Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */

#include <linux/completion.h>
#include <linux/circ_buf.h>
#include <linux/list.h>

#include "a6xx_gmu.h"
#include "a6xx_gmu.xml.h"

#define HFI_MSG_ID(val) [val] = #val

static const char * const a6xx_hfi_msg_id[] = {
	HFI_MSG_ID(HFI_H2F_MSG_INIT),
	HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
	HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
	HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
	HFI_MSG_ID(HFI_H2F_MSG_TEST),
};

static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
		u32 dwords)
{
	struct a6xx_hfi_queue_header *header = queue->header;
	u32 i, hdr, index = header->read_index;

	if (header->read_index == header->write_index) {
		header->rx_request = 1;
		return 0;
	}

	hdr = queue->data[index];

	/*
	 * If we are to assume that the GMU firmware is in fact a rational actor
	 * and is programmed to not send us a larger response than we expect
	 * then we can also assume that if the header size is unexpectedly large
	 * that it is due to memory corruption and/or hardware failure. In this
	 * case the only reasonable course of action is to BUG() to help harden
	 * the failure.
	 */

	BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);

	for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
		data[i] = queue->data[index];
		index = (index + 1) % header->size;
	}

	header->read_index = index;
	return HFI_HEADER_SIZE(hdr);
}

static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
	struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
{
	struct a6xx_hfi_queue_header *header = queue->header;
	u32 i, space, index = header->write_index;

	spin_lock(&queue->lock);

	space = CIRC_SPACE(header->write_index, header->read_index,
		header->size);
	if (space < dwords) {
		header->dropped++;
		spin_unlock(&queue->lock);
		return -ENOSPC;
	}

	for (i = 0; i < dwords; i++) {
		queue->data[index] = data[i];
		index = (index + 1) % header->size;
	}

	header->write_index = index;
	spin_unlock(&queue->lock);

	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
	return 0;
}

struct a6xx_hfi_response {
	u32 id;
	u32 seqnum;
	struct list_head node;
	struct completion complete;

	u32 error;
	u32 payload[16];
};

/*
 * Incoming HFI ack messages can come in out of order so we need to store all
 * the pending messages on a list until they are handled.
 */
static spinlock_t hfi_ack_lock = __SPIN_LOCK_UNLOCKED(message_lock);
static LIST_HEAD(hfi_ack_list);

static void a6xx_hfi_handle_ack(struct a6xx_gmu *gmu,
		struct a6xx_hfi_msg_response *msg)
{
	struct a6xx_hfi_response *resp;
	u32 id, seqnum;

	/* msg->ret_header contains the header of the message being acked */
	id = HFI_HEADER_ID(msg->ret_header);
	seqnum = HFI_HEADER_SEQNUM(msg->ret_header);

	spin_lock(&hfi_ack_lock);
	list_for_each_entry(resp, &hfi_ack_list, node) {
		if (resp->id == id && resp->seqnum == seqnum) {
			resp->error = msg->error;
			memcpy(resp->payload, msg->payload,
				sizeof(resp->payload));

			complete(&resp->complete);
			spin_unlock(&hfi_ack_lock);
			return;
		}
	}
	spin_unlock(&hfi_ack_lock);

	dev_err(gmu->dev, "Nobody was waiting for HFI message %d\n", seqnum);
}

static void a6xx_hfi_handle_error(struct a6xx_gmu *gmu,
		struct a6xx_hfi_msg_response *msg)
{
	struct a6xx_hfi_msg_error *error = (struct a6xx_hfi_msg_error *) msg;

	dev_err(gmu->dev, "GMU firmware error %d\n", error->code);
}

void a6xx_hfi_task(unsigned long data)
{
	struct a6xx_gmu *gmu = (struct a6xx_gmu *) data;
	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
	struct a6xx_hfi_msg_response resp;

	for (;;) {
		u32 id;
		int ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
			sizeof(resp) >> 2);

		/* Returns the number of bytes copied or negative on error */
		if (ret <= 0) {
			if (ret < 0)
				dev_err(gmu->dev,
					"Unable to read the HFI message queue\n");
			break;
		}

		id = HFI_HEADER_ID(resp.header);

		if (id == HFI_F2H_MSG_ACK)
			a6xx_hfi_handle_ack(gmu, &resp);
		else if (id == HFI_F2H_MSG_ERROR)
			a6xx_hfi_handle_error(gmu, &resp);
	}
}

static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
		void *data, u32 size, u32 *payload, u32 payload_size)
{
	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
	struct a6xx_hfi_response resp = { 0 };
	int ret, dwords = size >> 2;
	u32 seqnum;

	seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;

	/* First dword of the message is the message header - fill it in */
	*((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
		(dwords << 8) | id;

	init_completion(&resp.complete);
	resp.id = id;
	resp.seqnum = seqnum;

	spin_lock_bh(&hfi_ack_lock);
	list_add_tail(&resp.node, &hfi_ack_list);
	spin_unlock_bh(&hfi_ack_lock);

	ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
	if (ret) {
		dev_err(gmu->dev, "Unable to send message %s id %d\n",
			a6xx_hfi_msg_id[id], seqnum);
		goto out;
	}

	/* Wait up to 5 seconds for the response */
	ret = wait_for_completion_timeout(&resp.complete,
		msecs_to_jiffies(5000));
	if (!ret) {
		dev_err(gmu->dev,
			"Message %s id %d timed out waiting for response\n",
			a6xx_hfi_msg_id[id], seqnum);
		ret = -ETIMEDOUT;
	} else
		ret = 0;

out:
	spin_lock_bh(&hfi_ack_lock);
	list_del(&resp.node);
	spin_unlock_bh(&hfi_ack_lock);

	if (ret)
		return ret;

	if (resp.error) {
		dev_err(gmu->dev, "Message %s id %d returned error %d\n",
			a6xx_hfi_msg_id[id], seqnum, resp.error);
		return -EINVAL;
	}

	if (payload && payload_size) {
		int copy = min_t(u32, payload_size, sizeof(resp.payload));

		memcpy(payload, resp.payload, copy);
	}

	return 0;
}

static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
{
	struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };

	msg.dbg_buffer_addr = (u32) gmu->debug->iova;
	msg.dbg_buffer_size = (u32) gmu->debug->size;
	msg.boot_state = boot_state;

	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
		NULL, 0);
}

static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
{
	struct a6xx_hfi_msg_fw_version msg = { 0 };

	/* Currently supporting version 1.1 */
	msg.supported_version = (1 << 28) | (1 << 16);

	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
		version, sizeof(*version));
}

static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
{
	struct a6xx_hfi_msg_perf_table msg = { 0 };
	int i;

	msg.num_gpu_levels = gmu->nr_gpu_freqs;
	msg.num_gmu_levels = gmu->nr_gmu_freqs;

	for (i = 0; i < gmu->nr_gpu_freqs; i++) {
		msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
		msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
	}

	for (i = 0; i < gmu->nr_gmu_freqs; i++) {
		msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
		msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
	}

	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
		NULL, 0);
}

static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
{
	struct a6xx_hfi_msg_bw_table msg = { 0 };

	/*
	 * The sdm845 GMU doesn't do bus frequency scaling on its own but it
	 * does need at least one entry in the list because it might be accessed
	 * when the GMU is shutting down. Send a single "off" entry.
	 */

	msg.bw_level_num = 1;

	msg.ddr_cmds_num = 3;
	msg.ddr_wait_bitmask = 0x07;

	msg.ddr_cmds_addrs[0] = 0x50000;
	msg.ddr_cmds_addrs[1] = 0x5005c;
	msg.ddr_cmds_addrs[2] = 0x5000c;

	msg.ddr_cmds_data[0][0] =  0x40000000;
	msg.ddr_cmds_data[0][1] =  0x40000000;
	msg.ddr_cmds_data[0][2] =  0x40000000;

	/*
	 * These are the CX (CNOC) votes.  This is used but the values for the
	 * sdm845 GMU are known and fixed so we can hard code them.
	 */

	msg.cnoc_cmds_num = 3;
	msg.cnoc_wait_bitmask = 0x05;

	msg.cnoc_cmds_addrs[0] = 0x50034;
	msg.cnoc_cmds_addrs[1] = 0x5007c;
	msg.cnoc_cmds_addrs[2] = 0x5004c;

	msg.cnoc_cmds_data[0][0] =  0x40000000;
	msg.cnoc_cmds_data[0][1] =  0x00000000;
	msg.cnoc_cmds_data[0][2] =  0x40000000;

	msg.cnoc_cmds_data[1][0] =  0x60000001;
	msg.cnoc_cmds_data[1][1] =  0x20000001;
	msg.cnoc_cmds_data[1][2] =  0x60000001;

	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
		NULL, 0);
}

static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
{
	struct a6xx_hfi_msg_test msg = { 0 };

	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
		NULL, 0);
}

int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
{
	int ret;

	ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
	if (ret)
		return ret;

	ret = a6xx_hfi_get_fw_version(gmu, NULL);
	if (ret)
		return ret;

	/*
	 * We have to get exchange version numbers per the sequence but at this
	 * point th kernel driver doesn't need to know the exact version of
	 * the GMU firmware
	 */

	ret = a6xx_hfi_send_perf_table(gmu);
	if (ret)
		return ret;

	ret = a6xx_hfi_send_bw_table(gmu);
	if (ret)
		return ret;

	/*
	 * Let the GMU know that there won't be any more HFI messages until next
	 * boot
	 */
	a6xx_hfi_send_test(gmu);

	return 0;
}

void a6xx_hfi_stop(struct a6xx_gmu *gmu)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
		struct a6xx_hfi_queue *queue = &gmu->queues[i];

		if (!queue->header)
			continue;

		if (queue->header->read_index != queue->header->write_index)
			dev_err(gmu->dev, "HFI queue %d is not empty\n", i);

		queue->header->read_index = 0;
		queue->header->write_index = 0;
	}
}

static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
		struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
		u32 id)
{
	spin_lock_init(&queue->lock);
	queue->header = header;
	queue->data = virt;
	atomic_set(&queue->seqnum, 0);

	/* Set up the shared memory header */
	header->iova = iova;
	header->type =  10 << 8 | id;
	header->status = 1;
	header->size = SZ_4K >> 2;
	header->msg_size = 0;
	header->dropped = 0;
	header->rx_watermark = 1;
	header->tx_watermark = 1;
	header->rx_request = 1;
	header->tx_request = 0;
	header->read_index = 0;
	header->write_index = 0;
}

void a6xx_hfi_init(struct a6xx_gmu *gmu)
{
	struct a6xx_gmu_bo *hfi = gmu->hfi;
	struct a6xx_hfi_queue_table_header *table = hfi->virt;
	struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
	u64 offset;
	int table_size;

	/*
	 * The table size is the size of the table header plus all of the queue
	 * headers
	 */
	table_size = sizeof(*table);
	table_size += (ARRAY_SIZE(gmu->queues) *
		sizeof(struct a6xx_hfi_queue_header));

	table->version = 0;
	table->size = table_size;
	/* First queue header is located immediately after the table header */
	table->qhdr0_offset = sizeof(*table) >> 2;
	table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
	table->num_queues = ARRAY_SIZE(gmu->queues);
	table->active_queues = ARRAY_SIZE(gmu->queues);

	/* Command queue */
	offset = SZ_4K;
	a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
		hfi->iova + offset, 0);

	/* GMU response queue */
	offset += SZ_4K;
	a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
		hfi->iova + offset, 4);
}