Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
/*
 * Driver for the Asahi Kasei EMD Corporation AK8974
 * and Aichi Steel AMI305 magnetometer chips.
 * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
 *
 * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
 * Copyright (c) 2010 NVIDIA Corporation.
 * Copyright (C) 2016 Linaro Ltd.
 *
 * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
 * Author: Linus Walleij <linus.walleij@linaro.org>
 */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h> /* For irq_get_irq_data() */
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/random.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

/*
 * 16-bit registers are little-endian. LSB is at the address defined below
 * and MSB is at the next higher address.
 */

/* These registers are common for AK8974 and AMI30x */
#define AK8974_SELFTEST		0x0C
#define AK8974_SELFTEST_IDLE	0x55
#define AK8974_SELFTEST_OK	0xAA

#define AK8974_INFO		0x0D

#define AK8974_WHOAMI		0x0F
#define AK8974_WHOAMI_VALUE_AMI306 0x46
#define AK8974_WHOAMI_VALUE_AMI305 0x47
#define AK8974_WHOAMI_VALUE_AK8974 0x48

#define AK8974_DATA_X		0x10
#define AK8974_DATA_Y		0x12
#define AK8974_DATA_Z		0x14
#define AK8974_INT_SRC		0x16
#define AK8974_STATUS		0x18
#define AK8974_INT_CLEAR	0x1A
#define AK8974_CTRL1		0x1B
#define AK8974_CTRL2		0x1C
#define AK8974_CTRL3		0x1D
#define AK8974_INT_CTRL		0x1E
#define AK8974_INT_THRES	0x26  /* Absolute any axis value threshold */
#define AK8974_PRESET		0x30

/* AK8974-specific offsets */
#define AK8974_OFFSET_X		0x20
#define AK8974_OFFSET_Y		0x22
#define AK8974_OFFSET_Z		0x24
/* AMI305-specific offsets */
#define AMI305_OFFSET_X		0x6C
#define AMI305_OFFSET_Y		0x72
#define AMI305_OFFSET_Z		0x78

/* Different temperature registers */
#define AK8974_TEMP		0x31
#define AMI305_TEMP		0x60

/* AMI306-specific control register */
#define AMI306_CTRL4		0x5C

/* AMI306 factory calibration data */

/* fine axis sensitivity */
#define AMI306_FINEOUTPUT_X	0x90
#define AMI306_FINEOUTPUT_Y	0x92
#define AMI306_FINEOUTPUT_Z	0x94

/* axis sensitivity */
#define AMI306_SENS_X		0x96
#define AMI306_SENS_Y		0x98
#define AMI306_SENS_Z		0x9A

/* axis cross-interference */
#define AMI306_GAIN_PARA_XZ	0x9C
#define AMI306_GAIN_PARA_XY	0x9D
#define AMI306_GAIN_PARA_YZ	0x9E
#define AMI306_GAIN_PARA_YX	0x9F
#define AMI306_GAIN_PARA_ZY	0xA0
#define AMI306_GAIN_PARA_ZX	0xA1

/* offset at ZERO magnetic field */
#define AMI306_OFFZERO_X	0xF8
#define AMI306_OFFZERO_Y	0xFA
#define AMI306_OFFZERO_Z	0xFC


#define AK8974_INT_X_HIGH	BIT(7) /* Axis over +threshold  */
#define AK8974_INT_Y_HIGH	BIT(6)
#define AK8974_INT_Z_HIGH	BIT(5)
#define AK8974_INT_X_LOW	BIT(4) /* Axis below -threshold	*/
#define AK8974_INT_Y_LOW	BIT(3)
#define AK8974_INT_Z_LOW	BIT(2)
#define AK8974_INT_RANGE	BIT(1) /* Range overflow (any axis) */

#define AK8974_STATUS_DRDY	BIT(6) /* Data ready */
#define AK8974_STATUS_OVERRUN	BIT(5) /* Data overrun */
#define AK8974_STATUS_INT	BIT(4) /* Interrupt occurred */

#define AK8974_CTRL1_POWER	BIT(7) /* 0 = standby; 1 = active */
#define AK8974_CTRL1_RATE	BIT(4) /* 0 = 10 Hz; 1 = 20 Hz	 */
#define AK8974_CTRL1_FORCE_EN	BIT(1) /* 0 = normal; 1 = force	 */
#define AK8974_CTRL1_MODE2	BIT(0) /* 0 */

#define AK8974_CTRL2_INT_EN	BIT(4)  /* 1 = enable interrupts	      */
#define AK8974_CTRL2_DRDY_EN	BIT(3)  /* 1 = enable data ready signal */
#define AK8974_CTRL2_DRDY_POL	BIT(2)  /* 1 = data ready active high   */
#define AK8974_CTRL2_RESDEF	(AK8974_CTRL2_DRDY_POL)

#define AK8974_CTRL3_RESET	BIT(7) /* Software reset		  */
#define AK8974_CTRL3_FORCE	BIT(6) /* Start forced measurement */
#define AK8974_CTRL3_SELFTEST	BIT(4) /* Set selftest register	  */
#define AK8974_CTRL3_RESDEF	0x00

#define AK8974_INT_CTRL_XEN	BIT(7) /* Enable interrupt for this axis */
#define AK8974_INT_CTRL_YEN	BIT(6)
#define AK8974_INT_CTRL_ZEN	BIT(5)
#define AK8974_INT_CTRL_XYZEN	(BIT(7)|BIT(6)|BIT(5))
#define AK8974_INT_CTRL_POL	BIT(3) /* 0 = active low; 1 = active high */
#define AK8974_INT_CTRL_PULSE	BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
#define AK8974_INT_CTRL_RESDEF	(AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)

/* The AMI305 has elaborate FW version and serial number registers */
#define AMI305_VER		0xE8
#define AMI305_SN		0xEA

#define AK8974_MAX_RANGE	2048

#define AK8974_POWERON_DELAY	50
#define AK8974_ACTIVATE_DELAY	1
#define AK8974_SELFTEST_DELAY	1
/*
 * Set the autosuspend to two orders of magnitude larger than the poweron
 * delay to make sane reasonable power tradeoff savings (5 seconds in
 * this case).
 */
#define AK8974_AUTOSUSPEND_DELAY 5000

#define AK8974_MEASTIME		3

#define AK8974_PWR_ON		1
#define AK8974_PWR_OFF		0

/**
 * struct ak8974 - state container for the AK8974 driver
 * @i2c: parent I2C client
 * @orientation: mounting matrix, flipped axis etc
 * @map: regmap to access the AK8974 registers over I2C
 * @regs: the avdd and dvdd power regulators
 * @name: the name of the part
 * @variant: the whoami ID value (for selecting code paths)
 * @lock: locks the magnetometer for exclusive use during a measurement
 * @drdy_irq: uses the DRDY IRQ line
 * @drdy_complete: completion for DRDY
 * @drdy_active_low: the DRDY IRQ is active low
 */
struct ak8974 {
	struct i2c_client *i2c;
	struct iio_mount_matrix orientation;
	struct regmap *map;
	struct regulator_bulk_data regs[2];
	const char *name;
	u8 variant;
	struct mutex lock;
	bool drdy_irq;
	struct completion drdy_complete;
	bool drdy_active_low;
};

static const char ak8974_reg_avdd[] = "avdd";
static const char ak8974_reg_dvdd[] = "dvdd";

static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
{
	int ret;
	__le16 bulk;

	ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
	if (ret)
		return ret;
	*val = le16_to_cpu(bulk);

	return 0;
}

static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
{
	__le16 bulk = cpu_to_le16(val);

	return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
}

static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
{
	int ret;
	u8 val;

	val = mode ? AK8974_CTRL1_POWER : 0;
	val |= AK8974_CTRL1_FORCE_EN;
	ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
	if (ret < 0)
		return ret;

	if (mode)
		msleep(AK8974_ACTIVATE_DELAY);

	return 0;
}

static int ak8974_reset(struct ak8974 *ak8974)
{
	int ret;

	/* Power on to get register access. Sets CTRL1 reg to reset state */
	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
	if (ret)
		return ret;
	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
	if (ret)
		return ret;
	ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
	if (ret)
		return ret;
	ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
			   AK8974_INT_CTRL_RESDEF);
	if (ret)
		return ret;

	/* After reset, power off is default state */
	return ak8974_set_power(ak8974, AK8974_PWR_OFF);
}

static int ak8974_configure(struct ak8974 *ak8974)
{
	int ret;

	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
			   AK8974_CTRL2_INT_EN);
	if (ret)
		return ret;
	ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
	if (ret)
		return ret;
	if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
		/* magic from datasheet: set high-speed measurement mode */
		ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
		if (ret)
			return ret;
	}
	ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
	if (ret)
		return ret;

	return regmap_write(ak8974->map, AK8974_PRESET, 0);
}

static int ak8974_trigmeas(struct ak8974 *ak8974)
{
	unsigned int clear;
	u8 mask;
	u8 val;
	int ret;

	/* Clear any previous measurement overflow status */
	ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
	if (ret)
		return ret;

	/* If we have a DRDY IRQ line, use it */
	if (ak8974->drdy_irq) {
		mask = AK8974_CTRL2_INT_EN |
			AK8974_CTRL2_DRDY_EN |
			AK8974_CTRL2_DRDY_POL;
		val = AK8974_CTRL2_DRDY_EN;

		if (!ak8974->drdy_active_low)
			val |= AK8974_CTRL2_DRDY_POL;

		init_completion(&ak8974->drdy_complete);
		ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
					 mask, val);
		if (ret)
			return ret;
	}

	/* Force a measurement */
	return regmap_update_bits(ak8974->map,
				  AK8974_CTRL3,
				  AK8974_CTRL3_FORCE,
				  AK8974_CTRL3_FORCE);
}

static int ak8974_await_drdy(struct ak8974 *ak8974)
{
	int timeout = 2;
	unsigned int val;
	int ret;

	if (ak8974->drdy_irq) {
		ret = wait_for_completion_timeout(&ak8974->drdy_complete,
					1 + msecs_to_jiffies(1000));
		if (!ret) {
			dev_err(&ak8974->i2c->dev,
				"timeout waiting for DRDY IRQ\n");
			return -ETIMEDOUT;
		}
		return 0;
	}

	/* Default delay-based poll loop */
	do {
		msleep(AK8974_MEASTIME);
		ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
		if (ret < 0)
			return ret;
		if (val & AK8974_STATUS_DRDY)
			return 0;
	} while (--timeout);

	dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
	return -ETIMEDOUT;
}

static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
{
	unsigned int src;
	int ret;

	ret = ak8974_await_drdy(ak8974);
	if (ret)
		return ret;
	ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
	if (ret < 0)
		return ret;

	/* Out of range overflow! Strong magnet close? */
	if (src & AK8974_INT_RANGE) {
		dev_err(&ak8974->i2c->dev,
			"range overflow in sensor\n");
		return -ERANGE;
	}

	ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
	if (ret)
		return ret;

	return ret;
}

static irqreturn_t ak8974_drdy_irq(int irq, void *d)
{
	struct ak8974 *ak8974 = d;

	if (!ak8974->drdy_irq)
		return IRQ_NONE;

	/* TODO: timestamp here to get good measurement stamps */
	return IRQ_WAKE_THREAD;
}

static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
{
	struct ak8974 *ak8974 = d;
	unsigned int val;
	int ret;

	/* Check if this was a DRDY from us */
	ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
	if (ret < 0) {
		dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
		return IRQ_HANDLED;
	}
	if (val & AK8974_STATUS_DRDY) {
		/* Yes this was our IRQ */
		complete(&ak8974->drdy_complete);
		return IRQ_HANDLED;
	}

	/* We may be on a shared IRQ, let the next client check */
	return IRQ_NONE;
}

static int ak8974_selftest(struct ak8974 *ak8974)
{
	struct device *dev = &ak8974->i2c->dev;
	unsigned int val;
	int ret;

	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
	if (ret)
		return ret;
	if (val != AK8974_SELFTEST_IDLE) {
		dev_err(dev, "selftest not idle before test\n");
		return -EIO;
	}

	/* Trigger self-test */
	ret = regmap_update_bits(ak8974->map,
			AK8974_CTRL3,
			AK8974_CTRL3_SELFTEST,
			AK8974_CTRL3_SELFTEST);
	if (ret) {
		dev_err(dev, "could not write CTRL3\n");
		return ret;
	}

	msleep(AK8974_SELFTEST_DELAY);

	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
	if (ret)
		return ret;
	if (val != AK8974_SELFTEST_OK) {
		dev_err(dev, "selftest result NOT OK (%02x)\n", val);
		return -EIO;
	}

	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
	if (ret)
		return ret;
	if (val != AK8974_SELFTEST_IDLE) {
		dev_err(dev, "selftest not idle after test (%02x)\n", val);
		return -EIO;
	}
	dev_dbg(dev, "passed self-test\n");

	return 0;
}

static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
				   __le16 *tab, size_t tab_size)
{
	int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
	if (ret) {
		memset(tab, 0xFF, tab_size);
		dev_warn(&ak8974->i2c->dev,
			 "can't read calibration data (regs %u..%zu): %d\n",
			 reg, reg + tab_size - 1, ret);
	} else {
		add_device_randomness(tab, tab_size);
	}
}

static int ak8974_detect(struct ak8974 *ak8974)
{
	unsigned int whoami;
	const char *name;
	int ret;
	unsigned int fw;
	u16 sn;

	ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
	if (ret)
		return ret;

	name = "ami305";

	switch (whoami) {
	case AK8974_WHOAMI_VALUE_AMI306:
		name = "ami306";
		/* fall-through */
	case AK8974_WHOAMI_VALUE_AMI305:
		ret = regmap_read(ak8974->map, AMI305_VER, &fw);
		if (ret)
			return ret;
		fw &= 0x7f; /* only bits 0 thru 6 valid */
		ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
		if (ret)
			return ret;
		add_device_randomness(&sn, sizeof(sn));
		dev_info(&ak8974->i2c->dev,
			 "detected %s, FW ver %02x, S/N: %04x\n",
			 name, fw, sn);
		break;
	case AK8974_WHOAMI_VALUE_AK8974:
		name = "ak8974";
		dev_info(&ak8974->i2c->dev, "detected AK8974\n");
		break;
	default:
		dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
			whoami);
		return -ENODEV;
	}

	ak8974->name = name;
	ak8974->variant = whoami;

	if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
		__le16 fab_data1[9], fab_data2[3];
		int i;

		ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
				       fab_data1, sizeof(fab_data1));
		ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
				       fab_data2, sizeof(fab_data2));

		for (i = 0; i < 3; ++i) {
			static const char axis[3] = "XYZ";
			static const char pgaxis[6] = "ZYZXYX";
			unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
			unsigned fine = le16_to_cpu(fab_data1[i]);
			unsigned sens = le16_to_cpu(fab_data1[i + 3]);
			unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
			unsigned pgain2 = pgain1 >> 8;

			pgain1 &= 0xFF;

			dev_info(&ak8974->i2c->dev,
				 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
				 axis[i], offz, sens, fine, pgaxis[i * 2],
				 pgain1, pgaxis[i * 2 + 1], pgain2);
		}
	}

	return 0;
}

static int ak8974_read_raw(struct iio_dev *indio_dev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2,
			   long mask)
{
	struct ak8974 *ak8974 = iio_priv(indio_dev);
	__le16 hw_values[3];
	int ret = -EINVAL;

	pm_runtime_get_sync(&ak8974->i2c->dev);
	mutex_lock(&ak8974->lock);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		if (chan->address > 2) {
			dev_err(&ak8974->i2c->dev, "faulty channel address\n");
			ret = -EIO;
			goto out_unlock;
		}
		ret = ak8974_trigmeas(ak8974);
		if (ret)
			goto out_unlock;
		ret = ak8974_getresult(ak8974, hw_values);
		if (ret)
			goto out_unlock;

		/*
		 * We read all axes and discard all but one, for optimized
		 * reading, use the triggered buffer.
		 */
		*val = le16_to_cpu(hw_values[chan->address]);

		ret = IIO_VAL_INT;
	}

 out_unlock:
	mutex_unlock(&ak8974->lock);
	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
	pm_runtime_put_autosuspend(&ak8974->i2c->dev);

	return ret;
}

static void ak8974_fill_buffer(struct iio_dev *indio_dev)
{
	struct ak8974 *ak8974 = iio_priv(indio_dev);
	int ret;
	__le16 hw_values[8]; /* Three axes + 64bit padding */

	pm_runtime_get_sync(&ak8974->i2c->dev);
	mutex_lock(&ak8974->lock);

	ret = ak8974_trigmeas(ak8974);
	if (ret) {
		dev_err(&ak8974->i2c->dev, "error triggering measure\n");
		goto out_unlock;
	}
	ret = ak8974_getresult(ak8974, hw_values);
	if (ret) {
		dev_err(&ak8974->i2c->dev, "error getting measures\n");
		goto out_unlock;
	}

	iio_push_to_buffers_with_timestamp(indio_dev, hw_values,
					   iio_get_time_ns(indio_dev));

 out_unlock:
	mutex_unlock(&ak8974->lock);
	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
	pm_runtime_put_autosuspend(&ak8974->i2c->dev);
}

static irqreturn_t ak8974_handle_trigger(int irq, void *p)
{
	const struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;

	ak8974_fill_buffer(indio_dev);
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static const struct iio_mount_matrix *
ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
			const struct iio_chan_spec *chan)
{
	struct ak8974 *ak8974 = iio_priv(indio_dev);

	return &ak8974->orientation;
}

static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
	{ },
};

#define AK8974_AXIS_CHANNEL(axis, index)				\
	{								\
		.type = IIO_MAGN,					\
		.modified = 1,						\
		.channel2 = IIO_MOD_##axis,				\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
		.ext_info = ak8974_ext_info,				\
		.address = index,					\
		.scan_index = index,					\
		.scan_type = {						\
			.sign = 's',					\
			.realbits = 16,					\
			.storagebits = 16,				\
			.endianness = IIO_LE				\
		},							\
	}

static const struct iio_chan_spec ak8974_channels[] = {
	AK8974_AXIS_CHANNEL(X, 0),
	AK8974_AXIS_CHANNEL(Y, 1),
	AK8974_AXIS_CHANNEL(Z, 2),
	IIO_CHAN_SOFT_TIMESTAMP(3),
};

static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };

static const struct iio_info ak8974_info = {
	.read_raw = &ak8974_read_raw,
	.driver_module = THIS_MODULE,
};

static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
{
	struct i2c_client *i2c = to_i2c_client(dev);
	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
	struct ak8974 *ak8974 = iio_priv(indio_dev);

	switch (reg) {
	case AK8974_CTRL1:
	case AK8974_CTRL2:
	case AK8974_CTRL3:
	case AK8974_INT_CTRL:
	case AK8974_INT_THRES:
	case AK8974_INT_THRES + 1:
	case AK8974_PRESET:
	case AK8974_PRESET + 1:
		return true;
	case AK8974_OFFSET_X:
	case AK8974_OFFSET_X + 1:
	case AK8974_OFFSET_Y:
	case AK8974_OFFSET_Y + 1:
	case AK8974_OFFSET_Z:
	case AK8974_OFFSET_Z + 1:
		if (ak8974->variant == AK8974_WHOAMI_VALUE_AK8974)
			return true;
		return false;
	case AMI305_OFFSET_X:
	case AMI305_OFFSET_X + 1:
	case AMI305_OFFSET_Y:
	case AMI305_OFFSET_Y + 1:
	case AMI305_OFFSET_Z:
	case AMI305_OFFSET_Z + 1:
		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
		       ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
	case AMI306_CTRL4:
	case AMI306_CTRL4 + 1:
		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
	default:
		return false;
	}
}

static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
{
	return reg == AK8974_INT_CLEAR;
}

static const struct regmap_config ak8974_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = 0xff,
	.writeable_reg = ak8974_writeable_reg,
	.precious_reg = ak8974_precious_reg,
};

static int ak8974_probe(struct i2c_client *i2c,
			const struct i2c_device_id *id)
{
	struct iio_dev *indio_dev;
	struct ak8974 *ak8974;
	unsigned long irq_trig;
	int irq = i2c->irq;
	int ret;

	/* Register with IIO */
	indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
	if (indio_dev == NULL)
		return -ENOMEM;

	ak8974 = iio_priv(indio_dev);
	i2c_set_clientdata(i2c, indio_dev);
	ak8974->i2c = i2c;
	mutex_init(&ak8974->lock);

	ret = of_iio_read_mount_matrix(&i2c->dev,
				       "mount-matrix",
				       &ak8974->orientation);
	if (ret)
		return ret;

	ak8974->regs[0].supply = ak8974_reg_avdd;
	ak8974->regs[1].supply = ak8974_reg_dvdd;

	ret = devm_regulator_bulk_get(&i2c->dev,
				      ARRAY_SIZE(ak8974->regs),
				      ak8974->regs);
	if (ret < 0) {
		dev_err(&i2c->dev, "cannot get regulators\n");
		return ret;
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
	if (ret < 0) {
		dev_err(&i2c->dev, "cannot enable regulators\n");
		return ret;
	}

	/* Take runtime PM online */
	pm_runtime_get_noresume(&i2c->dev);
	pm_runtime_set_active(&i2c->dev);
	pm_runtime_enable(&i2c->dev);

	ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
	if (IS_ERR(ak8974->map)) {
		dev_err(&i2c->dev, "failed to allocate register map\n");
		return PTR_ERR(ak8974->map);
	}

	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
	if (ret) {
		dev_err(&i2c->dev, "could not power on\n");
		goto power_off;
	}

	ret = ak8974_detect(ak8974);
	if (ret) {
		dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
		goto power_off;
	}

	ret = ak8974_selftest(ak8974);
	if (ret)
		dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");

	ret = ak8974_reset(ak8974);
	if (ret) {
		dev_err(&i2c->dev, "AK8974 reset failed\n");
		goto power_off;
	}

	pm_runtime_set_autosuspend_delay(&i2c->dev,
					 AK8974_AUTOSUSPEND_DELAY);
	pm_runtime_use_autosuspend(&i2c->dev);
	pm_runtime_put(&i2c->dev);

	indio_dev->dev.parent = &i2c->dev;
	indio_dev->channels = ak8974_channels;
	indio_dev->num_channels = ARRAY_SIZE(ak8974_channels);
	indio_dev->info = &ak8974_info;
	indio_dev->available_scan_masks = ak8974_scan_masks;
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->name = ak8974->name;

	ret = iio_triggered_buffer_setup(indio_dev, NULL,
					 ak8974_handle_trigger,
					 NULL);
	if (ret) {
		dev_err(&i2c->dev, "triggered buffer setup failed\n");
		goto disable_pm;
	}

	/* If we have a valid DRDY IRQ, make use of it */
	if (irq > 0) {
		irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
		if (irq_trig == IRQF_TRIGGER_RISING) {
			dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
		} else if (irq_trig == IRQF_TRIGGER_FALLING) {
			ak8974->drdy_active_low = true;
			dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
		} else {
			irq_trig = IRQF_TRIGGER_RISING;
		}
		irq_trig |= IRQF_ONESHOT;
		irq_trig |= IRQF_SHARED;

		ret = devm_request_threaded_irq(&i2c->dev,
						irq,
						ak8974_drdy_irq,
						ak8974_drdy_irq_thread,
						irq_trig,
						ak8974->name,
						ak8974);
		if (ret) {
			dev_err(&i2c->dev, "unable to request DRDY IRQ "
				"- proceeding without IRQ\n");
			goto no_irq;
		}
		ak8974->drdy_irq = true;
	}

no_irq:
	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&i2c->dev, "device register failed\n");
		goto cleanup_buffer;
	}

	return 0;

cleanup_buffer:
	iio_triggered_buffer_cleanup(indio_dev);
disable_pm:
	pm_runtime_put_noidle(&i2c->dev);
	pm_runtime_disable(&i2c->dev);
	ak8974_set_power(ak8974, AK8974_PWR_OFF);
power_off:
	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);

	return ret;
}

static int ak8974_remove(struct i2c_client *i2c)
{
	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
	struct ak8974 *ak8974 = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	pm_runtime_get_sync(&i2c->dev);
	pm_runtime_put_noidle(&i2c->dev);
	pm_runtime_disable(&i2c->dev);
	ak8974_set_power(ak8974, AK8974_PWR_OFF);
	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);

	return 0;
}

static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
{
	struct ak8974 *ak8974 =
		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));

	ak8974_set_power(ak8974, AK8974_PWR_OFF);
	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);

	return 0;
}

static int __maybe_unused ak8974_runtime_resume(struct device *dev)
{
	struct ak8974 *ak8974 =
		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
	int ret;

	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
	if (ret)
		return ret;
	msleep(AK8974_POWERON_DELAY);
	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
	if (ret)
		goto out_regulator_disable;

	ret = ak8974_configure(ak8974);
	if (ret)
		goto out_disable_power;

	return 0;

out_disable_power:
	ak8974_set_power(ak8974, AK8974_PWR_OFF);
out_regulator_disable:
	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);

	return ret;
}

static const struct dev_pm_ops ak8974_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
	SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
			   ak8974_runtime_resume, NULL)
};

static const struct i2c_device_id ak8974_id[] = {
	{"ami305", 0 },
	{"ami306", 0 },
	{"ak8974", 0 },
	{}
};
MODULE_DEVICE_TABLE(i2c, ak8974_id);

static const struct of_device_id ak8974_of_match[] = {
	{ .compatible = "asahi-kasei,ak8974", },
	{}
};
MODULE_DEVICE_TABLE(of, ak8974_of_match);

static struct i2c_driver ak8974_driver = {
	.driver	 = {
		.name	= "ak8974",
		.pm = &ak8974_dev_pm_ops,
		.of_match_table = of_match_ptr(ak8974_of_match),
	},
	.probe	  = ak8974_probe,
	.remove	  = ak8974_remove,
	.id_table = ak8974_id,
};
module_i2c_driver(ak8974_driver);

MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
MODULE_AUTHOR("Samu Onkalo");
MODULE_AUTHOR("Linus Walleij");
MODULE_LICENSE("GPL v2");