger_arg_min(&cmd->
							    scan_begin_arg,
							    arg);
		}
	}

	if (err)
		return 4;

	return 0;
}

static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct s626_private *devpriv = dev->private;

	/* Stop RPS program in case it is currently running */
	s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);

	/* disable master interrupt */
	writel(0, dev->mmio + S626_P_IER);

	devpriv->ai_cmd_running = 0;

	return 0;
}

static int s626_ao_insn_write(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn,
			      unsigned int *data)
{
	unsigned int chan = CR_CHAN(insn->chanspec);
	int i;

	for (i = 0; i < insn->n; i++) {
		int16_t dacdata = (int16_t)data[i];
		int ret;

		dacdata -= (0x1fff);

		ret = s626_set_dac(dev, chan, dacdata);
		if (ret)
			return ret;

		s->readback[chan] = data[i];
	}

	return insn->n;
}

/* *************** DIGITAL I/O FUNCTIONS *************** */

/*
 * All DIO functions address a group of DIO channels by means of
 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
 * ports A, B and C, respectively.
 */

static void s626_dio_init(struct comedi_device *dev)
{
	uint16_t group;

	/* Prepare to treat writes to WRCapSel as capture disables. */
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);

	/* For each group of sixteen channels ... */
	for (group = 0; group < S626_DIO_BANKS; group++) {
		/* Disable all interrupts */
		s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
		/* Disable all event captures */
		s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
		/* Init all DIOs to default edge polarity */
		s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
		/* Program all outputs to inactive state */
		s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
	}
}

static int s626_dio_insn_bits(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn,
			      unsigned int *data)
{
	unsigned long group = (unsigned long)s->private;

	if (comedi_dio_update_state(s, data))
		s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);

	data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));

	return insn->n;
}

static int s626_dio_insn_config(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn,
				unsigned int *data)
{
	unsigned long group = (unsigned long)s->private;
	int ret;

	ret = comedi_dio_insn_config(dev, s, insn, data, 0);
	if (ret)
		return ret;

	s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);

	return insn->n;
}

/*
 * Now this function initializes the value of the counter (data[0])
 * and set the subdevice. To complete with trigger and interrupt
 * configuration.
 *
 * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
 * what is being configured, but this function appears to be using data[0]
 * as a variable.
 */
static int s626_enc_insn_config(struct comedi_device *dev,
				struct comedi_subdevice *s,
				struct comedi_insn *insn, unsigned int *data)
{
	unsigned int chan = CR_CHAN(insn->chanspec);
	uint16_t setup =
		/* Preload upon index. */
		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
		/* Disable hardware index. */
		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
		/* Operating mode is Counter. */
		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
		/* Active high clock. */
		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
		/* Clock multiplier is 1x. */
		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
		/* Enabled by index */
		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
	/* uint16_t disable_int_src = true; */
	/* uint32_t Preloadvalue;              //Counter initial value */
	uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
	uint16_t enab = S626_CLKENAB_ALWAYS;

	/* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */

	s626_set_mode(dev, chan, setup, true);
	s626_preload(dev, chan, data[0]);
	s626_pulse_index(dev, chan);
	s626_set_latch_source(dev, chan, value_latchsrc);
	s626_set_enable(dev, chan, (enab != 0));

	return insn->n;
}

static int s626_enc_insn_read(struct comedi_device *dev,
			      struct comedi_subdevice *s,
			      struct comedi_insn *insn,
			      unsigned int *data)
{
	unsigned int chan = CR_CHAN(insn->chanspec);
	uint16_t cntr_latch_reg = S626_LP_CNTR(chan);
	int i;

	for (i = 0; i < insn->n; i++) {
		unsigned int val;

		/*
		 * Read the counter's output latch LSW/MSW.
		 * Latches on LSW read.
		 */
		val = s626_debi_read(dev, cntr_latch_reg);
		val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
		data[i] = val;
	}

	return insn->n;
}

static int s626_enc_insn_write(struct comedi_device *dev,
			       struct comedi_subdevice *s,
			       struct comedi_insn *insn, unsigned int *data)
{
	unsigned int chan = CR_CHAN(insn->chanspec);

	/* Set the preload register */
	s626_preload(dev, chan, data[0]);

	/*
	 * Software index pulse forces the preload register to load
	 * into the counter
	 */
	s626_set_load_trig(dev, chan, 0);
	s626_pulse_index(dev, chan);
	s626_set_load_trig(dev, chan, 2);

	return 1;
}

static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
{
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
	s626_debi_write(dev, S626_LP_WRMISC2, new_image);
	s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
}

static void s626_counters_init(struct comedi_device *dev)
{
	int chan;
	uint16_t setup =
		/* Preload upon index. */
		S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
		/* Disable hardware index. */
		S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
		/* Operating mode is counter. */
		S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
		/* Active high clock. */
		S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
		/* Clock multiplier is 1x. */
		S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
		/* Enabled by index */
		S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);

	/*
	 * Disable all counter interrupts and clear any captured counter events.
	 */
	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
		s626_set_mode(dev, chan, setup, true);
		s626_set_int_src(dev, chan, 0);
		s626_reset_cap_flags(dev, chan);
		s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
	}
}

static int s626_allocate_dma_buffers(struct comedi_device *dev)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	struct s626_private *devpriv = dev->private;
	void *addr;
	dma_addr_t appdma;

	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
	if (!addr)
		return -ENOMEM;
	devpriv->ana_buf.logical_base = addr;
	devpriv->ana_buf.physical_base = appdma;

	addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
	if (!addr)
		return -ENOMEM;
	devpriv->rps_buf.logical_base = addr;
	devpriv->rps_buf.physical_base = appdma;

	return 0;
}

static void s626_free_dma_buffers(struct comedi_device *dev)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	struct s626_private *devpriv = dev->private;

	if (!devpriv)
		return;

	if (devpriv->rps_buf.logical_base)
		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
				    devpriv->rps_buf.logical_base,
				    devpriv->rps_buf.physical_base);
	if (devpriv->ana_buf.logical_base)
		pci_free_consistent(pcidev, S626_DMABUF_SIZE,
				    devpriv->ana_buf.logical_base,
				    devpriv->ana_buf.physical_base);
}

static int s626_initialize(struct comedi_device *dev)
{
	struct s626_private *devpriv = dev->private;
	dma_addr_t phys_buf;
	uint16_t chan;
	int i;
	int ret;

	/* Enable DEBI and audio pins, enable I2C interface */
	s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
		       S626_P_MC1);

	/*
	 * Configure DEBI operating mode
	 *
	 *  Local bus is 16 bits wide
	 *  Declare DEBI transfer timeout interval
	 *  Set up byte lane steering
	 *  Intel-compatible local bus (DEBI never times out)
	 */
	writel(S626_DEBI_CFG_SLAVE16 |
	       (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
	       S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);

	/* Disable MMU paging */
	writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);

	/* Init GPIO so that ADC Start* is negated */
	writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);

	/* I2C device address for onboard eeprom (revb) */
	devpriv->i2c_adrs = 0xA0;

	/*
	 * Issue an I2C ABORT command to halt any I2C
	 * operation in progress and reset BUSY flag.
	 */
	writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
	       dev->mmio + S626_P_I2CSTAT);
	s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
	ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
	if (ret)
		return ret;

	/*
	 * Per SAA7146 data sheet, write to STATUS
	 * reg twice to reset all  I2C error flags.
	 */
	for (i = 0; i < 2; i++) {
		writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
		s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
		ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
		if (ret)
			return ret;
	}

	/*
	 * Init audio interface functional attributes: set DAC/ADC
	 * serial clock rates, invert DAC serial clock so that
	 * DAC data setup times are satisfied, enable DAC serial
	 * clock out.
	 */
	writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);

	/*
	 * Set up TSL1 slot list, which is used to control the
	 * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
	 * S626_SIB_A1  = store data uint8_t at next available location
	 * in FB BUFFER1 register.
	 */
	writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
	writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
	       dev->mmio + S626_P_TSL1 + 4);

	/* Enable TSL1 slot list so that it executes all the time */
	writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);

	/*
	 * Initialize RPS registers used for ADC
	 */

	/* Physical start of RPS program */
	writel((uint32_t)devpriv->rps_buf.physical_base,
	       dev->mmio + S626_P_RPSADDR1);
	/* RPS program performs no explicit mem writes */
	writel(0, dev->mmio + S626_P_RPSPAGE1);
	/* Disable RPS timeouts */
	writel(0, dev->mmio + S626_P_RPS1_TOUT);

#if 0
	/*
	 * SAA7146 BUG WORKAROUND
	 *
	 * Initialize SAA7146 ADC interface to a known state by
	 * invoking ADCs until FB BUFFER 1 register shows that it
	 * is correctly receiving ADC data. This is necessary
	 * because the SAA7146 ADC interface does not start up in
	 * a defined state after a PCI reset.
	 */
	{
		struct comedi_subdevice *s = dev->read_subdev;
		uint8_t poll_list;
		uint16_t adc_data;
		uint16_t start_val;
		uint16_t index;
		unsigned int data[16];

		/* Create a simple polling list for analog input channel 0 */
		poll_list = S626_EOPL;
		s626_reset_adc(dev, &poll_list);

		/* Get initial ADC value */
		s626_ai_rinsn(dev, s, NULL, data);
		start_val = data[0];

		/*
		 * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
		 * EXECUTION.
		 *
		 * Invoke ADCs until the new ADC value differs from the initial
		 * value or a timeout occurs.  The timeout protects against the
		 * possibility that the driver is restarting and the ADC data is
		 * a fixed value resulting from the applied ADC analog input
		 * being unusually quiet or at the rail.
		 */
		for (index = 0; index < 500; index++) {
			s626_ai_rinsn(dev, s, NULL, data);
			adc_data = data[0];
			if (adc_data != start_val)
				break;
		}
	}
#endif	/* SAA7146 BUG WORKAROUND */

	/*
	 * Initialize the DAC interface
	 */

	/*
	 * Init Audio2's output DMAC attributes:
	 *   burst length = 1 DWORD
	 *   threshold = 1 DWORD.
	 */
	writel(0, dev->mmio + S626_P_PCI_BT_A);

	/*
	 * Init Audio2's output DMA physical addresses.  The protection
	 * address is set to 1 DWORD past the base address so that a
	 * single DWORD will be transferred each time a DMA transfer is
	 * enabled.
	 */
	phys_buf = devpriv->ana_buf.physical_base +
		   (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
	writel((uint32_t)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
	writel((uint32_t)(phys_buf + sizeof(uint32_t)),
	       dev->mmio + S626_P_PROTA2_OUT);

	/*
	 * Cache Audio2's output DMA buffer logical address.  This is
	 * where DAC data is buffered for A2 output DMA transfers.
	 */
	devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
			    S626_DAC_WDMABUF_OS;

	/*
	 * Audio2's output channels does not use paging.  The
	 * protection violation handling bit is set so that the
	 * DMAC will automatically halt and its PCI address pointer
	 * will be reset when the protection address is reached.
	 */
	writel(8, dev->mmio + S626_P_PAGEA2_OUT);

	/*
	 * Initialize time slot list 2 (TSL2), which is used to control
	 * the clock generation for and serialization of data to be sent
	 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
	 * execution; this permits other slots to be safely modified
	 * without first turning off the TSL sequencer (which is
	 * apparently impossible to do).  Also, SD3 (which is driven by a
	 * pull-up resistor) is shifted in and stored to the MSB of
	 * FB_BUFFER2 to be used as evidence that the slot sequence has
	 * not yet finished executing.
	 */

	/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
	writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
	       dev->mmio + S626_VECTPORT(0));

	/*
	 * Initialize slot 1, which is constant.  Slot 1 causes a
	 * DWORD to be transferred from audio channel 2's output FIFO
	 * to the FIFO's output buffer so that it can be serialized
	 * and sent to the DAC during subsequent slots.  All remaining
	 * slots are dynamically populated as required by the target
	 * DAC device.
	 */

	/* Slot 1: Fetch DWORD from Audio2's output FIFO */
	writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));

	/* Start DAC's audio interface (TSL2) running */
	writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);

	/*
	 * Init Trim DACs to calibrated values.  Do it twice because the
	 * SAA7146 audio channel does not always reset properly and
	 * sometimes causes the first few TrimDAC writes to malfunction.
	 */
	s626_load_trim_dacs(dev);
	ret = s626_load_trim_dacs(dev);
	if (ret)
		return ret;

	/*
	 * Manually init all gate array hardware in case this is a soft
	 * reset (we have no way of determining whether this is a warm
	 * or cold start).  This is necessary because the gate array will
	 * reset only in response to a PCI hard reset; there is no soft
	 * reset function.
	 */

	/*
	 * Init all DAC outputs to 0V and init all DAC setpoint and
	 * polarity images.
	 */
	for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
		ret = s626_set_dac(dev, chan, 0);
		if (ret)
			return ret;
	}

	/* Init counters */
	s626_counters_init(dev);

	/*
	 * Without modifying the state of the Battery Backup enab, disable
	 * the watchdog timer, set DIO channels 0-5 to operate in the
	 * standard DIO (vs. counter overflow) mode, disable the battery
	 * charger, and reset the watchdog interval selector to zero.
	 */
	s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
			       S626_MISC2_BATT_ENABLE));

	/* Initialize the digital I/O subsystem */
	s626_dio_init(dev);

	return 0;
}

static int s626_auto_attach(struct comedi_device *dev,
			    unsigned long context_unused)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	struct s626_private *devpriv;
	struct comedi_subdevice *s;
	int ret;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	ret = comedi_pci_enable(dev);
	if (ret)
		return ret;

	dev->mmio = pci_ioremap_bar(pcidev, 0);
	if (!dev->mmio)
		return -ENOMEM;

	/* disable master interrupt */
	writel(0, dev->mmio + S626_P_IER);

	/* soft reset */
	writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);

	/* DMA FIXME DMA// */

	ret = s626_allocate_dma_buffers(dev);
	if (ret)
		return ret;

	if (pcidev->irq) {
		ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
				  dev->board_name, dev);

		if (ret == 0)
			dev->irq = pcidev->irq;
	}

	ret = comedi_alloc_subdevices(dev, 6);
	if (ret)
		return ret;

	s = &dev->subdevices[0];
	/* analog input subdevice */
	s->type		= COMEDI_SUBD_AI;
	s->subdev_flags	= SDF_READABLE | SDF_DIFF;
	s->n_chan	= S626_ADC_CHANNELS;
	s->maxdata	= 0x3fff;
	s->range_table	= &s626_range_table;
	s->len_chanlist	= S626_ADC_CHANNELS;
	s->insn_read	= s626_ai_insn_read;
	if (dev->irq) {
		dev->read_subdev = s;
		s->subdev_flags	|= SDF_CMD_READ;
		s->do_cmd	= s626_ai_cmd;
		s->do_cmdtest	= s626_ai_cmdtest;
		s->cancel	= s626_ai_cancel;
	}

	s = &dev->subdevices[1];
	/* analog output subdevice */
	s->type		= COMEDI_SUBD_AO;
	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
	s->n_chan	= S626_DAC_CHANNELS;
	s->maxdata	= 0x3fff;
	s->range_table	= &range_bipolar10;
	s->insn_write	= s626_ao_insn_write;

	ret = comedi_alloc_subdev_readback(s);
	if (ret)
		return ret;

	s = &dev->subdevices[2];
	/* digital I/O subdevice */
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
	s->n_chan	= 16;
	s->maxdata	= 1;
	s->io_bits	= 0xffff;
	s->private	= (void *)0;	/* DIO group 0 */
	s->range_table	= &range_digital;
	s->insn_config	= s626_dio_insn_config;
	s->insn_bits	= s626_dio_insn_bits;

	s = &dev->subdevices[3];
	/* digital I/O subdevice */
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
	s->n_chan	= 16;
	s->maxdata	= 1;
	s->io_bits	= 0xffff;
	s->private	= (void *)1;	/* DIO group 1 */
	s->range_table	= &range_digital;
	s->insn_config	= s626_dio_insn_config;
	s->insn_bits	= s626_dio_insn_bits;

	s = &dev->subdevices[4];
	/* digital I/O subdevice */
	s->type		= COMEDI_SUBD_DIO;
	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE;
	s->n_chan	= 16;
	s->maxdata	= 1;
	s->io_bits	= 0xffff;
	s->private	= (void *)2;	/* DIO group 2 */
	s->range_table	= &range_digital;
	s->insn_config	= s626_dio_insn_config;
	s->insn_bits	= s626_dio_insn_bits;

	s = &dev->subdevices[5];
	/* encoder (counter) subdevice */
	s->type		= COMEDI_SUBD_COUNTER;
	s->subdev_flags	= SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
	s->n_chan	= S626_ENCODER_CHANNELS;
	s->maxdata	= 0xffffff;
	s->range_table	= &range_unknown;
	s->insn_config	= s626_enc_insn_config;
	s->insn_read	= s626_enc_insn_read;
	s->insn_write	= s626_enc_insn_write;

	return s626_initialize(dev);
}

static void s626_detach(struct comedi_device *dev)
{
	struct s626_private *devpriv = dev->private;

	if (devpriv) {
		/* stop ai_command */
		devpriv->ai_cmd_running = 0;

		if (dev->mmio) {
			/* interrupt mask */
			/* Disable master interrupt */
			writel(0, dev->mmio + S626_P_IER);
			/* Clear board's IRQ status flag */
			writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
			       dev->mmio + S626_P_ISR);

			/* Disable the watchdog timer and battery charger. */
			s626_write_misc2(dev, 0);

			/* Close all interfaces on 7146 device */
			writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
			writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
		}
	}
	comedi_pci_detach(dev);
	s626_free_dma_buffers(dev);
}

static struct comedi_driver s626_driver = {
	.driver_name	= "s626",
	.module		= THIS_MODULE,
	.auto_attach	= s626_auto_attach,
	.detach		= s626_detach,
};

static int s626_pci_probe(struct pci_dev *dev,
			  const struct pci_device_id *id)
{
	return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
}

/*
 * For devices with vendor:device id == 0x1131:0x7146 you must specify
 * also subvendor:subdevice ids, because otherwise it will conflict with
 * Philips SAA7146 media/dvb based cards.
 */
static const struct pci_device_id s626_pci_table[] = {
	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
			 0x6000, 0x0272) },
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, s626_pci_table);

static struct pci_driver s626_pci_driver = {
	.name		= "s626",
	.id_table	= s626_pci_table,
	.probe		= s626_pci_probe,
	.remove		= comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(s626_driver, s626_pci_driver);

MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
MODULE_LICENSE("GPL");