Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*
 * Copyright (C) 2012-2017 ARM Limited or its affiliates.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "ssi_config.h"
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <crypto/ctr.h>
#ifdef FLUSH_CACHE_ALL
#include <asm/cacheflush.h>
#endif
#include <linux/pm_runtime.h>
#include "ssi_driver.h"
#include "ssi_buffer_mgr.h"
#include "ssi_request_mgr.h"
#include "ssi_sysfs.h"
#include "ssi_ivgen.h"
#include "ssi_pm.h"

#define SSI_MAX_POLL_ITER	10

struct ssi_request_mgr_handle {
	/* Request manager resources */
	unsigned int hw_queue_size; /* HW capability */
	unsigned int min_free_hw_slots;
	unsigned int max_used_sw_slots;
	struct ssi_crypto_req req_queue[MAX_REQUEST_QUEUE_SIZE];
	u32 req_queue_head;
	u32 req_queue_tail;
	u32 axi_completed;
	u32 q_free_slots;
	spinlock_t hw_lock;
	struct cc_hw_desc compl_desc;
	u8 *dummy_comp_buff;
	dma_addr_t dummy_comp_buff_dma;
	struct cc_hw_desc monitor_desc;

	volatile unsigned long monitor_lock;
#ifdef COMP_IN_WQ
	struct workqueue_struct *workq;
	struct delayed_work compwork;
#else
	struct tasklet_struct comptask;
#endif
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
	bool is_runtime_suspended;
#endif
};

static void comp_handler(unsigned long devarg);
#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work);
#endif

void request_mgr_fini(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;

	if (!req_mgr_h)
		return; /* Not allocated */

	if (req_mgr_h->dummy_comp_buff_dma != 0) {
		dma_free_coherent(&drvdata->plat_dev->dev,
				  sizeof(u32), req_mgr_h->dummy_comp_buff,
				  req_mgr_h->dummy_comp_buff_dma);
	}

	SSI_LOG_DEBUG("max_used_hw_slots=%d\n", (req_mgr_h->hw_queue_size -
						req_mgr_h->min_free_hw_slots));
	SSI_LOG_DEBUG("max_used_sw_slots=%d\n", req_mgr_h->max_used_sw_slots);

#ifdef COMP_IN_WQ
	flush_workqueue(req_mgr_h->workq);
	destroy_workqueue(req_mgr_h->workq);
#else
	/* Kill tasklet */
	tasklet_kill(&req_mgr_h->comptask);
#endif
	memset(req_mgr_h, 0, sizeof(struct ssi_request_mgr_handle));
	kfree(req_mgr_h);
	drvdata->request_mgr_handle = NULL;
}

int request_mgr_init(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *req_mgr_h;
	int rc = 0;

	req_mgr_h = kzalloc(sizeof(*req_mgr_h), GFP_KERNEL);
	if (!req_mgr_h) {
		rc = -ENOMEM;
		goto req_mgr_init_err;
	}

	drvdata->request_mgr_handle = req_mgr_h;

	spin_lock_init(&req_mgr_h->hw_lock);
#ifdef COMP_IN_WQ
	SSI_LOG_DEBUG("Initializing completion workqueue\n");
	req_mgr_h->workq = create_singlethread_workqueue("arm_cc7x_wq");
	if (unlikely(!req_mgr_h->workq)) {
		SSI_LOG_ERR("Failed creating work queue\n");
		rc = -ENOMEM;
		goto req_mgr_init_err;
	}
	INIT_DELAYED_WORK(&req_mgr_h->compwork, comp_work_handler);
#else
	SSI_LOG_DEBUG("Initializing completion tasklet\n");
	tasklet_init(&req_mgr_h->comptask, comp_handler, (unsigned long)drvdata);
#endif
	req_mgr_h->hw_queue_size = READ_REGISTER(drvdata->cc_base +
		CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_SRAM_SIZE));
	SSI_LOG_DEBUG("hw_queue_size=0x%08X\n", req_mgr_h->hw_queue_size);
	if (req_mgr_h->hw_queue_size < MIN_HW_QUEUE_SIZE) {
		SSI_LOG_ERR("Invalid HW queue size = %u (Min. required is %u)\n",
			    req_mgr_h->hw_queue_size, MIN_HW_QUEUE_SIZE);
		rc = -ENOMEM;
		goto req_mgr_init_err;
	}
	req_mgr_h->min_free_hw_slots = req_mgr_h->hw_queue_size;
	req_mgr_h->max_used_sw_slots = 0;

	/* Allocate DMA word for "dummy" completion descriptor use */
	req_mgr_h->dummy_comp_buff = dma_alloc_coherent(&drvdata->plat_dev->dev,
							sizeof(u32),
							&req_mgr_h->dummy_comp_buff_dma,
							GFP_KERNEL);
	if (!req_mgr_h->dummy_comp_buff) {
		SSI_LOG_ERR("Not enough memory to allocate DMA (%zu) dropped "
			   "buffer\n", sizeof(u32));
		rc = -ENOMEM;
		goto req_mgr_init_err;
	}

	/* Init. "dummy" completion descriptor */
	hw_desc_init(&req_mgr_h->compl_desc);
	set_din_const(&req_mgr_h->compl_desc, 0, sizeof(u32));
	set_dout_dlli(&req_mgr_h->compl_desc, req_mgr_h->dummy_comp_buff_dma,
		      sizeof(u32), NS_BIT, 1);
	set_flow_mode(&req_mgr_h->compl_desc, BYPASS);
	set_queue_last_ind(&req_mgr_h->compl_desc);

	return 0;

req_mgr_init_err:
	request_mgr_fini(drvdata);
	return rc;
}

static inline void enqueue_seq(
	void __iomem *cc_base,
	struct cc_hw_desc seq[], unsigned int seq_len)
{
	int i;

	for (i = 0; i < seq_len; i++) {
		writel_relaxed(seq[i].word[0], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
		writel_relaxed(seq[i].word[1], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
		writel_relaxed(seq[i].word[2], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
		writel_relaxed(seq[i].word[3], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
		writel_relaxed(seq[i].word[4], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
		wmb();
		writel_relaxed(seq[i].word[5], (volatile void __iomem *)(cc_base + CC_REG_OFFSET(CRY_KERNEL, DSCRPTR_QUEUE_WORD0)));
#ifdef DX_DUMP_DESCS
		SSI_LOG_DEBUG("desc[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
			      seq[i].word[0], seq[i].word[1], seq[i].word[2],
			      seq[i].word[3], seq[i].word[4], seq[i].word[5]);
#endif
	}
}

/*!
 * Completion will take place if and only if user requested completion
 * by setting "is_dout = 0" in send_request().
 *
 * \param dev
 * \param dx_compl_h The completion event to signal
 */
static void request_mgr_complete(struct device *dev, void *dx_compl_h, void __iomem *cc_base)
{
	struct completion *this_compl = dx_compl_h;

	complete(this_compl);
}

static inline int request_mgr_queues_status_check(
		struct ssi_request_mgr_handle *req_mgr_h,
		void __iomem *cc_base,
		unsigned int total_seq_len)
{
	unsigned long poll_queue;

	/* SW queue is checked only once as it will not
	 * be chaned during the poll becasue the spinlock_bh
	 * is held by the thread
	 */
	if (unlikely(((req_mgr_h->req_queue_head + 1) &
		      (MAX_REQUEST_QUEUE_SIZE - 1)) ==
		     req_mgr_h->req_queue_tail)) {
		SSI_LOG_ERR("SW FIFO is full. req_queue_head=%d sw_fifo_len=%d\n",
			    req_mgr_h->req_queue_head, MAX_REQUEST_QUEUE_SIZE);
		return -EBUSY;
	}

	if ((likely(req_mgr_h->q_free_slots >= total_seq_len)))
		return 0;

	/* Wait for space in HW queue. Poll constant num of iterations. */
	for (poll_queue = 0; poll_queue < SSI_MAX_POLL_ITER ; poll_queue++) {
		req_mgr_h->q_free_slots =
			CC_HAL_READ_REGISTER(CC_REG_OFFSET(CRY_KERNEL,
							   DSCRPTR_QUEUE_CONTENT));
		if (unlikely(req_mgr_h->q_free_slots <
						req_mgr_h->min_free_hw_slots)) {
			req_mgr_h->min_free_hw_slots = req_mgr_h->q_free_slots;
		}

		if (likely(req_mgr_h->q_free_slots >= total_seq_len)) {
			/* If there is enough place return */
			return 0;
		}

		SSI_LOG_DEBUG("HW FIFO is full. q_free_slots=%d total_seq_len=%d\n",
			      req_mgr_h->q_free_slots, total_seq_len);
	}
	/* No room in the HW queue try again later */
	SSI_LOG_DEBUG("HW FIFO full, timeout. req_queue_head=%d "
		   "sw_fifo_len=%d q_free_slots=%d total_seq_len=%d\n",
		     req_mgr_h->req_queue_head,
		   MAX_REQUEST_QUEUE_SIZE,
		   req_mgr_h->q_free_slots,
		   total_seq_len);
	return -EAGAIN;
}

/*!
 * Enqueue caller request to crypto hardware.
 *
 * \param drvdata
 * \param ssi_req The request to enqueue
 * \param desc The crypto sequence
 * \param len The crypto sequence length
 * \param is_dout If "true": completion is handled by the caller
 *	  If "false": this function adds a dummy descriptor completion
 *	  and waits upon completion signal.
 *
 * \return int Returns -EINPROGRESS if "is_dout=true"; "0" if "is_dout=false"
 */
int send_request(
	struct ssi_drvdata *drvdata, struct ssi_crypto_req *ssi_req,
	struct cc_hw_desc *desc, unsigned int len, bool is_dout)
{
	void __iomem *cc_base = drvdata->cc_base;
	struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
	unsigned int used_sw_slots;
	unsigned int iv_seq_len = 0;
	unsigned int total_seq_len = len; /*initial sequence length*/
	struct cc_hw_desc iv_seq[SSI_IVPOOL_SEQ_LEN];
	int rc;
	unsigned int max_required_seq_len = (total_seq_len +
					((ssi_req->ivgen_dma_addr_len == 0) ? 0 :
					SSI_IVPOOL_SEQ_LEN) +
					((is_dout == 0) ? 1 : 0));

#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
	rc = ssi_power_mgr_runtime_get(&drvdata->plat_dev->dev);
	if (rc != 0) {
		SSI_LOG_ERR("ssi_power_mgr_runtime_get returned %x\n", rc);
		return rc;
	}
#endif

	do {
		spin_lock_bh(&req_mgr_h->hw_lock);

		/* Check if there is enough place in the SW/HW queues
		 * in case iv gen add the max size and in case of no dout add 1
		 * for the internal completion descriptor
		 */
		rc = request_mgr_queues_status_check(req_mgr_h, cc_base,
						     max_required_seq_len);
		if (likely(rc == 0))
			/* There is enough place in the queue */
			break;
		/* something wrong release the spinlock*/
		spin_unlock_bh(&req_mgr_h->hw_lock);

		if (rc != -EAGAIN) {
			/* Any error other than HW queue full
			 * (SW queue is full)
			 */
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
			ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev);
#endif
			return rc;
		}

		/* HW queue is full - short sleep */
		msleep(1);
	} while (1);

	/* Additional completion descriptor is needed incase caller did not
	 * enabled any DLLI/MLLI DOUT bit in the given sequence
	 */
	if (!is_dout) {
		init_completion(&ssi_req->seq_compl);
		ssi_req->user_cb = request_mgr_complete;
		ssi_req->user_arg = &ssi_req->seq_compl;
		total_seq_len++;
	}

	if (ssi_req->ivgen_dma_addr_len > 0) {
		SSI_LOG_DEBUG("Acquire IV from pool into %d DMA addresses %pad, %pad, %pad, IV-size=%u\n",
			      ssi_req->ivgen_dma_addr_len,
			      ssi_req->ivgen_dma_addr[0],
			      ssi_req->ivgen_dma_addr[1],
			      ssi_req->ivgen_dma_addr[2],
			      ssi_req->ivgen_size);

		/* Acquire IV from pool */
		rc = ssi_ivgen_getiv(drvdata, ssi_req->ivgen_dma_addr,
				     ssi_req->ivgen_dma_addr_len,
				     ssi_req->ivgen_size, iv_seq, &iv_seq_len);

		if (unlikely(rc != 0)) {
			SSI_LOG_ERR("Failed to generate IV (rc=%d)\n", rc);
			spin_unlock_bh(&req_mgr_h->hw_lock);
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
			ssi_power_mgr_runtime_put_suspend(&drvdata->plat_dev->dev);
#endif
			return rc;
		}

		total_seq_len += iv_seq_len;
	}

	used_sw_slots = ((req_mgr_h->req_queue_head - req_mgr_h->req_queue_tail) & (MAX_REQUEST_QUEUE_SIZE - 1));
	if (unlikely(used_sw_slots > req_mgr_h->max_used_sw_slots))
		req_mgr_h->max_used_sw_slots = used_sw_slots;

	/* Enqueue request - must be locked with HW lock*/
	req_mgr_h->req_queue[req_mgr_h->req_queue_head] = *ssi_req;
	req_mgr_h->req_queue_head = (req_mgr_h->req_queue_head + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
	/* TODO: Use circ_buf.h ? */

	SSI_LOG_DEBUG("Enqueue request head=%u\n", req_mgr_h->req_queue_head);

#ifdef FLUSH_CACHE_ALL
	flush_cache_all();
#endif

	/* STAT_PHASE_4: Push sequence */
	enqueue_seq(cc_base, iv_seq, iv_seq_len);
	enqueue_seq(cc_base, desc, len);
	enqueue_seq(cc_base, &req_mgr_h->compl_desc, (is_dout ? 0 : 1));

	if (unlikely(req_mgr_h->q_free_slots < total_seq_len)) {
		/*This means that there was a problem with the resume*/
		BUG();
	}
	/* Update the free slots in HW queue */
	req_mgr_h->q_free_slots -= total_seq_len;

	spin_unlock_bh(&req_mgr_h->hw_lock);

	if (!is_dout) {
		/* Wait upon sequence completion.
		 *  Return "0" -Operation done successfully.
		 */
		wait_for_completion(&ssi_req->seq_compl);
		return 0;
	} else {
		/* Operation still in process */
		return -EINPROGRESS;
	}
}

/*!
 * Enqueue caller request to crypto hardware during init process.
 * assume this function is not called in middle of a flow,
 * since we set QUEUE_LAST_IND flag in the last descriptor.
 *
 * \param drvdata
 * \param desc The crypto sequence
 * \param len The crypto sequence length
 *
 * \return int Returns "0" upon success
 */
int send_request_init(
	struct ssi_drvdata *drvdata, struct cc_hw_desc *desc, unsigned int len)
{
	void __iomem *cc_base = drvdata->cc_base;
	struct ssi_request_mgr_handle *req_mgr_h = drvdata->request_mgr_handle;
	unsigned int total_seq_len = len; /*initial sequence length*/
	int rc = 0;

	/* Wait for space in HW and SW FIFO. Poll for as much as FIFO_TIMEOUT. */
	rc = request_mgr_queues_status_check(req_mgr_h, cc_base, total_seq_len);
	if (unlikely(rc != 0))
		return rc;

	set_queue_last_ind(&desc[(len - 1)]);

	enqueue_seq(cc_base, desc, len);

	/* Update the free slots in HW queue */
	req_mgr_h->q_free_slots = CC_HAL_READ_REGISTER(CC_REG_OFFSET(CRY_KERNEL,
								     DSCRPTR_QUEUE_CONTENT));

	return 0;
}

void complete_request(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *request_mgr_handle =
						drvdata->request_mgr_handle;
#ifdef COMP_IN_WQ
	queue_delayed_work(request_mgr_handle->workq, &request_mgr_handle->compwork, 0);
#else
	tasklet_schedule(&request_mgr_handle->comptask);
#endif
}

#ifdef COMP_IN_WQ
static void comp_work_handler(struct work_struct *work)
{
	struct ssi_drvdata *drvdata =
		container_of(work, struct ssi_drvdata, compwork.work);

	comp_handler((unsigned long)drvdata);
}
#endif

static void proc_completions(struct ssi_drvdata *drvdata)
{
	struct ssi_crypto_req *ssi_req;
	struct platform_device *plat_dev = drvdata->plat_dev;
	struct ssi_request_mgr_handle *request_mgr_handle =
						drvdata->request_mgr_handle;
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
	int rc = 0;
#endif

	while (request_mgr_handle->axi_completed) {
		request_mgr_handle->axi_completed--;

		/* Dequeue request */
		if (unlikely(request_mgr_handle->req_queue_head == request_mgr_handle->req_queue_tail)) {
			SSI_LOG_ERR("Request queue is empty req_queue_head==req_queue_tail==%u\n", request_mgr_handle->req_queue_head);
			BUG();
		}

		ssi_req = &request_mgr_handle->req_queue[request_mgr_handle->req_queue_tail];

#ifdef FLUSH_CACHE_ALL
		flush_cache_all();
#endif

#ifdef COMPLETION_DELAY
		/* Delay */
		{
			u32 axi_err;
			int i;

			SSI_LOG_INFO("Delay\n");
			for (i = 0; i < 1000000; i++)
				axi_err = READ_REGISTER(drvdata->cc_base + CC_REG_OFFSET(CRY_KERNEL, AXIM_MON_ERR));
		}
#endif /* COMPLETION_DELAY */

		if (likely(ssi_req->user_cb))
			ssi_req->user_cb(&plat_dev->dev, ssi_req->user_arg, drvdata->cc_base);
		request_mgr_handle->req_queue_tail = (request_mgr_handle->req_queue_tail + 1) & (MAX_REQUEST_QUEUE_SIZE - 1);
		SSI_LOG_DEBUG("Dequeue request tail=%u\n", request_mgr_handle->req_queue_tail);
		SSI_LOG_DEBUG("Request completed. axi_completed=%d\n", request_mgr_handle->axi_completed);
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
		rc = ssi_power_mgr_runtime_put_suspend(&plat_dev->dev);
		if (rc != 0)
			SSI_LOG_ERR("Failed to set runtime suspension %d\n", rc);
#endif
	}
}

static inline u32 cc_axi_comp_count(void __iomem *cc_base)
{
	/* The CC_HAL_READ_REGISTER macro implictly requires and uses
	 * a base MMIO register address variable named cc_base.
	 */
	return FIELD_GET(AXIM_MON_COMP_VALUE,
			 CC_HAL_READ_REGISTER(AXIM_MON_BASE_OFFSET));
}

/* Deferred service handler, run as interrupt-fired tasklet */
static void comp_handler(unsigned long devarg)
{
	struct ssi_drvdata *drvdata = (struct ssi_drvdata *)devarg;
	void __iomem *cc_base = drvdata->cc_base;
	struct ssi_request_mgr_handle *request_mgr_handle =
						drvdata->request_mgr_handle;

	u32 irq;

	irq = (drvdata->irq & SSI_COMP_IRQ_MASK);

	if (irq & SSI_COMP_IRQ_MASK) {
		/* To avoid the interrupt from firing as we unmask it, we clear it now */
		CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK);

		/* Avoid race with above clear: Test completion counter once more */
		request_mgr_handle->axi_completed +=
				cc_axi_comp_count(cc_base);

		while (request_mgr_handle->axi_completed) {
			do {
				proc_completions(drvdata);
				/* At this point (after proc_completions()),
				 * request_mgr_handle->axi_completed is 0.
				 */
				request_mgr_handle->axi_completed =
						cc_axi_comp_count(cc_base);
			} while (request_mgr_handle->axi_completed > 0);

			/* To avoid the interrupt from firing as we unmask it, we clear it now */
			CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_ICR), SSI_COMP_IRQ_MASK);

			/* Avoid race with above clear: Test completion counter once more */
			request_mgr_handle->axi_completed +=
					cc_axi_comp_count(cc_base);
		}
	}
	/* after verifing that there is nothing to do, Unmask AXI completion interrupt */
	CC_HAL_WRITE_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR),
			      CC_HAL_READ_REGISTER(CC_REG_OFFSET(HOST_RGF, HOST_IMR)) & ~irq);
}

/*
 * resume the queue configuration - no need to take the lock as this happens inside
 * the spin lock protection
 */
#if defined(CONFIG_PM_RUNTIME) || defined(CONFIG_PM_SLEEP)
int ssi_request_mgr_runtime_resume_queue(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *request_mgr_handle = drvdata->request_mgr_handle;

	spin_lock_bh(&request_mgr_handle->hw_lock);
	request_mgr_handle->is_runtime_suspended = false;
	spin_unlock_bh(&request_mgr_handle->hw_lock);

	return 0;
}

/*
 * suspend the queue configuration. Since it is used for the runtime suspend
 * only verify that the queue can be suspended.
 */
int ssi_request_mgr_runtime_suspend_queue(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *request_mgr_handle =
						drvdata->request_mgr_handle;

	/* lock the send_request */
	spin_lock_bh(&request_mgr_handle->hw_lock);
	if (request_mgr_handle->req_queue_head !=
	    request_mgr_handle->req_queue_tail) {
		spin_unlock_bh(&request_mgr_handle->hw_lock);
		return -EBUSY;
	}
	request_mgr_handle->is_runtime_suspended = true;
	spin_unlock_bh(&request_mgr_handle->hw_lock);

	return 0;
}

bool ssi_request_mgr_is_queue_runtime_suspend(struct ssi_drvdata *drvdata)
{
	struct ssi_request_mgr_handle *request_mgr_handle =
						drvdata->request_mgr_handle;

	return	request_mgr_handle->is_runtime_suspended;
}

#endif