Stuck at home?

Check our new online training!

Stuck at home?

All Bootlin training courses
are now available
through on-line seminars

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 * Core driver for the Intel integrated DMA 64-bit
 *
 * Copyright (C) 2015 Intel Corporation
 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#include "idma64.h"

/* Platform driver name */
#define DRV_NAME		"idma64"

/* For now we support only two channels */
#define IDMA64_NR_CHAN		2

/* ---------------------------------------------------------------------- */

static struct device *chan2dev(struct dma_chan *chan)
{
	return &chan->dev->device;
}

/* ---------------------------------------------------------------------- */

static void idma64_off(struct idma64 *idma64)
{
	unsigned short count = 100;

	dma_writel(idma64, CFG, 0);

	channel_clear_bit(idma64, MASK(XFER), idma64->all_chan_mask);
	channel_clear_bit(idma64, MASK(BLOCK), idma64->all_chan_mask);
	channel_clear_bit(idma64, MASK(SRC_TRAN), idma64->all_chan_mask);
	channel_clear_bit(idma64, MASK(DST_TRAN), idma64->all_chan_mask);
	channel_clear_bit(idma64, MASK(ERROR), idma64->all_chan_mask);

	do {
		cpu_relax();
	} while (dma_readl(idma64, CFG) & IDMA64_CFG_DMA_EN && --count);
}

static void idma64_on(struct idma64 *idma64)
{
	dma_writel(idma64, CFG, IDMA64_CFG_DMA_EN);
}

/* ---------------------------------------------------------------------- */

static void idma64_chan_init(struct idma64 *idma64, struct idma64_chan *idma64c)
{
	u32 cfghi = IDMA64C_CFGH_SRC_PER(1) | IDMA64C_CFGH_DST_PER(0);
	u32 cfglo = 0;

	/* Set default burst alignment */
	cfglo |= IDMA64C_CFGL_DST_BURST_ALIGN | IDMA64C_CFGL_SRC_BURST_ALIGN;

	channel_writel(idma64c, CFG_LO, cfglo);
	channel_writel(idma64c, CFG_HI, cfghi);

	/* Enable interrupts */
	channel_set_bit(idma64, MASK(XFER), idma64c->mask);
	channel_set_bit(idma64, MASK(ERROR), idma64c->mask);

	/*
	 * Enforce the controller to be turned on.
	 *
	 * The iDMA is turned off in ->probe() and looses context during system
	 * suspend / resume cycle. That's why we have to enable it each time we
	 * use it.
	 */
	idma64_on(idma64);
}

static void idma64_chan_stop(struct idma64 *idma64, struct idma64_chan *idma64c)
{
	channel_clear_bit(idma64, CH_EN, idma64c->mask);
}

static void idma64_chan_start(struct idma64 *idma64, struct idma64_chan *idma64c)
{
	struct idma64_desc *desc = idma64c->desc;
	struct idma64_hw_desc *hw = &desc->hw[0];

	channel_writeq(idma64c, SAR, 0);
	channel_writeq(idma64c, DAR, 0);

	channel_writel(idma64c, CTL_HI, IDMA64C_CTLH_BLOCK_TS(~0UL));
	channel_writel(idma64c, CTL_LO, IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN);

	channel_writeq(idma64c, LLP, hw->llp);

	channel_set_bit(idma64, CH_EN, idma64c->mask);
}

static void idma64_stop_transfer(struct idma64_chan *idma64c)
{
	struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device);

	idma64_chan_stop(idma64, idma64c);
}

static void idma64_start_transfer(struct idma64_chan *idma64c)
{
	struct idma64 *idma64 = to_idma64(idma64c->vchan.chan.device);
	struct virt_dma_desc *vdesc;

	/* Get the next descriptor */
	vdesc = vchan_next_desc(&idma64c->vchan);
	if (!vdesc) {
		idma64c->desc = NULL;
		return;
	}

	list_del(&vdesc->node);
	idma64c->desc = to_idma64_desc(vdesc);

	/* Configure the channel */
	idma64_chan_init(idma64, idma64c);

	/* Start the channel with a new descriptor */
	idma64_chan_start(idma64, idma64c);
}

/* ---------------------------------------------------------------------- */

static void idma64_chan_irq(struct idma64 *idma64, unsigned short c,
		u32 status_err, u32 status_xfer)
{
	struct idma64_chan *idma64c = &idma64->chan[c];
	struct idma64_desc *desc;
	unsigned long flags;

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	desc = idma64c->desc;
	if (desc) {
		if (status_err & (1 << c)) {
			dma_writel(idma64, CLEAR(ERROR), idma64c->mask);
			desc->status = DMA_ERROR;
		} else if (status_xfer & (1 << c)) {
			dma_writel(idma64, CLEAR(XFER), idma64c->mask);
			desc->status = DMA_COMPLETE;
			vchan_cookie_complete(&desc->vdesc);
			idma64_start_transfer(idma64c);
		}

		/* idma64_start_transfer() updates idma64c->desc */
		if (idma64c->desc == NULL || desc->status == DMA_ERROR)
			idma64_stop_transfer(idma64c);
	}
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
}

static irqreturn_t idma64_irq(int irq, void *dev)
{
	struct idma64 *idma64 = dev;
	u32 status = dma_readl(idma64, STATUS_INT);
	u32 status_xfer;
	u32 status_err;
	unsigned short i;

	dev_vdbg(idma64->dma.dev, "%s: status=%#x\n", __func__, status);

	/* Check if we have any interrupt from the DMA controller */
	if (!status)
		return IRQ_NONE;

	status_xfer = dma_readl(idma64, RAW(XFER));
	status_err = dma_readl(idma64, RAW(ERROR));

	for (i = 0; i < idma64->dma.chancnt; i++)
		idma64_chan_irq(idma64, i, status_err, status_xfer);

	return IRQ_HANDLED;
}

/* ---------------------------------------------------------------------- */

static struct idma64_desc *idma64_alloc_desc(unsigned int ndesc)
{
	struct idma64_desc *desc;

	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
	if (!desc)
		return NULL;

	desc->hw = kcalloc(ndesc, sizeof(*desc->hw), GFP_NOWAIT);
	if (!desc->hw) {
		kfree(desc);
		return NULL;
	}

	return desc;
}

static void idma64_desc_free(struct idma64_chan *idma64c,
		struct idma64_desc *desc)
{
	struct idma64_hw_desc *hw;

	if (desc->ndesc) {
		unsigned int i = desc->ndesc;

		do {
			hw = &desc->hw[--i];
			dma_pool_free(idma64c->pool, hw->lli, hw->llp);
		} while (i);
	}

	kfree(desc->hw);
	kfree(desc);
}

static void idma64_vdesc_free(struct virt_dma_desc *vdesc)
{
	struct idma64_chan *idma64c = to_idma64_chan(vdesc->tx.chan);

	idma64_desc_free(idma64c, to_idma64_desc(vdesc));
}

static void idma64_hw_desc_fill(struct idma64_hw_desc *hw,
		struct dma_slave_config *config,
		enum dma_transfer_direction direction, u64 llp)
{
	struct idma64_lli *lli = hw->lli;
	u64 sar, dar;
	u32 ctlhi = IDMA64C_CTLH_BLOCK_TS(hw->len);
	u32 ctllo = IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN;
	u32 src_width, dst_width;

	if (direction == DMA_MEM_TO_DEV) {
		sar = hw->phys;
		dar = config->dst_addr;
		ctllo |= IDMA64C_CTLL_DST_FIX | IDMA64C_CTLL_SRC_INC |
			 IDMA64C_CTLL_FC_M2P;
		src_width = __ffs(sar | hw->len | 4);
		dst_width = __ffs(config->dst_addr_width);
	} else {	/* DMA_DEV_TO_MEM */
		sar = config->src_addr;
		dar = hw->phys;
		ctllo |= IDMA64C_CTLL_DST_INC | IDMA64C_CTLL_SRC_FIX |
			 IDMA64C_CTLL_FC_P2M;
		src_width = __ffs(config->src_addr_width);
		dst_width = __ffs(dar | hw->len | 4);
	}

	lli->sar = sar;
	lli->dar = dar;

	lli->ctlhi = ctlhi;
	lli->ctllo = ctllo |
		     IDMA64C_CTLL_SRC_MSIZE(config->src_maxburst) |
		     IDMA64C_CTLL_DST_MSIZE(config->dst_maxburst) |
		     IDMA64C_CTLL_DST_WIDTH(dst_width) |
		     IDMA64C_CTLL_SRC_WIDTH(src_width);

	lli->llp = llp;
}

static void idma64_desc_fill(struct idma64_chan *idma64c,
		struct idma64_desc *desc)
{
	struct dma_slave_config *config = &idma64c->config;
	unsigned int i = desc->ndesc;
	struct idma64_hw_desc *hw = &desc->hw[i - 1];
	struct idma64_lli *lli = hw->lli;
	u64 llp = 0;

	/* Fill the hardware descriptors and link them to a list */
	do {
		hw = &desc->hw[--i];
		idma64_hw_desc_fill(hw, config, desc->direction, llp);
		llp = hw->llp;
		desc->length += hw->len;
	} while (i);

	/* Trigger an interrupt after the last block is transfered */
	lli->ctllo |= IDMA64C_CTLL_INT_EN;

	/* Disable LLP transfer in the last block */
	lli->ctllo &= ~(IDMA64C_CTLL_LLP_S_EN | IDMA64C_CTLL_LLP_D_EN);
}

static struct dma_async_tx_descriptor *idma64_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	struct idma64_desc *desc;
	struct scatterlist *sg;
	unsigned int i;

	desc = idma64_alloc_desc(sg_len);
	if (!desc)
		return NULL;

	for_each_sg(sgl, sg, sg_len, i) {
		struct idma64_hw_desc *hw = &desc->hw[i];

		/* Allocate DMA capable memory for hardware descriptor */
		hw->lli = dma_pool_alloc(idma64c->pool, GFP_NOWAIT, &hw->llp);
		if (!hw->lli) {
			desc->ndesc = i;
			idma64_desc_free(idma64c, desc);
			return NULL;
		}

		hw->phys = sg_dma_address(sg);
		hw->len = sg_dma_len(sg);
	}

	desc->ndesc = sg_len;
	desc->direction = direction;
	desc->status = DMA_IN_PROGRESS;

	idma64_desc_fill(idma64c, desc);
	return vchan_tx_prep(&idma64c->vchan, &desc->vdesc, flags);
}

static void idma64_issue_pending(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	if (vchan_issue_pending(&idma64c->vchan) && !idma64c->desc)
		idma64_start_transfer(idma64c);
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);
}

static size_t idma64_active_desc_size(struct idma64_chan *idma64c)
{
	struct idma64_desc *desc = idma64c->desc;
	struct idma64_hw_desc *hw;
	size_t bytes = desc->length;
	u64 llp = channel_readq(idma64c, LLP);
	u32 ctlhi = channel_readl(idma64c, CTL_HI);
	unsigned int i = 0;

	do {
		hw = &desc->hw[i];
		if (hw->llp == llp)
			break;
		bytes -= hw->len;
	} while (++i < desc->ndesc);

	if (!i)
		return bytes;

	/* The current chunk is not fully transfered yet */
	bytes += desc->hw[--i].len;

	return bytes - IDMA64C_CTLH_BLOCK_TS(ctlhi);
}

static enum dma_status idma64_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *state)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status status;
	size_t bytes;
	unsigned long flags;

	status = dma_cookie_status(chan, cookie, state);
	if (status == DMA_COMPLETE)
		return status;

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	vdesc = vchan_find_desc(&idma64c->vchan, cookie);
	if (idma64c->desc && cookie == idma64c->desc->vdesc.tx.cookie) {
		bytes = idma64_active_desc_size(idma64c);
		dma_set_residue(state, bytes);
		status = idma64c->desc->status;
	} else if (vdesc) {
		bytes = to_idma64_desc(vdesc)->length;
		dma_set_residue(state, bytes);
	}
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);

	return status;
}

static void convert_burst(u32 *maxburst)
{
	if (*maxburst)
		*maxburst = __fls(*maxburst);
	else
		*maxburst = 0;
}

static int idma64_slave_config(struct dma_chan *chan,
		struct dma_slave_config *config)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);

	/* Check if chan will be configured for slave transfers */
	if (!is_slave_direction(config->direction))
		return -EINVAL;

	memcpy(&idma64c->config, config, sizeof(idma64c->config));

	convert_burst(&idma64c->config.src_maxburst);
	convert_burst(&idma64c->config.dst_maxburst);

	return 0;
}

static void idma64_chan_deactivate(struct idma64_chan *idma64c, bool drain)
{
	unsigned short count = 100;
	u32 cfglo;

	cfglo = channel_readl(idma64c, CFG_LO);
	if (drain)
		cfglo |= IDMA64C_CFGL_CH_DRAIN;
	else
		cfglo &= ~IDMA64C_CFGL_CH_DRAIN;

	channel_writel(idma64c, CFG_LO, cfglo | IDMA64C_CFGL_CH_SUSP);
	do {
		udelay(1);
		cfglo = channel_readl(idma64c, CFG_LO);
	} while (!(cfglo & IDMA64C_CFGL_FIFO_EMPTY) && --count);
}

static void idma64_chan_activate(struct idma64_chan *idma64c)
{
	u32 cfglo;

	cfglo = channel_readl(idma64c, CFG_LO);
	channel_writel(idma64c, CFG_LO, cfglo & ~IDMA64C_CFGL_CH_SUSP);
}

static int idma64_pause(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	if (idma64c->desc && idma64c->desc->status == DMA_IN_PROGRESS) {
		idma64_chan_deactivate(idma64c, false);
		idma64c->desc->status = DMA_PAUSED;
	}
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);

	return 0;
}

static int idma64_resume(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	if (idma64c->desc && idma64c->desc->status == DMA_PAUSED) {
		idma64c->desc->status = DMA_IN_PROGRESS;
		idma64_chan_activate(idma64c);
	}
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);

	return 0;
}

static int idma64_terminate_all(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&idma64c->vchan.lock, flags);
	idma64_chan_deactivate(idma64c, true);
	idma64_stop_transfer(idma64c);
	if (idma64c->desc) {
		idma64_vdesc_free(&idma64c->desc->vdesc);
		idma64c->desc = NULL;
	}
	vchan_get_all_descriptors(&idma64c->vchan, &head);
	spin_unlock_irqrestore(&idma64c->vchan.lock, flags);

	vchan_dma_desc_free_list(&idma64c->vchan, &head);
	return 0;
}

static int idma64_alloc_chan_resources(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);

	/* Create a pool of consistent memory blocks for hardware descriptors */
	idma64c->pool = dma_pool_create(dev_name(chan2dev(chan)),
					chan->device->dev,
					sizeof(struct idma64_lli), 8, 0);
	if (!idma64c->pool) {
		dev_err(chan2dev(chan), "No memory for descriptors\n");
		return -ENOMEM;
	}

	return 0;
}

static void idma64_free_chan_resources(struct dma_chan *chan)
{
	struct idma64_chan *idma64c = to_idma64_chan(chan);

	vchan_free_chan_resources(to_virt_chan(chan));
	dma_pool_destroy(idma64c->pool);
	idma64c->pool = NULL;
}

/* ---------------------------------------------------------------------- */

#define IDMA64_BUSWIDTHS				\
	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)

static int idma64_probe(struct idma64_chip *chip)
{
	struct idma64 *idma64;
	unsigned short nr_chan = IDMA64_NR_CHAN;
	unsigned short i;
	int ret;

	idma64 = devm_kzalloc(chip->dev, sizeof(*idma64), GFP_KERNEL);
	if (!idma64)
		return -ENOMEM;

	idma64->regs = chip->regs;
	chip->idma64 = idma64;

	idma64->chan = devm_kcalloc(chip->dev, nr_chan, sizeof(*idma64->chan),
				    GFP_KERNEL);
	if (!idma64->chan)
		return -ENOMEM;

	idma64->all_chan_mask = (1 << nr_chan) - 1;

	/* Turn off iDMA controller */
	idma64_off(idma64);

	ret = devm_request_irq(chip->dev, chip->irq, idma64_irq, IRQF_SHARED,
			       dev_name(chip->dev), idma64);
	if (ret)
		return ret;

	INIT_LIST_HEAD(&idma64->dma.channels);
	for (i = 0; i < nr_chan; i++) {
		struct idma64_chan *idma64c = &idma64->chan[i];

		idma64c->vchan.desc_free = idma64_vdesc_free;
		vchan_init(&idma64c->vchan, &idma64->dma);

		idma64c->regs = idma64->regs + i * IDMA64_CH_LENGTH;
		idma64c->mask = BIT(i);
	}

	dma_cap_set(DMA_SLAVE, idma64->dma.cap_mask);
	dma_cap_set(DMA_PRIVATE, idma64->dma.cap_mask);

	idma64->dma.device_alloc_chan_resources = idma64_alloc_chan_resources;
	idma64->dma.device_free_chan_resources = idma64_free_chan_resources;

	idma64->dma.device_prep_slave_sg = idma64_prep_slave_sg;

	idma64->dma.device_issue_pending = idma64_issue_pending;
	idma64->dma.device_tx_status = idma64_tx_status;

	idma64->dma.device_config = idma64_slave_config;
	idma64->dma.device_pause = idma64_pause;
	idma64->dma.device_resume = idma64_resume;
	idma64->dma.device_terminate_all = idma64_terminate_all;

	idma64->dma.src_addr_widths = IDMA64_BUSWIDTHS;
	idma64->dma.dst_addr_widths = IDMA64_BUSWIDTHS;
	idma64->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	idma64->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	idma64->dma.dev = chip->dev;

	dma_set_max_seg_size(idma64->dma.dev, IDMA64C_CTLH_BLOCK_TS_MASK);

	ret = dma_async_device_register(&idma64->dma);
	if (ret)
		return ret;

	dev_info(chip->dev, "Found Intel integrated DMA 64-bit\n");
	return 0;
}

static int idma64_remove(struct idma64_chip *chip)
{
	struct idma64 *idma64 = chip->idma64;
	unsigned short i;

	dma_async_device_unregister(&idma64->dma);

	/*
	 * Explicitly call devm_request_irq() to avoid the side effects with
	 * the scheduled tasklets.
	 */
	devm_free_irq(chip->dev, chip->irq, idma64);

	for (i = 0; i < idma64->dma.chancnt; i++) {
		struct idma64_chan *idma64c = &idma64->chan[i];

		tasklet_kill(&idma64c->vchan.task);
	}

	return 0;
}

/* ---------------------------------------------------------------------- */

static int idma64_platform_probe(struct platform_device *pdev)
{
	struct idma64_chip *chip;
	struct device *dev = &pdev->dev;
	struct resource *mem;
	int ret;

	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	chip->irq = platform_get_irq(pdev, 0);
	if (chip->irq < 0)
		return chip->irq;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	chip->regs = devm_ioremap_resource(dev, mem);
	if (IS_ERR(chip->regs))
		return PTR_ERR(chip->regs);

	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret)
		return ret;

	chip->dev = dev;

	ret = idma64_probe(chip);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, chip);
	return 0;
}

static int idma64_platform_remove(struct platform_device *pdev)
{
	struct idma64_chip *chip = platform_get_drvdata(pdev);

	return idma64_remove(chip);
}

#ifdef CONFIG_PM_SLEEP

static int idma64_pm_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct idma64_chip *chip = platform_get_drvdata(pdev);

	idma64_off(chip->idma64);
	return 0;
}

static int idma64_pm_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct idma64_chip *chip = platform_get_drvdata(pdev);

	idma64_on(chip->idma64);
	return 0;
}

#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops idma64_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(idma64_pm_suspend, idma64_pm_resume)
};

static struct platform_driver idma64_platform_driver = {
	.probe		= idma64_platform_probe,
	.remove		= idma64_platform_remove,
	.driver = {
		.name	= DRV_NAME,
		.pm	= &idma64_dev_pm_ops,
	},
};

module_platform_driver(idma64_platform_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("iDMA64 core driver");
MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");
MODULE_ALIAS("platform:" DRV_NAME);