Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
/*
 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
 *
 * See industrialio/accels/sca3000.h for comments.
 */

#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
#include <linux/iio/buffer.h>
#include <linux/iio/kfifo_buf.h>

#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
#define SCA3000_READ_REG(a) ((a) << 2)

#define SCA3000_REG_REVID_ADDR				0x00
#define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
#define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)

#define SCA3000_REG_STATUS_ADDR				0x02
#define   SCA3000_LOCKED				BIT(5)
#define   SCA3000_EEPROM_CS_ERROR			BIT(1)
#define   SCA3000_SPI_FRAME_ERROR			BIT(0)

/* All reads done using register decrement so no need to directly access LSBs */
#define SCA3000_REG_X_MSB_ADDR				0x05
#define SCA3000_REG_Y_MSB_ADDR				0x07
#define SCA3000_REG_Z_MSB_ADDR				0x09

#define SCA3000_REG_RING_OUT_ADDR			0x0f

/* Temp read untested - the e05 doesn't have the sensor */
#define SCA3000_REG_TEMP_MSB_ADDR			0x13

#define SCA3000_REG_MODE_ADDR				0x14
#define SCA3000_MODE_PROT_MASK				0x28
#define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
#define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)

/*
 * Free fall detection triggers an interrupt if the acceleration
 * is below a threshold for equivalent of 25cm drop
 */
#define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
#define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
#define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
#define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02

/*
 * In motion detection mode the accelerations are band pass filtered
 * (approx 1 - 25Hz) and then a programmable threshold used to trigger
 * and interrupt.
 */
#define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
#define   SCA3000_REG_MODE_MODE_MASK			0x03

#define SCA3000_REG_BUF_COUNT_ADDR			0x15

#define SCA3000_REG_INT_STATUS_ADDR			0x16
#define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
#define   SCA3000_REG_INT_STATUS_HALF			BIT(6)

#define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
#define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
#define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
#define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)

/* Used to allow access to multiplexed registers */
#define SCA3000_REG_CTRL_SEL_ADDR			0x18
/* Only available for SCA3000-D03 and SCA3000-D01 */
#define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
#define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
#define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
#define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
#define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
/*
 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
 * will not function
 */
#define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B

#define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
#define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
#define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
#define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
#define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
#define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
#define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01


/*
 * Control which motion detector interrupts are on.
 * For now only OR combinations are supported.
 */
#define SCA3000_MD_CTRL_PROT_MASK			0xC0
#define SCA3000_MD_CTRL_OR_Y				BIT(0)
#define SCA3000_MD_CTRL_OR_X				BIT(1)
#define SCA3000_MD_CTRL_OR_Z				BIT(2)
/* Currently unsupported */
#define SCA3000_MD_CTRL_AND_Y				BIT(3)
#define SCA3000_MD_CTRL_AND_X				BIT(4)
#define SAC3000_MD_CTRL_AND_Z				BIT(5)

/*
 * Some control registers of complex access methods requiring this register to
 * be used to remove a lock.
 */
#define SCA3000_REG_UNLOCK_ADDR				0x1e

#define SCA3000_REG_INT_MASK_ADDR			0x21
#define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C

#define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
#define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)

#define SCA3000_REG_INT_MASK_ALL_INTS			0x02
#define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
#define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
/* Values of multiplexed registers (write to ctrl_data after select) */
#define SCA3000_REG_CTRL_DATA_ADDR			0x22

/*
 * Measurement modes available on some sca3000 series chips. Code assumes others
 * may become available in the future.
 *
 * Bypass - Bypass the low-pass filter in the signal channel so as to increase
 *          signal bandwidth.
 *
 * Narrow - Narrow low-pass filtering of the signal channel and half output
 *          data rate by decimation.
 *
 * Wide - Widen low-pass filtering of signal channel to increase bandwidth
 */
#define SCA3000_OP_MODE_BYPASS				0x01
#define SCA3000_OP_MODE_NARROW				0x02
#define SCA3000_OP_MODE_WIDE				0x04
#define SCA3000_MAX_TX 6
#define SCA3000_MAX_RX 2

/**
 * struct sca3000_state - device instance state information
 * @us:			the associated spi device
 * @info:			chip variant information
 * @last_timestamp:		the timestamp of the last event
 * @mo_det_use_count:		reference counter for the motion detection unit
 * @lock:			lock used to protect elements of sca3000_state
 *				and the underlying device state.
 * @tx:			dma-able transmit buffer
 * @rx:			dma-able receive buffer
 **/
struct sca3000_state {
	struct spi_device		*us;
	const struct sca3000_chip_info	*info;
	s64				last_timestamp;
	int				mo_det_use_count;
	struct mutex			lock;
	/* Can these share a cacheline ? */
	u8				rx[384] ____cacheline_aligned;
	u8				tx[6] ____cacheline_aligned;
};

/**
 * struct sca3000_chip_info - model dependent parameters
 * @scale:			scale * 10^-6
 * @temp_output:		some devices have temperature sensors.
 * @measurement_mode_freq:	normal mode sampling frequency
 * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
 * the normal measurement mode.
 * @option_mode_1:		first optional mode. Not all models have one
 * @option_mode_1_freq:		option mode 1 sampling frequency
 * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
 * the first option mode.
 * @option_mode_2:		second optional mode. Not all chips have one
 * @option_mode_2_freq:		option mode 2 sampling frequency
 * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
 * the second option mode.
 * @mod_det_mult_xz:		Bit wise multipliers to calculate the threshold
 * for motion detection in the x and z axis.
 * @mod_det_mult_y:		Bit wise multipliers to calculate the threshold
 * for motion detection in the y axis.
 *
 * This structure is used to hold information about the functionality of a given
 * sca3000 variant.
 **/
struct sca3000_chip_info {
	unsigned int		scale;
	bool			temp_output;
	int			measurement_mode_freq;
	int			measurement_mode_3db_freq;
	int			option_mode_1;
	int			option_mode_1_freq;
	int			option_mode_1_3db_freq;
	int			option_mode_2;
	int			option_mode_2_freq;
	int			option_mode_2_3db_freq;
	int			mot_det_mult_xz[6];
	int			mot_det_mult_y[7];
};

enum sca3000_variant {
	d01,
	e02,
	e04,
	e05,
};

/*
 * Note where option modes are not defined, the chip simply does not
 * support any.
 * Other chips in the sca3000 series use i2c and are not included here.
 *
 * Some of these devices are only listed in the family data sheet and
 * do not actually appear to be available.
 */
static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
	[d01] = {
		.scale = 7357,
		.temp_output = true,
		.measurement_mode_freq = 250,
		.measurement_mode_3db_freq = 45,
		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
		.option_mode_1_freq = 250,
		.option_mode_1_3db_freq = 70,
		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
	},
	[e02] = {
		.scale = 9810,
		.measurement_mode_freq = 125,
		.measurement_mode_3db_freq = 40,
		.option_mode_1 = SCA3000_OP_MODE_NARROW,
		.option_mode_1_freq = 63,
		.option_mode_1_3db_freq = 11,
		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
	},
	[e04] = {
		.scale = 19620,
		.measurement_mode_freq = 100,
		.measurement_mode_3db_freq = 38,
		.option_mode_1 = SCA3000_OP_MODE_NARROW,
		.option_mode_1_freq = 50,
		.option_mode_1_3db_freq = 9,
		.option_mode_2 = SCA3000_OP_MODE_WIDE,
		.option_mode_2_freq = 400,
		.option_mode_2_3db_freq = 70,
		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
	},
	[e05] = {
		.scale = 61313,
		.measurement_mode_freq = 200,
		.measurement_mode_3db_freq = 60,
		.option_mode_1 = SCA3000_OP_MODE_NARROW,
		.option_mode_1_freq = 50,
		.option_mode_1_3db_freq = 9,
		.option_mode_2 = SCA3000_OP_MODE_WIDE,
		.option_mode_2_freq = 400,
		.option_mode_2_3db_freq = 75,
		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
	},
};

static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
{
	st->tx[0] = SCA3000_WRITE_REG(address);
	st->tx[1] = val;
	return spi_write(st->us, st->tx, 2);
}

static int sca3000_read_data_short(struct sca3000_state *st,
				   u8 reg_address_high,
				   int len)
{
	struct spi_transfer xfer[2] = {
		{
			.len = 1,
			.tx_buf = st->tx,
		}, {
			.len = len,
			.rx_buf = st->rx,
		}
	};
	st->tx[0] = SCA3000_READ_REG(reg_address_high);

	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
}

/**
 * sca3000_reg_lock_on() - test if the ctrl register lock is on
 * @st: Driver specific device instance data.
 *
 * Lock must be held.
 **/
static int sca3000_reg_lock_on(struct sca3000_state *st)
{
	int ret;

	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
	if (ret < 0)
		return ret;

	return !(st->rx[0] & SCA3000_LOCKED);
}

/**
 * __sca3000_unlock_reg_lock() - unlock the control registers
 * @st: Driver specific device instance data.
 *
 * Note the device does not appear to support doing this in a single transfer.
 * This should only ever be used as part of ctrl reg read.
 * Lock must be held before calling this
 */
static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
{
	struct spi_transfer xfer[3] = {
		{
			.len = 2,
			.cs_change = 1,
			.tx_buf = st->tx,
		}, {
			.len = 2,
			.cs_change = 1,
			.tx_buf = st->tx + 2,
		}, {
			.len = 2,
			.tx_buf = st->tx + 4,
		},
	};
	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
	st->tx[1] = 0x00;
	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
	st->tx[3] = 0x50;
	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
	st->tx[5] = 0xA0;

	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
}

/**
 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
 * @st: Driver specific device instance data.
 * @sel: selects which registers we wish to write to
 * @val: the value to be written
 *
 * Certain control registers are protected against overwriting by the lock
 * register and use a shared write address. This function allows writing of
 * these registers.
 * Lock must be held.
 */
static int sca3000_write_ctrl_reg(struct sca3000_state *st,
				  u8 sel,
				  uint8_t val)
{
	int ret;

	ret = sca3000_reg_lock_on(st);
	if (ret < 0)
		goto error_ret;
	if (ret) {
		ret = __sca3000_unlock_reg_lock(st);
		if (ret)
			goto error_ret;
	}

	/* Set the control select register */
	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
	if (ret)
		goto error_ret;

	/* Write the actual value into the register */
	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);

error_ret:
	return ret;
}

/**
 * sca3000_read_ctrl_reg() read from lock protected control register.
 * @st: Driver specific device instance data.
 * @ctrl_reg: Which ctrl register do we want to read.
 *
 * Lock must be held.
 */
static int sca3000_read_ctrl_reg(struct sca3000_state *st,
				 u8 ctrl_reg)
{
	int ret;

	ret = sca3000_reg_lock_on(st);
	if (ret < 0)
		goto error_ret;
	if (ret) {
		ret = __sca3000_unlock_reg_lock(st);
		if (ret)
			goto error_ret;
	}
	/* Set the control select register */
	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
	if (ret)
		goto error_ret;
	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
	if (ret)
		goto error_ret;
	return st->rx[0];
error_ret:
	return ret;
}

/**
 * sca3000_show_rev() - sysfs interface to read the chip revision number
 * @indio_dev: Device instance specific generic IIO data.
 * Driver specific device instance data can be obtained via
 * via iio_priv(indio_dev)
 */
static int sca3000_print_rev(struct iio_dev *indio_dev)
{
	int ret;
	struct sca3000_state *st = iio_priv(indio_dev);

	mutex_lock(&st->lock);
	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
	if (ret < 0)
		goto error_ret;
	dev_info(&indio_dev->dev,
		 "sca3000 revision major=%lu, minor=%lu\n",
		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
error_ret:
	mutex_unlock(&st->lock);

	return ret;
}

static ssize_t
sca3000_show_available_3db_freqs(struct device *dev,
				 struct device_attribute *attr,
				 char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct sca3000_state *st = iio_priv(indio_dev);
	int len;

	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
	if (st->info->option_mode_1)
		len += sprintf(buf + len, " %d",
			       st->info->option_mode_1_3db_freq);
	if (st->info->option_mode_2)
		len += sprintf(buf + len, " %d",
			       st->info->option_mode_2_3db_freq);
	len += sprintf(buf + len, "\n");

	return len;
}

static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
		       S_IRUGO, sca3000_show_available_3db_freqs,
		       NULL, 0);

static const struct iio_event_spec sca3000_event = {
	.type = IIO_EV_TYPE_MAG,
	.dir = IIO_EV_DIR_RISING,
	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
};

/*
 * Note the hack in the number of bits to pretend we have 2 more than
 * we do in the fifo.
 */
#define SCA3000_CHAN(index, mod)				\
	{							\
		.type = IIO_ACCEL,				\
		.modified = 1,					\
		.channel2 = mod,				\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
		.address = index,				\
		.scan_index = index,				\
		.scan_type = {					\
			.sign = 's',				\
			.realbits = 13,				\
			.storagebits = 16,			\
			.shift = 3,				\
			.endianness = IIO_BE,			\
		},						\
		.event_spec = &sca3000_event,			\
		.num_event_specs = 1,				\
	}

static const struct iio_event_spec sca3000_freefall_event_spec = {
	.type = IIO_EV_TYPE_MAG,
	.dir = IIO_EV_DIR_FALLING,
	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
		BIT(IIO_EV_INFO_PERIOD),
};

static const struct iio_chan_spec sca3000_channels[] = {
	SCA3000_CHAN(0, IIO_MOD_X),
	SCA3000_CHAN(1, IIO_MOD_Y),
	SCA3000_CHAN(2, IIO_MOD_Z),
	{
		.type = IIO_ACCEL,
		.modified = 1,
		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
		.scan_index = -1, /* Fake channel */
		.event_spec = &sca3000_freefall_event_spec,
		.num_event_specs = 1,
	},
};

static const struct iio_chan_spec sca3000_channels_with_temp[] = {
	SCA3000_CHAN(0, IIO_MOD_X),
	SCA3000_CHAN(1, IIO_MOD_Y),
	SCA3000_CHAN(2, IIO_MOD_Z),
	{
		.type = IIO_TEMP,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
			BIT(IIO_CHAN_INFO_OFFSET),
		/* No buffer support */
		.scan_index = -1,
	},
	{
		.type = IIO_ACCEL,
		.modified = 1,
		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
		.scan_index = -1, /* Fake channel */
		.event_spec = &sca3000_freefall_event_spec,
		.num_event_specs = 1,
	},
};

static u8 sca3000_addresses[3][3] = {
	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
	       SCA3000_MD_CTRL_OR_X},
	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
	       SCA3000_MD_CTRL_OR_Y},
	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
	       SCA3000_MD_CTRL_OR_Z},
};

/**
 * __sca3000_get_base_freq() - obtain mode specific base frequency
 * @st: Private driver specific device instance specific state.
 * @info: chip type specific information.
 * @base_freq: Base frequency for the current measurement mode.
 *
 * lock must be held
 */
static inline int __sca3000_get_base_freq(struct sca3000_state *st,
					  const struct sca3000_chip_info *info,
					  int *base_freq)
{
	int ret;

	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		goto error_ret;
	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
		*base_freq = info->measurement_mode_freq;
		break;
	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
		*base_freq = info->option_mode_1_freq;
		break;
	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
		*base_freq = info->option_mode_2_freq;
		break;
	default:
		ret = -EINVAL;
	}
error_ret:
	return ret;
}

/**
 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
 * @st: Private driver specific device instance specific state.
 * @val: The frequency read back.
 *
 * lock must be held
 **/
static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
{
	int ret;

	ret = __sca3000_get_base_freq(st, st->info, val);
	if (ret)
		return ret;

	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
	if (ret < 0)
		return ret;

	if (*val > 0) {
		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
		switch (ret) {
		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
			*val /= 2;
			break;
		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
			*val /= 4;
			break;
		}
	}

	return 0;
}

/**
 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
 * @st: Private driver specific device instance specific state.
 * @val: The frequency desired.
 *
 * lock must be held
 */
static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
{
	int ret, base_freq, ctrlval;

	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
	if (ret)
		return ret;

	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
	if (ret < 0)
		return ret;

	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;

	if (val == base_freq / 2)
		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
	if (val == base_freq / 4)
		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
	else if (val != base_freq)
		return -EINVAL;

	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
				     ctrlval);
}

static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
{
	int ret;

	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		return ret;

	/* mask bottom 2 bits - only ones that are relevant */
	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
	switch (st->rx[0]) {
	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
		*val = st->info->measurement_mode_3db_freq;
		return IIO_VAL_INT;
	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
		return -EBUSY;
	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
		*val = st->info->option_mode_1_3db_freq;
		return IIO_VAL_INT;
	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
		*val = st->info->option_mode_2_3db_freq;
		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
{
	int ret;
	int mode;

	if (val == st->info->measurement_mode_3db_freq)
		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
	else if (st->info->option_mode_1 &&
		 (val == st->info->option_mode_1_3db_freq))
		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
	else if (st->info->option_mode_2 &&
		 (val == st->info->option_mode_2_3db_freq))
		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
	else
		return -EINVAL;
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		return ret;

	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);

	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
}

static int sca3000_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int *val,
			    int *val2,
			    long mask)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;
	u8 address;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		mutex_lock(&st->lock);
		if (chan->type == IIO_ACCEL) {
			if (st->mo_det_use_count) {
				mutex_unlock(&st->lock);
				return -EBUSY;
			}
			address = sca3000_addresses[chan->address][0];
			ret = sca3000_read_data_short(st, address, 2);
			if (ret < 0) {
				mutex_unlock(&st->lock);
				return ret;
			}
			*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
			*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
				(sizeof(*val) * 8 - 13);
		} else {
			/* get the temperature when available */
			ret = sca3000_read_data_short(st,
						      SCA3000_REG_TEMP_MSB_ADDR,
						      2);
			if (ret < 0) {
				mutex_unlock(&st->lock);
				return ret;
			}
			*val = ((st->rx[0] & 0x3F) << 3) |
			       ((st->rx[1] & 0xE0) >> 5);
		}
		mutex_unlock(&st->lock);
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		*val = 0;
		if (chan->type == IIO_ACCEL)
			*val2 = st->info->scale;
		else /* temperature */
			*val2 = 555556;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_OFFSET:
		*val = -214;
		*val2 = 600000;
		return IIO_VAL_INT_PLUS_MICRO;
	case IIO_CHAN_INFO_SAMP_FREQ:
		mutex_lock(&st->lock);
		ret = sca3000_read_raw_samp_freq(st, val);
		mutex_unlock(&st->lock);
		return ret ? ret : IIO_VAL_INT;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		mutex_lock(&st->lock);
		ret = sca3000_read_3db_freq(st, val);
		mutex_unlock(&st->lock);
		return ret;
	default:
		return -EINVAL;
	}
}

static int sca3000_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		if (val2)
			return -EINVAL;
		mutex_lock(&st->lock);
		ret = sca3000_write_raw_samp_freq(st, val);
		mutex_unlock(&st->lock);
		return ret;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		if (val2)
			return -EINVAL;
		mutex_lock(&st->lock);
		ret = sca3000_write_3db_freq(st, val);
		mutex_unlock(&st->lock);
		return ret;
	default:
		return -EINVAL;
	}

	return ret;
}

/**
 * sca3000_read_av_freq() - sysfs function to get available frequencies
 * @dev: Device structure for this device.
 * @attr: Description of the attribute.
 * @buf: Incoming string
 *
 * The later modes are only relevant to the ring buffer - and depend on current
 * mode. Note that data sheet gives rather wide tolerances for these so integer
 * division will give good enough answer and not all chips have them specified
 * at all.
 **/
static ssize_t sca3000_read_av_freq(struct device *dev,
				    struct device_attribute *attr,
				    char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct sca3000_state *st = iio_priv(indio_dev);
	int len = 0, ret, val;

	mutex_lock(&st->lock);
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	val = st->rx[0];
	mutex_unlock(&st->lock);
	if (ret)
		goto error_ret;

	switch (val & SCA3000_REG_MODE_MODE_MASK) {
	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
		len += sprintf(buf + len, "%d %d %d\n",
			       st->info->measurement_mode_freq,
			       st->info->measurement_mode_freq / 2,
			       st->info->measurement_mode_freq / 4);
		break;
	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
		len += sprintf(buf + len, "%d %d %d\n",
			       st->info->option_mode_1_freq,
			       st->info->option_mode_1_freq / 2,
			       st->info->option_mode_1_freq / 4);
		break;
	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
		len += sprintf(buf + len, "%d %d %d\n",
			       st->info->option_mode_2_freq,
			       st->info->option_mode_2_freq / 2,
			       st->info->option_mode_2_freq / 4);
		break;
	}
	return len;
error_ret:
	return ret;
}

/*
 * Should only really be registered if ring buffer support is compiled in.
 * Does no harm however and doing it right would add a fair bit of complexity
 */
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);

/**
 * sca3000_read_event_value() - query of a threshold or period
 **/
static int sca3000_read_event_value(struct iio_dev *indio_dev,
				    const struct iio_chan_spec *chan,
				    enum iio_event_type type,
				    enum iio_event_direction dir,
				    enum iio_event_info info,
				    int *val, int *val2)
{
	int ret, i;
	struct sca3000_state *st = iio_priv(indio_dev);

	switch (info) {
	case IIO_EV_INFO_VALUE:
		mutex_lock(&st->lock);
		ret = sca3000_read_ctrl_reg(st,
					    sca3000_addresses[chan->address][1]);
		mutex_unlock(&st->lock);
		if (ret < 0)
			return ret;
		*val = 0;
		if (chan->channel2 == IIO_MOD_Y)
			for_each_set_bit(i, (unsigned long *)&ret,
					 ARRAY_SIZE(st->info->mot_det_mult_y))
				*val += st->info->mot_det_mult_y[i];
		else
			for_each_set_bit(i, (unsigned long *)&ret,
					 ARRAY_SIZE(st->info->mot_det_mult_xz))
				*val += st->info->mot_det_mult_xz[i];

		return IIO_VAL_INT;
	case IIO_EV_INFO_PERIOD:
		*val = 0;
		*val2 = 226000;
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}

/**
 * sca3000_write_value() - control of threshold and period
 * @indio_dev: Device instance specific IIO information.
 * @chan: Description of the channel for which the event is being
 * configured.
 * @type: The type of event being configured, here magnitude rising
 * as everything else is read only.
 * @dir: Direction of the event (here rising)
 * @info: What information about the event are we configuring.
 * Here the threshold only.
 * @val: Integer part of the value being written..
 * @val2: Non integer part of the value being written. Here always 0.
 */
static int sca3000_write_event_value(struct iio_dev *indio_dev,
				     const struct iio_chan_spec *chan,
				     enum iio_event_type type,
				     enum iio_event_direction dir,
				     enum iio_event_info info,
				     int val, int val2)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;
	int i;
	u8 nonlinear = 0;

	if (chan->channel2 == IIO_MOD_Y) {
		i = ARRAY_SIZE(st->info->mot_det_mult_y);
		while (i > 0)
			if (val >= st->info->mot_det_mult_y[--i]) {
				nonlinear |= (1 << i);
				val -= st->info->mot_det_mult_y[i];
			}
	} else {
		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
		while (i > 0)
			if (val >= st->info->mot_det_mult_xz[--i]) {
				nonlinear |= (1 << i);
				val -= st->info->mot_det_mult_xz[i];
			}
	}

	mutex_lock(&st->lock);
	ret = sca3000_write_ctrl_reg(st,
				     sca3000_addresses[chan->address][1],
				     nonlinear);
	mutex_unlock(&st->lock);

	return ret;
}

static struct attribute *sca3000_attributes[] = {
	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group sca3000_attribute_group = {
	.attrs = sca3000_attributes,
};

static int sca3000_read_data(struct sca3000_state *st,
			     u8 reg_address_high,
			     u8 *rx,
			     int len)
{
	int ret;
	struct spi_transfer xfer[2] = {
		{
			.len = 1,
			.tx_buf = st->tx,
		}, {
			.len = len,
			.rx_buf = rx,
		}
	};

	st->tx[0] = SCA3000_READ_REG(reg_address_high);
	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
	if (ret) {
		dev_err(get_device(&st->us->dev), "problem reading register");
		return ret;
	}

	return 0;
}

/**
 * sca3000_ring_int_process() - ring specific interrupt handling.
 * @val: Value of the interrupt status register.
 * @indio_dev: Device instance specific IIO device structure.
 */
static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret, i, num_available;

	mutex_lock(&st->lock);

	if (val & SCA3000_REG_INT_STATUS_HALF) {
		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
					      1);
		if (ret)
			goto error_ret;
		num_available = st->rx[0];
		/*
		 * num_available is the total number of samples available
		 * i.e. number of time points * number of channels.
		 */
		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
					num_available * 2);
		if (ret)
			goto error_ret;
		for (i = 0; i < num_available / 3; i++) {
			/*
			 * Dirty hack to cover for 11 bit in fifo, 13 bit
			 * direct reading.
			 *
			 * In theory the bottom two bits are undefined.
			 * In reality they appear to always be 0.
			 */
			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
		}
	}
error_ret:
	mutex_unlock(&st->lock);
}

/**
 * sca3000_event_handler() - handling ring and non ring events
 * @irq: The irq being handled.
 * @private: struct iio_device pointer for the device.
 *
 * Ring related interrupt handler. Depending on event, push to
 * the ring buffer event chrdev or the event one.
 *
 * This function is complicated by the fact that the devices can signify ring
 * and non ring events via the same interrupt line and they can only
 * be distinguished via a read of the relevant status register.
 */
static irqreturn_t sca3000_event_handler(int irq, void *private)
{
	struct iio_dev *indio_dev = private;
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret, val;
	s64 last_timestamp = iio_get_time_ns(indio_dev);

	/*
	 * Could lead if badly timed to an extra read of status reg,
	 * but ensures no interrupt is missed.
	 */
	mutex_lock(&st->lock);
	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
	val = st->rx[0];
	mutex_unlock(&st->lock);
	if (ret)
		goto done;

	sca3000_ring_int_process(val, indio_dev);

	if (val & SCA3000_INT_STATUS_FREE_FALL)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X_AND_Y_AND_Z,
						  IIO_EV_TYPE_MAG,
						  IIO_EV_DIR_FALLING),
			       last_timestamp);

	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Y,
						  IIO_EV_TYPE_MAG,
						  IIO_EV_DIR_RISING),
			       last_timestamp);

	if (val & SCA3000_INT_STATUS_X_TRIGGER)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_X,
						  IIO_EV_TYPE_MAG,
						  IIO_EV_DIR_RISING),
			       last_timestamp);

	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
		iio_push_event(indio_dev,
			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
						  0,
						  IIO_MOD_Z,
						  IIO_EV_TYPE_MAG,
						  IIO_EV_DIR_RISING),
			       last_timestamp);

done:
	return IRQ_HANDLED;
}

/**
 * sca3000_read_event_config() what events are enabled
 **/
static int sca3000_read_event_config(struct iio_dev *indio_dev,
				     const struct iio_chan_spec *chan,
				     enum iio_event_type type,
				     enum iio_event_direction dir)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;
	/* read current value of mode register */
	mutex_lock(&st->lock);

	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		goto error_ret;

	switch (chan->channel2) {
	case IIO_MOD_X_AND_Y_AND_Z:
		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
		break;
	case IIO_MOD_X:
	case IIO_MOD_Y:
	case IIO_MOD_Z:
		/*
		 * Motion detection mode cannot run at the same time as
		 * acceleration data being read.
		 */
		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
			ret = 0;
		} else {
			ret = sca3000_read_ctrl_reg(st,
						SCA3000_REG_CTRL_SEL_MD_CTRL);
			if (ret < 0)
				goto error_ret;
			/* only supporting logical or's for now */
			ret = !!(ret & sca3000_addresses[chan->address][2]);
		}
		break;
	default:
		ret = -EINVAL;
	}

error_ret:
	mutex_unlock(&st->lock);

	return ret;
}

static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;

	/* read current value of mode register */
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		return ret;

	/* if off and should be on */
	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
	/* if on and should be off */
	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
	else
		return 0;
}

static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
					   int state)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret, ctrlval;

	/*
	 * First read the motion detector config to find out if
	 * this axis is on
	 */
	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
	if (ret < 0)
		return ret;
	ctrlval = ret;
	/* if off and should be on */
	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
		ret = sca3000_write_ctrl_reg(st,
					     SCA3000_REG_CTRL_SEL_MD_CTRL,
					     ctrlval |
					     sca3000_addresses[axis][2]);
		if (ret)
			return ret;
		st->mo_det_use_count++;
	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
		ret = sca3000_write_ctrl_reg(st,
					     SCA3000_REG_CTRL_SEL_MD_CTRL,
					     ctrlval &
					     ~(sca3000_addresses[axis][2]));
		if (ret)
			return ret;
		st->mo_det_use_count--;
	}

	/* read current value of mode register */
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		return ret;
	/* if off and should be on */
	if ((st->mo_det_use_count) &&
	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
	/* if on and should be off */
	else if (!(st->mo_det_use_count) &&
		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
	else
		return 0;
}

/**
 * sca3000_write_event_config() - simple on off control for motion detector
 * @indio_dev: IIO device instance specific structure. Data specific to this
 * particular driver may be accessed via iio_priv(indio_dev).
 * @chan: Description of the channel whose event we are configuring.
 * @type: The type of event.
 * @dir: The direction of the event.
 * @state: Desired state of event being configured.
 *
 * This is a per axis control, but enabling any will result in the
 * motion detector unit being enabled.
 * N.B. enabling motion detector stops normal data acquisition.
 * There is a complexity in knowing which mode to return to when
 * this mode is disabled.  Currently normal mode is assumed.
 **/
static int sca3000_write_event_config(struct iio_dev *indio_dev,
				      const struct iio_chan_spec *chan,
				      enum iio_event_type type,
				      enum iio_event_direction dir,
				      int state)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->lock);
	switch (chan->channel2) {
	case IIO_MOD_X_AND_Y_AND_Z:
		ret = sca3000_freefall_set_state(indio_dev, state);
		break;

	case IIO_MOD_X:
	case IIO_MOD_Y:
	case IIO_MOD_Z:
		ret = sca3000_motion_detect_set_state(indio_dev,
						      chan->address,
						      state);
		break;
	default:
		ret = -EINVAL;
		break;
	}
	mutex_unlock(&st->lock);

	return ret;
}

static int sca3000_configure_ring(struct iio_dev *indio_dev)
{
	struct iio_buffer *buffer;

	buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
	if (!buffer)
		return -ENOMEM;

	iio_device_attach_buffer(indio_dev, buffer);
	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;

	return 0;
}

static inline
int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
{
	struct sca3000_state *st = iio_priv(indio_dev);
	int ret;

	mutex_lock(&st->lock);
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		goto error_ret;
	if (state) {
		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
		ret = sca3000_write_reg(st,
			SCA3000_REG_MODE_ADDR,
			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
	} else
		ret = sca3000_write_reg(st,
			SCA3000_REG_MODE_ADDR,
			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
error_ret:
	mutex_unlock(&st->lock);

	return ret;
}

/**
 * sca3000_hw_ring_preenable() - hw ring buffer preenable function
 * @indio_dev: structure representing the IIO device. Device instance
 * specific state can be accessed via iio_priv(indio_dev).
 *
 * Very simple enable function as the chip will allows normal reads
 * during ring buffer operation so as long as it is indeed running
 * before we notify the core, the precise ordering does not matter.
 */
static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
{
	int ret;
	struct sca3000_state *st = iio_priv(indio_dev);

	mutex_lock(&st->lock);

	/* Enable the 50% full interrupt */
	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
	if (ret)
		goto error_unlock;
	ret = sca3000_write_reg(st,
				SCA3000_REG_INT_MASK_ADDR,
				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
	if (ret)
		goto error_unlock;

	mutex_unlock(&st->lock);

	return __sca3000_hw_ring_state_set(indio_dev, 1);

error_unlock:
	mutex_unlock(&st->lock);

	return ret;
}

static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
{
	int ret;
	struct sca3000_state *st = iio_priv(indio_dev);

	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
	if (ret)
		return ret;

	/* Disable the 50% full interrupt */
	mutex_lock(&st->lock);

	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
	if (ret)
		goto unlock;
	ret = sca3000_write_reg(st,
				SCA3000_REG_INT_MASK_ADDR,
				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
unlock:
	mutex_unlock(&st->lock);
	return ret;
}

static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
	.preenable = &sca3000_hw_ring_preenable,
	.postdisable = &sca3000_hw_ring_postdisable,
};

/**
 * sca3000_clean_setup() - get the device into a predictable state
 * @st: Device instance specific private data structure
 *
 * Devices use flash memory to store many of the register values
 * and hence can come up in somewhat unpredictable states.
 * Hence reset everything on driver load.
 */
static int sca3000_clean_setup(struct sca3000_state *st)
{
	int ret;

	mutex_lock(&st->lock);
	/* Ensure all interrupts have been acknowledged */
	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
	if (ret)
		goto error_ret;

	/* Turn off all motion detection channels */
	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
	if (ret < 0)
		goto error_ret;
	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
				     ret & SCA3000_MD_CTRL_PROT_MASK);
	if (ret)
		goto error_ret;

	/* Disable ring buffer */
	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
	if (ret < 0)
		goto error_ret;
	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
	if (ret)
		goto error_ret;
	/* Enable interrupts, relevant to mode and set up as active low */
	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
	if (ret)
		goto error_ret;
	ret = sca3000_write_reg(st,
				SCA3000_REG_INT_MASK_ADDR,
				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
	if (ret)
		goto error_ret;
	/*
	 * Select normal measurement mode, free fall off, ring off
	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
	 * as that occurs in one of the example on the datasheet
	 */
	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
	if (ret)
		goto error_ret;
	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
				(st->rx[0] & SCA3000_MODE_PROT_MASK));

error_ret:
	mutex_unlock(&st->lock);
	return ret;
}

static const struct iio_info sca3000_info = {
	.attrs = &sca3000_attribute_group,
	.read_raw = &sca3000_read_raw,
	.write_raw = &sca3000_write_raw,
	.read_event_value = &sca3000_read_event_value,
	.write_event_value = &sca3000_write_event_value,
	.read_event_config = &sca3000_read_event_config,
	.write_event_config = &sca3000_write_event_config,
};

static int sca3000_probe(struct spi_device *spi)
{
	int ret;
	struct sca3000_state *st;
	struct iio_dev *indio_dev;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	spi_set_drvdata(spi, indio_dev);
	st->us = spi;
	mutex_init(&st->lock);
	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
					      ->driver_data];

	indio_dev->dev.parent = &spi->dev;
	indio_dev->name = spi_get_device_id(spi)->name;
	indio_dev->info = &sca3000_info;
	if (st->info->temp_output) {
		indio_dev->channels = sca3000_channels_with_temp;
		indio_dev->num_channels =
			ARRAY_SIZE(sca3000_channels_with_temp);
	} else {
		indio_dev->channels = sca3000_channels;
		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
	}
	indio_dev->modes = INDIO_DIRECT_MODE;

	ret = sca3000_configure_ring(indio_dev);
	if (ret)
		return ret;

	if (spi->irq) {
		ret = request_threaded_irq(spi->irq,
					   NULL,
					   &sca3000_event_handler,
					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
					   "sca3000",
					   indio_dev);
		if (ret)
			return ret;
	}
	indio_dev->setup_ops = &sca3000_ring_setup_ops;
	ret = sca3000_clean_setup(st);
	if (ret)
		goto error_free_irq;

	ret = sca3000_print_rev(indio_dev);
	if (ret)
		goto error_free_irq;

	return iio_device_register(indio_dev);

error_free_irq:
	if (spi->irq)
		free_irq(spi->irq, indio_dev);

	return ret;
}

static int sca3000_stop_all_interrupts(struct sca3000_state *st)
{
	int ret;

	mutex_lock(&st->lock);
	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
	if (ret)
		goto error_ret;
	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
				(st->rx[0] &
				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
				   SCA3000_REG_INT_MASK_RING_HALF |
				   SCA3000_REG_INT_MASK_ALL_INTS)));
error_ret:
	mutex_unlock(&st->lock);
	return ret;
}

static int sca3000_remove(struct spi_device *spi)
{
	struct iio_dev *indio_dev = spi_get_drvdata(spi);
	struct sca3000_state *st = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);

	/* Must ensure no interrupts can be generated after this! */
	sca3000_stop_all_interrupts(st);
	if (spi->irq)
		free_irq(spi->irq, indio_dev);

	return 0;
}

static const struct spi_device_id sca3000_id[] = {
	{"sca3000_d01", d01},
	{"sca3000_e02", e02},
	{"sca3000_e04", e04},
	{"sca3000_e05", e05},
	{}
};
MODULE_DEVICE_TABLE(spi, sca3000_id);

static struct spi_driver sca3000_driver = {
	.driver = {
		.name = "sca3000",
	},
	.probe = sca3000_probe,
	.remove = sca3000_remove,
	.id_table = sca3000_id,
};
module_spi_driver(sca3000_driver);

MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
MODULE_LICENSE("GPL v2");