Boot Linux faster!

Check our new training course

Boot Linux faster!

Check our new training course
and Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
 * Device driver for monitoring ambient light intensity (lux)
 * within the TAOS tsl258x family of devices (tsl2580, tsl2581, tsl2583).
 *
 * Copyright (c) 2011, TAOS Corporation.
 * Copyright (c) 2016-2017 Brian Masney <masneyb@onstation.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/pm_runtime.h>

/* Device Registers and Masks */
#define TSL2583_CNTRL			0x00
#define TSL2583_ALS_TIME		0X01
#define TSL2583_INTERRUPT		0x02
#define TSL2583_GAIN			0x07
#define TSL2583_REVID			0x11
#define TSL2583_CHIPID			0x12
#define TSL2583_ALS_CHAN0LO		0x14
#define TSL2583_ALS_CHAN0HI		0x15
#define TSL2583_ALS_CHAN1LO		0x16
#define TSL2583_ALS_CHAN1HI		0x17
#define TSL2583_TMR_LO			0x18
#define TSL2583_TMR_HI			0x19

/* tsl2583 cmd reg masks */
#define TSL2583_CMD_REG			0x80
#define TSL2583_CMD_SPL_FN		0x60
#define TSL2583_CMD_ALS_INT_CLR		0x01

/* tsl2583 cntrl reg masks */
#define TSL2583_CNTL_ADC_ENBL		0x02
#define TSL2583_CNTL_PWR_OFF		0x00
#define TSL2583_CNTL_PWR_ON		0x01

/* tsl2583 status reg masks */
#define TSL2583_STA_ADC_VALID		0x01
#define TSL2583_STA_ADC_INTR		0x10

/* Lux calculation constants */
#define TSL2583_LUX_CALC_OVER_FLOW	65535

#define TSL2583_INTERRUPT_DISABLED	0x00

#define TSL2583_CHIP_ID			0x90
#define TSL2583_CHIP_ID_MASK		0xf0

#define TSL2583_POWER_OFF_DELAY_MS	2000

/* Per-device data */
struct tsl2583_als_info {
	u16 als_ch0;
	u16 als_ch1;
	u16 lux;
};

struct tsl2583_lux {
	unsigned int ratio;
	unsigned int ch0;
	unsigned int ch1;
};

static const struct tsl2583_lux tsl2583_default_lux[] = {
	{  9830,  8520, 15729 },
	{ 12452, 10807, 23344 },
	{ 14746,  6383, 11705 },
	{ 17695,  4063,  6554 },
	{     0,     0,     0 }  /* Termination segment */
};

#define TSL2583_MAX_LUX_TABLE_ENTRIES 11

struct tsl2583_settings {
	int als_time;
	int als_gain;
	int als_gain_trim;
	int als_cal_target;

	/*
	 * This structure is intentionally large to accommodate updates via
	 * sysfs. Sized to 11 = max 10 segments + 1 termination segment.
	 * Assumption is that one and only one type of glass used.
	 */
	struct tsl2583_lux als_device_lux[TSL2583_MAX_LUX_TABLE_ENTRIES];
};

struct tsl2583_chip {
	struct mutex als_mutex;
	struct i2c_client *client;
	struct tsl2583_als_info als_cur_info;
	struct tsl2583_settings als_settings;
	int als_time_scale;
	int als_saturation;
};

struct gainadj {
	s16 ch0;
	s16 ch1;
	s16 mean;
};

/* Index = (0 - 3) Used to validate the gain selection index */
static const struct gainadj gainadj[] = {
	{ 1, 1, 1 },
	{ 8, 8, 8 },
	{ 16, 16, 16 },
	{ 107, 115, 111 }
};

/*
 * Provides initial operational parameter defaults.
 * These defaults may be changed through the device's sysfs files.
 */
static void tsl2583_defaults(struct tsl2583_chip *chip)
{
	/*
	 * The integration time must be a multiple of 50ms and within the
	 * range [50, 600] ms.
	 */
	chip->als_settings.als_time = 100;

	/*
	 * This is an index into the gainadj table. Assume clear glass as the
	 * default.
	 */
	chip->als_settings.als_gain = 0;

	/* Default gain trim to account for aperture effects */
	chip->als_settings.als_gain_trim = 1000;

	/* Known external ALS reading used for calibration */
	chip->als_settings.als_cal_target = 130;

	/* Default lux table. */
	memcpy(chip->als_settings.als_device_lux, tsl2583_default_lux,
	       sizeof(tsl2583_default_lux));
}

/*
 * Reads and calculates current lux value.
 * The raw ch0 and ch1 values of the ambient light sensed in the last
 * integration cycle are read from the device.
 * Time scale factor array values are adjusted based on the integration time.
 * The raw values are multiplied by a scale factor, and device gain is obtained
 * using gain index. Limit checks are done next, then the ratio of a multiple
 * of ch1 value, to the ch0 value, is calculated. The array als_device_lux[]
 * declared above is then scanned to find the first ratio value that is just
 * above the ratio we just calculated. The ch0 and ch1 multiplier constants in
 * the array are then used along with the time scale factor array values, to
 * calculate the lux.
 */
static int tsl2583_get_lux(struct iio_dev *indio_dev)
{
	u16 ch0, ch1; /* separated ch0/ch1 data from device */
	u32 lux; /* raw lux calculated from device data */
	u64 lux64;
	u32 ratio;
	u8 buf[5];
	struct tsl2583_lux *p;
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int i, ret;

	ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG);
	if (ret < 0) {
		dev_err(&chip->client->dev, "%s: failed to read CMD_REG register\n",
			__func__);
		goto done;
	}

	/* is data new & valid */
	if (!(ret & TSL2583_STA_ADC_INTR)) {
		dev_err(&chip->client->dev, "%s: data not valid; returning last value\n",
			__func__);
		ret = chip->als_cur_info.lux; /* return LAST VALUE */
		goto done;
	}

	for (i = 0; i < 4; i++) {
		int reg = TSL2583_CMD_REG | (TSL2583_ALS_CHAN0LO + i);

		ret = i2c_smbus_read_byte_data(chip->client, reg);
		if (ret < 0) {
			dev_err(&chip->client->dev, "%s: failed to read register %x\n",
				__func__, reg);
			goto done;
		}
		buf[i] = ret;
	}

	/*
	 * Clear the pending interrupt status bit on the chip to allow the next
	 * integration cycle to start. This has to be done even though this
	 * driver currently does not support interrupts.
	 */
	ret = i2c_smbus_write_byte(chip->client,
				   (TSL2583_CMD_REG | TSL2583_CMD_SPL_FN |
				    TSL2583_CMD_ALS_INT_CLR));
	if (ret < 0) {
		dev_err(&chip->client->dev, "%s: failed to clear the interrupt bit\n",
			__func__);
		goto done; /* have no data, so return failure */
	}

	/* extract ALS/lux data */
	ch0 = le16_to_cpup((const __le16 *)&buf[0]);
	ch1 = le16_to_cpup((const __le16 *)&buf[2]);

	chip->als_cur_info.als_ch0 = ch0;
	chip->als_cur_info.als_ch1 = ch1;

	if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation))
		goto return_max;

	if (!ch0) {
		/*
		 * The sensor appears to be in total darkness so set the
		 * calculated lux to 0 and return early to avoid a division by
		 * zero below when calculating the ratio.
		 */
		ret = 0;
		chip->als_cur_info.lux = 0;
		goto done;
	}

	/* calculate ratio */
	ratio = (ch1 << 15) / ch0;

	/* convert to unscaled lux using the pointer to the table */
	for (p = (struct tsl2583_lux *)chip->als_settings.als_device_lux;
	     p->ratio != 0 && p->ratio < ratio; p++)
		;

	if (p->ratio == 0) {
		lux = 0;
	} else {
		u32 ch0lux, ch1lux;

		ch0lux = ((ch0 * p->ch0) +
			  (gainadj[chip->als_settings.als_gain].ch0 >> 1))
			 / gainadj[chip->als_settings.als_gain].ch0;
		ch1lux = ((ch1 * p->ch1) +
			  (gainadj[chip->als_settings.als_gain].ch1 >> 1))
			 / gainadj[chip->als_settings.als_gain].ch1;

		/* note: lux is 31 bit max at this point */
		if (ch1lux > ch0lux) {
			dev_dbg(&chip->client->dev, "%s: No Data - Returning 0\n",
				__func__);
			ret = 0;
			chip->als_cur_info.lux = 0;
			goto done;
		}

		lux = ch0lux - ch1lux;
	}

	/* adjust for active time scale */
	if (chip->als_time_scale == 0)
		lux = 0;
	else
		lux = (lux + (chip->als_time_scale >> 1)) /
			chip->als_time_scale;

	/*
	 * Adjust for active gain scale.
	 * The tsl2583_default_lux tables above have a factor of 8192 built in,
	 * so we need to shift right.
	 * User-specified gain provides a multiplier.
	 * Apply user-specified gain before shifting right to retain precision.
	 * Use 64 bits to avoid overflow on multiplication.
	 * Then go back to 32 bits before division to avoid using div_u64().
	 */
	lux64 = lux;
	lux64 = lux64 * chip->als_settings.als_gain_trim;
	lux64 >>= 13;
	lux = lux64;
	lux = (lux + 500) / 1000;

	if (lux > TSL2583_LUX_CALC_OVER_FLOW) { /* check for overflow */
return_max:
		lux = TSL2583_LUX_CALC_OVER_FLOW;
	}

	/* Update the structure with the latest VALID lux. */
	chip->als_cur_info.lux = lux;
	ret = lux;

done:
	return ret;
}

/*
 * Obtain single reading and calculate the als_gain_trim (later used
 * to derive actual lux).
 * Return updated gain_trim value.
 */
static int tsl2583_als_calibrate(struct iio_dev *indio_dev)
{
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	unsigned int gain_trim_val;
	int ret;
	int lux_val;

	ret = i2c_smbus_read_byte_data(chip->client,
				       TSL2583_CMD_REG | TSL2583_CNTRL);
	if (ret < 0) {
		dev_err(&chip->client->dev,
			"%s: failed to read from the CNTRL register\n",
			__func__);
		return ret;
	}

	if ((ret & (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON))
			!= (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) {
		dev_err(&chip->client->dev,
			"%s: Device is not powered on and/or ADC is not enabled\n",
			__func__);
		return -EINVAL;
	} else if ((ret & TSL2583_STA_ADC_VALID) != TSL2583_STA_ADC_VALID) {
		dev_err(&chip->client->dev,
			"%s: The two ADC channels have not completed an integration cycle\n",
			__func__);
		return -ENODATA;
	}

	lux_val = tsl2583_get_lux(indio_dev);
	if (lux_val < 0) {
		dev_err(&chip->client->dev, "%s: failed to get lux\n",
			__func__);
		return lux_val;
	}

	gain_trim_val = (unsigned int)(((chip->als_settings.als_cal_target)
			* chip->als_settings.als_gain_trim) / lux_val);
	if ((gain_trim_val < 250) || (gain_trim_val > 4000)) {
		dev_err(&chip->client->dev,
			"%s: trim_val of %d is not within the range [250, 4000]\n",
			__func__, gain_trim_val);
		return -ENODATA;
	}

	chip->als_settings.als_gain_trim = (int)gain_trim_val;

	return 0;
}

static int tsl2583_set_als_time(struct tsl2583_chip *chip)
{
	int als_count, als_time, ret;
	u8 val;

	/* determine als integration register */
	als_count = (chip->als_settings.als_time * 100 + 135) / 270;
	if (!als_count)
		als_count = 1; /* ensure at least one cycle */

	/* convert back to time (encompasses overrides) */
	als_time = (als_count * 27 + 5) / 10;

	val = 256 - als_count;
	ret = i2c_smbus_write_byte_data(chip->client,
					TSL2583_CMD_REG | TSL2583_ALS_TIME,
					val);
	if (ret < 0) {
		dev_err(&chip->client->dev, "%s: failed to set the als time to %d\n",
			__func__, val);
		return ret;
	}

	/* set chip struct re scaling and saturation */
	chip->als_saturation = als_count * 922; /* 90% of full scale */
	chip->als_time_scale = (als_time + 25) / 50;

	return ret;
}

static int tsl2583_set_als_gain(struct tsl2583_chip *chip)
{
	int ret;

	/* Set the gain based on als_settings struct */
	ret = i2c_smbus_write_byte_data(chip->client,
					TSL2583_CMD_REG | TSL2583_GAIN,
					chip->als_settings.als_gain);
	if (ret < 0)
		dev_err(&chip->client->dev,
			"%s: failed to set the gain to %d\n", __func__,
			chip->als_settings.als_gain);

	return ret;
}

static int tsl2583_set_power_state(struct tsl2583_chip *chip, u8 state)
{
	int ret;

	ret = i2c_smbus_write_byte_data(chip->client,
					TSL2583_CMD_REG | TSL2583_CNTRL, state);
	if (ret < 0)
		dev_err(&chip->client->dev,
			"%s: failed to set the power state to %d\n", __func__,
			state);

	return ret;
}

/*
 * Turn the device on.
 * Configuration must be set before calling this function.
 */
static int tsl2583_chip_init_and_power_on(struct iio_dev *indio_dev)
{
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret;

	/* Power on the device; ADC off. */
	ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON);
	if (ret < 0)
		return ret;

	ret = i2c_smbus_write_byte_data(chip->client,
					TSL2583_CMD_REG | TSL2583_INTERRUPT,
					TSL2583_INTERRUPT_DISABLED);
	if (ret < 0) {
		dev_err(&chip->client->dev,
			"%s: failed to disable interrupts\n", __func__);
		return ret;
	}

	ret = tsl2583_set_als_time(chip);
	if (ret < 0)
		return ret;

	ret = tsl2583_set_als_gain(chip);
	if (ret < 0)
		return ret;

	usleep_range(3000, 3500);

	ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON |
					    TSL2583_CNTL_ADC_ENBL);
	if (ret < 0)
		return ret;

	return ret;
}

/* Sysfs Interface Functions */

static ssize_t in_illuminance_input_target_show(struct device *dev,
						struct device_attribute *attr,
						char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret;

	mutex_lock(&chip->als_mutex);
	ret = sprintf(buf, "%d\n", chip->als_settings.als_cal_target);
	mutex_unlock(&chip->als_mutex);

	return ret;
}

static ssize_t in_illuminance_input_target_store(struct device *dev,
						 struct device_attribute *attr,
						 const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int value;

	if (kstrtoint(buf, 0, &value) || !value)
		return -EINVAL;

	mutex_lock(&chip->als_mutex);
	chip->als_settings.als_cal_target = value;
	mutex_unlock(&chip->als_mutex);

	return len;
}

static ssize_t in_illuminance_calibrate_store(struct device *dev,
					      struct device_attribute *attr,
					      const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int value, ret;

	if (kstrtoint(buf, 0, &value) || value != 1)
		return -EINVAL;

	mutex_lock(&chip->als_mutex);

	ret = tsl2583_als_calibrate(indio_dev);
	if (ret < 0)
		goto done;

	ret = len;
done:
	mutex_unlock(&chip->als_mutex);

	return ret;
}

static ssize_t in_illuminance_lux_table_show(struct device *dev,
					     struct device_attribute *attr,
					     char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	unsigned int i;
	int offset = 0;

	for (i = 0; i < ARRAY_SIZE(chip->als_settings.als_device_lux); i++) {
		offset += sprintf(buf + offset, "%u,%u,%u,",
				  chip->als_settings.als_device_lux[i].ratio,
				  chip->als_settings.als_device_lux[i].ch0,
				  chip->als_settings.als_device_lux[i].ch1);
		if (chip->als_settings.als_device_lux[i].ratio == 0) {
			/*
			 * We just printed the first "0" entry.
			 * Now get rid of the extra "," and break.
			 */
			offset--;
			break;
		}
	}

	offset += sprintf(buf + offset, "\n");

	return offset;
}

static ssize_t in_illuminance_lux_table_store(struct device *dev,
					      struct device_attribute *attr,
					      const char *buf, size_t len)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3;
	int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1];
	int ret = -EINVAL;
	unsigned int n;

	mutex_lock(&chip->als_mutex);

	get_options(buf, ARRAY_SIZE(value), value);

	/*
	 * We now have an array of ints starting at value[1], and
	 * enumerated by value[0].
	 * We expect each group of three ints is one table entry,
	 * and the last table entry is all 0.
	 */
	n = value[0];
	if ((n % 3) || n < 6 || n > max_ints) {
		dev_err(dev,
			"%s: The number of entries in the lux table must be a multiple of 3 and within the range [6, %d]\n",
			__func__, max_ints);
		goto done;
	}
	if ((value[n - 2] | value[n - 1] | value[n]) != 0) {
		dev_err(dev, "%s: The last 3 entries in the lux table must be zeros.\n",
			__func__);
		goto done;
	}

	memcpy(chip->als_settings.als_device_lux, &value[1],
	       value[0] * sizeof(value[1]));

	ret = len;

done:
	mutex_unlock(&chip->als_mutex);

	return ret;
}

static IIO_CONST_ATTR(in_illuminance_calibscale_available, "1 8 16 111");
static IIO_CONST_ATTR(in_illuminance_integration_time_available,
		      "0.000050 0.000100 0.000150 0.000200 0.000250 0.000300 0.000350 0.000400 0.000450 0.000500 0.000550 0.000600 0.000650");
static IIO_DEVICE_ATTR_RW(in_illuminance_input_target, 0);
static IIO_DEVICE_ATTR_WO(in_illuminance_calibrate, 0);
static IIO_DEVICE_ATTR_RW(in_illuminance_lux_table, 0);

static struct attribute *sysfs_attrs_ctrl[] = {
	&iio_const_attr_in_illuminance_calibscale_available.dev_attr.attr,
	&iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr,
	&iio_dev_attr_in_illuminance_input_target.dev_attr.attr,
	&iio_dev_attr_in_illuminance_calibrate.dev_attr.attr,
	&iio_dev_attr_in_illuminance_lux_table.dev_attr.attr,
	NULL
};

static const struct attribute_group tsl2583_attribute_group = {
	.attrs = sysfs_attrs_ctrl,
};

static const struct iio_chan_spec tsl2583_channels[] = {
	{
		.type = IIO_LIGHT,
		.modified = 1,
		.channel2 = IIO_MOD_LIGHT_IR,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
	},
	{
		.type = IIO_LIGHT,
		.modified = 1,
		.channel2 = IIO_MOD_LIGHT_BOTH,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
	},
	{
		.type = IIO_LIGHT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
				      BIT(IIO_CHAN_INFO_CALIBBIAS) |
				      BIT(IIO_CHAN_INFO_CALIBSCALE) |
				      BIT(IIO_CHAN_INFO_INT_TIME),
	},
};

static int tsl2583_set_pm_runtime_busy(struct tsl2583_chip *chip, bool on)
{
	int ret;

	if (on) {
		ret = pm_runtime_get_sync(&chip->client->dev);
		if (ret < 0)
			pm_runtime_put_noidle(&chip->client->dev);
	} else {
		pm_runtime_mark_last_busy(&chip->client->dev);
		ret = pm_runtime_put_autosuspend(&chip->client->dev);
	}

	return ret;
}

static int tsl2583_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan,
			    int *val, int *val2, long mask)
{
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret, pm_ret;

	ret = tsl2583_set_pm_runtime_busy(chip, true);
	if (ret < 0)
		return ret;

	mutex_lock(&chip->als_mutex);

	ret = -EINVAL;
	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (chan->type == IIO_LIGHT) {
			ret = tsl2583_get_lux(indio_dev);
			if (ret < 0)
				goto read_done;

			/*
			 * From page 20 of the TSL2581, TSL2583 data
			 * sheet (TAOS134 − MARCH 2011):
			 *
			 * One of the photodiodes (channel 0) is
			 * sensitive to both visible and infrared light,
			 * while the second photodiode (channel 1) is
			 * sensitive primarily to infrared light.
			 */
			if (chan->channel2 == IIO_MOD_LIGHT_BOTH)
				*val = chip->als_cur_info.als_ch0;
			else
				*val = chip->als_cur_info.als_ch1;

			ret = IIO_VAL_INT;
		}
		break;
	case IIO_CHAN_INFO_PROCESSED:
		if (chan->type == IIO_LIGHT) {
			ret = tsl2583_get_lux(indio_dev);
			if (ret < 0)
				goto read_done;

			*val = ret;
			ret = IIO_VAL_INT;
		}
		break;
	case IIO_CHAN_INFO_CALIBBIAS:
		if (chan->type == IIO_LIGHT) {
			*val = chip->als_settings.als_gain_trim;
			ret = IIO_VAL_INT;
		}
		break;
	case IIO_CHAN_INFO_CALIBSCALE:
		if (chan->type == IIO_LIGHT) {
			*val = gainadj[chip->als_settings.als_gain].mean;
			ret = IIO_VAL_INT;
		}
		break;
	case IIO_CHAN_INFO_INT_TIME:
		if (chan->type == IIO_LIGHT) {
			*val = 0;
			*val2 = chip->als_settings.als_time;
			ret = IIO_VAL_INT_PLUS_MICRO;
		}
		break;
	default:
		break;
	}

read_done:
	mutex_unlock(&chip->als_mutex);

	if (ret < 0)
		return ret;

	/*
	 * Preserve the ret variable if the call to
	 * tsl2583_set_pm_runtime_busy() is successful so the reading
	 * (if applicable) is returned to user space.
	 */
	pm_ret = tsl2583_set_pm_runtime_busy(chip, false);
	if (pm_ret < 0)
		return pm_ret;

	return ret;
}

static int tsl2583_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret;

	ret = tsl2583_set_pm_runtime_busy(chip, true);
	if (ret < 0)
		return ret;

	mutex_lock(&chip->als_mutex);

	ret = -EINVAL;
	switch (mask) {
	case IIO_CHAN_INFO_CALIBBIAS:
		if (chan->type == IIO_LIGHT) {
			chip->als_settings.als_gain_trim = val;
			ret = 0;
		}
		break;
	case IIO_CHAN_INFO_CALIBSCALE:
		if (chan->type == IIO_LIGHT) {
			unsigned int i;

			for (i = 0; i < ARRAY_SIZE(gainadj); i++) {
				if (gainadj[i].mean == val) {
					chip->als_settings.als_gain = i;
					ret = tsl2583_set_als_gain(chip);
					break;
				}
			}
		}
		break;
	case IIO_CHAN_INFO_INT_TIME:
		if (chan->type == IIO_LIGHT && !val && val2 >= 50 &&
		    val2 <= 650 && !(val2 % 50)) {
			chip->als_settings.als_time = val2;
			ret = tsl2583_set_als_time(chip);
		}
		break;
	default:
		break;
	}

	mutex_unlock(&chip->als_mutex);

	if (ret < 0)
		return ret;

	ret = tsl2583_set_pm_runtime_busy(chip, false);
	if (ret < 0)
		return ret;

	return ret;
}

static const struct iio_info tsl2583_info = {
	.attrs = &tsl2583_attribute_group,
	.read_raw = tsl2583_read_raw,
	.write_raw = tsl2583_write_raw,
};

static int tsl2583_probe(struct i2c_client *clientp,
			 const struct i2c_device_id *idp)
{
	int ret;
	struct tsl2583_chip *chip;
	struct iio_dev *indio_dev;

	if (!i2c_check_functionality(clientp->adapter,
				     I2C_FUNC_SMBUS_BYTE_DATA)) {
		dev_err(&clientp->dev, "%s: i2c smbus byte data functionality is unsupported\n",
			__func__);
		return -EOPNOTSUPP;
	}

	indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip));
	if (!indio_dev)
		return -ENOMEM;

	chip = iio_priv(indio_dev);
	chip->client = clientp;
	i2c_set_clientdata(clientp, indio_dev);

	mutex_init(&chip->als_mutex);

	ret = i2c_smbus_read_byte_data(clientp,
				       TSL2583_CMD_REG | TSL2583_CHIPID);
	if (ret < 0) {
		dev_err(&clientp->dev,
			"%s: failed to read the chip ID register\n", __func__);
		return ret;
	}

	if ((ret & TSL2583_CHIP_ID_MASK) != TSL2583_CHIP_ID) {
		dev_err(&clientp->dev, "%s: received an unknown chip ID %x\n",
			__func__, ret);
		return -EINVAL;
	}

	indio_dev->info = &tsl2583_info;
	indio_dev->channels = tsl2583_channels;
	indio_dev->num_channels = ARRAY_SIZE(tsl2583_channels);
	indio_dev->dev.parent = &clientp->dev;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->name = chip->client->name;

	pm_runtime_enable(&clientp->dev);
	pm_runtime_set_autosuspend_delay(&clientp->dev,
					 TSL2583_POWER_OFF_DELAY_MS);
	pm_runtime_use_autosuspend(&clientp->dev);

	ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
	if (ret) {
		dev_err(&clientp->dev, "%s: iio registration failed\n",
			__func__);
		return ret;
	}

	/* Load up the V2 defaults (these are hard coded defaults for now) */
	tsl2583_defaults(chip);

	dev_info(&clientp->dev, "Light sensor found.\n");

	return 0;
}

static int tsl2583_remove(struct i2c_client *client)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(client);
	struct tsl2583_chip *chip = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);

	pm_runtime_disable(&client->dev);
	pm_runtime_set_suspended(&client->dev);
	pm_runtime_put_noidle(&client->dev);

	return tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
}

static int __maybe_unused tsl2583_suspend(struct device *dev)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret;

	mutex_lock(&chip->als_mutex);

	ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);

	mutex_unlock(&chip->als_mutex);

	return ret;
}

static int __maybe_unused tsl2583_resume(struct device *dev)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
	struct tsl2583_chip *chip = iio_priv(indio_dev);
	int ret;

	mutex_lock(&chip->als_mutex);

	ret = tsl2583_chip_init_and_power_on(indio_dev);

	mutex_unlock(&chip->als_mutex);

	return ret;
}

static const struct dev_pm_ops tsl2583_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
	SET_RUNTIME_PM_OPS(tsl2583_suspend, tsl2583_resume, NULL)
};

static const struct i2c_device_id tsl2583_idtable[] = {
	{ "tsl2580", 0 },
	{ "tsl2581", 1 },
	{ "tsl2583", 2 },
	{}
};
MODULE_DEVICE_TABLE(i2c, tsl2583_idtable);

static const struct of_device_id tsl2583_of_match[] = {
	{ .compatible = "amstaos,tsl2580", },
	{ .compatible = "amstaos,tsl2581", },
	{ .compatible = "amstaos,tsl2583", },
	{ },
};
MODULE_DEVICE_TABLE(of, tsl2583_of_match);

/* Driver definition */
static struct i2c_driver tsl2583_driver = {
	.driver = {
		.name = "tsl2583",
		.pm = &tsl2583_pm_ops,
		.of_match_table = tsl2583_of_match,
	},
	.id_table = tsl2583_idtable,
	.probe = tsl2583_probe,
	.remove = tsl2583_remove,
};
module_i2c_driver(tsl2583_driver);

MODULE_AUTHOR("J. August Brenner <jbrenner@taosinc.com>");
MODULE_AUTHOR("Brian Masney <masneyb@onstation.org>");
MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver");
MODULE_LICENSE("GPL");