Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 * Copyright 2012 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */
#include "nv50.h"
#include "pll.h"
#include "seq.h"

#include <subdev/bios.h>
#include <subdev/bios/pll.h>

static u32
read_div(struct nv50_clk *clk)
{
	struct nvkm_device *device = clk->base.subdev.device;
	switch (device->chipset) {
	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
	case 0x84:
	case 0x86:
	case 0x98:
	case 0xa0:
		return nvkm_rd32(device, 0x004700);
	case 0x92:
	case 0x94:
	case 0x96:
		return nvkm_rd32(device, 0x004800);
	default:
		return 0x00000000;
	}
}

static u32
read_pll_src(struct nv50_clk *clk, u32 base)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
	u32 rsel = nvkm_rd32(device, 0x00e18c);
	int P, N, M, id;

	switch (device->chipset) {
	case 0x50:
	case 0xa0:
		switch (base) {
		case 0x4020:
		case 0x4028: id = !!(rsel & 0x00000004); break;
		case 0x4008: id = !!(rsel & 0x00000008); break;
		case 0x4030: id = 0; break;
		default:
			nvkm_error(subdev, "ref: bad pll %06x\n", base);
			return 0;
		}

		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
		ref *=  (coef & 0x01000000) ? 2 : 4;
		P    =  (coef & 0x00070000) >> 16;
		N    = ((coef & 0x0000ff00) >> 8) + 1;
		M    = ((coef & 0x000000ff) >> 0) + 1;
		break;
	case 0x84:
	case 0x86:
	case 0x92:
		coef = nvkm_rd32(device, 0x00e81c);
		P    = (coef & 0x00070000) >> 16;
		N    = (coef & 0x0000ff00) >> 8;
		M    = (coef & 0x000000ff) >> 0;
		break;
	case 0x94:
	case 0x96:
	case 0x98:
		rsel = nvkm_rd32(device, 0x00c050);
		switch (base) {
		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
		case 0x4030: rsel = 3; break;
		default:
			nvkm_error(subdev, "ref: bad pll %06x\n", base);
			return 0;
		}

		switch (rsel) {
		case 0: id = 1; break;
		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
		case 3: id = 0; break;
		}

		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
		P   += (coef & 0x00070000) >> 16;
		N    = (coef & 0x0000ff00) >> 8;
		M    = (coef & 0x000000ff) >> 0;
		break;
	default:
		BUG();
	}

	if (M)
		return (ref * N / M) >> P;

	return 0;
}

static u32
read_pll_ref(struct nv50_clk *clk, u32 base)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 src, mast = nvkm_rd32(device, 0x00c040);

	switch (base) {
	case 0x004028:
		src = !!(mast & 0x00200000);
		break;
	case 0x004020:
		src = !!(mast & 0x00400000);
		break;
	case 0x004008:
		src = !!(mast & 0x00010000);
		break;
	case 0x004030:
		src = !!(mast & 0x02000000);
		break;
	case 0x00e810:
		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
	default:
		nvkm_error(subdev, "bad pll %06x\n", base);
		return 0;
	}

	if (src)
		return nvkm_clk_read(&clk->base, nv_clk_src_href);

	return read_pll_src(clk, base);
}

static u32
read_pll(struct nv50_clk *clk, u32 base)
{
	struct nvkm_device *device = clk->base.subdev.device;
	u32 mast = nvkm_rd32(device, 0x00c040);
	u32 ctrl = nvkm_rd32(device, base + 0);
	u32 coef = nvkm_rd32(device, base + 4);
	u32 ref = read_pll_ref(clk, base);
	u32 freq = 0;
	int N1, N2, M1, M2;

	if (base == 0x004028 && (mast & 0x00100000)) {
		/* wtf, appears to only disable post-divider on gt200 */
		if (device->chipset != 0xa0)
			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
	}

	N2 = (coef & 0xff000000) >> 24;
	M2 = (coef & 0x00ff0000) >> 16;
	N1 = (coef & 0x0000ff00) >> 8;
	M1 = (coef & 0x000000ff);
	if ((ctrl & 0x80000000) && M1) {
		freq = ref * N1 / M1;
		if ((ctrl & 0x40000100) == 0x40000000) {
			if (M2)
				freq = freq * N2 / M2;
			else
				freq = 0;
		}
	}

	return freq;
}

int
nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
	struct nv50_clk *clk = nv50_clk(base);
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	u32 mast = nvkm_rd32(device, 0x00c040);
	u32 P = 0;

	switch (src) {
	case nv_clk_src_crystal:
		return device->crystal;
	case nv_clk_src_href:
		return 100000; /* PCIE reference clock */
	case nv_clk_src_hclk:
		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
	case nv_clk_src_hclkm3:
		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
	case nv_clk_src_hclkm3d2:
		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
	case nv_clk_src_host:
		switch (mast & 0x30000000) {
		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
		case 0x10000000: break;
		case 0x20000000: /* !0x50 */
		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
		}
		break;
	case nv_clk_src_core:
		if (!(mast & 0x00100000))
			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
		switch (mast & 0x00000003) {
		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
		case 0x00000002: return read_pll(clk, 0x004020) >> P;
		case 0x00000003: return read_pll(clk, 0x004028) >> P;
		}
		break;
	case nv_clk_src_shader:
		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
		switch (mast & 0x00000030) {
		case 0x00000000:
			if (mast & 0x00000080)
				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
		case 0x00000010: break;
		case 0x00000020: return read_pll(clk, 0x004028) >> P;
		case 0x00000030: return read_pll(clk, 0x004020) >> P;
		}
		break;
	case nv_clk_src_mem:
		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
			switch (mast & 0x0000c000) {
			case 0x00000000:
				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
			case 0x00008000:
			case 0x0000c000:
				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
			}
		} else {
			return read_pll(clk, 0x004008) >> P;
		}
		break;
	case nv_clk_src_vdec:
		P = (read_div(clk) & 0x00000700) >> 8;
		switch (device->chipset) {
		case 0x84:
		case 0x86:
		case 0x92:
		case 0x94:
		case 0x96:
		case 0xa0:
			switch (mast & 0x00000c00) {
			case 0x00000000:
				if (device->chipset == 0xa0) /* wtf?? */
					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
			case 0x00000400:
				return 0;
			case 0x00000800:
				if (mast & 0x01000000)
					return read_pll(clk, 0x004028) >> P;
				return read_pll(clk, 0x004030) >> P;
			case 0x00000c00:
				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
			}
			break;
		case 0x98:
			switch (mast & 0x00000c00) {
			case 0x00000000:
				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
			case 0x00000400:
				return 0;
			case 0x00000800:
				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
			case 0x00000c00:
				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
			}
			break;
		}
		break;
	case nv_clk_src_dom6:
		switch (device->chipset) {
		case 0x50:
		case 0xa0:
			return read_pll(clk, 0x00e810) >> 2;
		case 0x84:
		case 0x86:
		case 0x92:
		case 0x94:
		case 0x96:
		case 0x98:
			P = (read_div(clk) & 0x00000007) >> 0;
			switch (mast & 0x0c000000) {
			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
			case 0x04000000: break;
			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
			case 0x0c000000:
				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
			}
			break;
		default:
			break;
		}
	default:
		break;
	}

	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
	return -EINVAL;
}

static u32
calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
{
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvbios_pll pll;
	int ret;

	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
	if (ret)
		return 0;

	pll.vco2.max_freq = 0;
	pll.refclk = read_pll_ref(clk, reg);
	if (!pll.refclk)
		return 0;

	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
}

static inline u32
calc_div(u32 src, u32 target, int *div)
{
	u32 clk0 = src, clk1 = src;
	for (*div = 0; *div <= 7; (*div)++) {
		if (clk0 <= target) {
			clk1 = clk0 << (*div ? 1 : 0);
			break;
		}
		clk0 >>= 1;
	}

	if (target - clk0 <= clk1 - target)
		return clk0;
	(*div)--;
	return clk1;
}

static inline u32
clk_same(u32 a, u32 b)
{
	return ((a / 1000) == (b / 1000));
}

int
nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
	struct nv50_clk *clk = nv50_clk(base);
	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
	struct nvkm_subdev *subdev = &clk->base.subdev;
	struct nvkm_device *device = subdev->device;
	const int shader = cstate->domain[nv_clk_src_shader];
	const int core = cstate->domain[nv_clk_src_core];
	const int vdec = cstate->domain[nv_clk_src_vdec];
	const int dom6 = cstate->domain[nv_clk_src_dom6];
	u32 mastm = 0, mastv = 0;
	u32 divsm = 0, divsv = 0;
	int N, M, P1, P2;
	int freq, out;

	/* prepare a hwsq script from which we'll perform the reclock */
	out = clk_init(hwsq, subdev);
	if (out)
		return out;

	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
	clk_nsec(hwsq, 8000);
	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */

	/* vdec: avoid modifying xpll until we know exactly how the other
	 * clock domains work, i suspect at least some of them can also be
	 * tied to xpll...
	 */
	if (vdec) {
		/* see how close we can get using nvclk as a source */
		freq = calc_div(core, vdec, &P1);

		/* see how close we can get using xpll/hclk as a source */
		if (device->chipset != 0x98)
			out = read_pll(clk, 0x004030);
		else
			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
		out = calc_div(out, vdec, &P2);

		/* select whichever gets us closest */
		if (abs(vdec - freq) <= abs(vdec - out)) {
			if (device->chipset != 0x98)
				mastv |= 0x00000c00;
			divsv |= P1 << 8;
		} else {
			mastv |= 0x00000800;
			divsv |= P2 << 8;
		}

		mastm |= 0x00000c00;
		divsm |= 0x00000700;
	}

	/* dom6: nfi what this is, but we're limited to various combinations
	 * of the host clock frequency
	 */
	if (dom6) {
		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
			mastv |= 0x00000000;
		} else
		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
			mastv |= 0x08000000;
		} else {
			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
			calc_div(freq, dom6, &P1);

			mastv |= 0x0c000000;
			divsv |= P1;
		}

		mastm |= 0x0c000000;
		divsm |= 0x00000007;
	}

	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
	 * and then switch to target clocks
	 */
	clk_mask(hwsq, mast, mastm, 0x00000000);
	clk_mask(hwsq, divs, divsm, divsv);
	clk_mask(hwsq, mast, mastm, mastv);

	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
	 * sclk to hclk) before reprogramming
	 */
	if (device->chipset < 0x92)
		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
	else
		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);

	/* core: for the moment at least, always use nvpll */
	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
	if (freq == 0)
		return -ERANGE;

	clk_mask(hwsq, nvpll[0], 0xc03f0100,
				 0x80000000 | (P1 << 19) | (P1 << 16));
	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);

	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
	 * very careful that the shader clock is at least twice the core, or
	 * some chipsets will be very unhappy.  i expect most or all of these
	 * cases will be handled by tying to nvclk, but it's possible there's
	 * corners
	 */
	if (P1-- && shader == (core << 1)) {
		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
	} else {
		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
		if (freq == 0)
			return -ERANGE;

		clk_mask(hwsq, spll[0], 0xc03f0100,
					0x80000000 | (P1 << 19) | (P1 << 16));
		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
	}

	/* restore normal operation */
	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
	return 0;
}

int
nv50_clk_prog(struct nvkm_clk *base)
{
	struct nv50_clk *clk = nv50_clk(base);
	return clk_exec(&clk->hwsq, true);
}

void
nv50_clk_tidy(struct nvkm_clk *base)
{
	struct nv50_clk *clk = nv50_clk(base);
	clk_exec(&clk->hwsq, false);
}

int
nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
	      int index, bool allow_reclock, struct nvkm_clk **pclk)
{
	struct nv50_clk *clk;
	int ret;

	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
		return -ENOMEM;
	ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
	*pclk = &clk->base;
	if (ret)
		return ret;

	clk->hwsq.r_fifo = hwsq_reg(0x002504);
	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
	switch (device->chipset) {
	case 0x92:
	case 0x94:
	case 0x96:
		clk->hwsq.r_divs = hwsq_reg(0x004800);
		break;
	default:
		clk->hwsq.r_divs = hwsq_reg(0x004700);
		break;
	}
	clk->hwsq.r_mast = hwsq_reg(0x00c040);
	return 0;
}

static const struct nvkm_clk_func
nv50_clk = {
	.read = nv50_clk_read,
	.calc = nv50_clk_calc,
	.prog = nv50_clk_prog,
	.tidy = nv50_clk_tidy,
	.domains = {
		{ nv_clk_src_crystal, 0xff },
		{ nv_clk_src_href   , 0xff },
		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
		{ nv_clk_src_max }
	}
};

int
nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
	return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
}