Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
/*
 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
 *
 *  Copyright (C) 2011 Weinmann Medical GmbH
 *  Author: Nikolaus Voss <n.voss@weinmann.de>
 *
 *  Evolved from original work by:
 *  Copyright (C) 2004 Rick Bronson
 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
 *
 *  Borrowed heavily from original work by:
 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/platform_data/dma-atmel.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>

#define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
#define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
#define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
#define AUTOSUSPEND_TIMEOUT		2000
#define AT91_I2C_MAX_ALT_CMD_DATA_SIZE	256

/* AT91 TWI register definitions */
#define	AT91_TWI_CR		0x0000	/* Control Register */
#define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */
#define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */
#define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */
#define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */
#define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */
#define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */
#define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */
#define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */
#define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */
#define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */
#define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */
#define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */
#define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */
#define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */
#define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */

#define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
#define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
#define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */

#define	AT91_TWI_IADR		0x000c	/* Internal Address Register */

#define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
#define	AT91_TWI_CWGR_HOLD_MAX	0x1f
#define	AT91_TWI_CWGR_HOLD(x)	(((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)

#define	AT91_TWI_SR		0x0020	/* Status Register */
#define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */
#define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */
#define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */
#define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */
#define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */
#define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */
#define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */

#define	AT91_TWI_INT_MASK \
	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)

#define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
#define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
#define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
#define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
#define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */

#define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */
#define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff)
#define	AT91_TWI_ACR_DIR	BIT(8)

#define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */
#define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0)
#define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0)
#define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4)
#define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4)
#define	AT91_TWI_ONE_DATA	0x0
#define	AT91_TWI_TWO_DATA	0x1
#define	AT91_TWI_FOUR_DATA	0x2

#define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */

#define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */
#define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */
#define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */
#define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */

#define	AT91_TWI_VER		0x00fc	/* Version Register */

struct at91_twi_pdata {
	unsigned clk_max_div;
	unsigned clk_offset;
	bool has_unre_flag;
	bool has_alt_cmd;
	bool has_hold_field;
	struct at_dma_slave dma_slave;
};

struct at91_twi_dma {
	struct dma_chan *chan_rx;
	struct dma_chan *chan_tx;
	struct scatterlist sg[2];
	struct dma_async_tx_descriptor *data_desc;
	enum dma_data_direction direction;
	bool buf_mapped;
	bool xfer_in_progress;
};

struct at91_twi_dev {
	struct device *dev;
	void __iomem *base;
	struct completion cmd_complete;
	struct clk *clk;
	u8 *buf;
	size_t buf_len;
	struct i2c_msg *msg;
	int irq;
	unsigned imr;
	unsigned transfer_status;
	struct i2c_adapter adapter;
	unsigned twi_cwgr_reg;
	struct at91_twi_pdata *pdata;
	bool use_dma;
	bool use_alt_cmd;
	bool recv_len_abort;
	u32 fifo_size;
	struct at91_twi_dma dma;
};

static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
{
	return readl_relaxed(dev->base + reg);
}

static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
{
	writel_relaxed(val, dev->base + reg);
}

static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
{
	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
}

static void at91_twi_irq_save(struct at91_twi_dev *dev)
{
	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
	at91_disable_twi_interrupts(dev);
}

static void at91_twi_irq_restore(struct at91_twi_dev *dev)
{
	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
}

static void at91_init_twi_bus(struct at91_twi_dev *dev)
{
	at91_disable_twi_interrupts(dev);
	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
	/* FIFO should be enabled immediately after the software reset */
	if (dev->fifo_size)
		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
}

/*
 * Calculate symmetric clock as stated in datasheet:
 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
 */
static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
{
	int ckdiv, cdiv, div, hold = 0;
	struct at91_twi_pdata *pdata = dev->pdata;
	int offset = pdata->clk_offset;
	int max_ckdiv = pdata->clk_max_div;
	u32 twd_hold_time_ns = 0;

	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
				       2 * twi_clk) - offset);
	ckdiv = fls(div >> 8);
	cdiv = div >> ckdiv;

	if (ckdiv > max_ckdiv) {
		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
			 ckdiv, max_ckdiv);
		ckdiv = max_ckdiv;
		cdiv = 255;
	}

	if (pdata->has_hold_field) {
		of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
				     &twd_hold_time_ns);

		/*
		 * hold time = HOLD + 3 x T_peripheral_clock
		 * Use clk rate in kHz to prevent overflows when computing
		 * hold.
		 */
		hold = DIV_ROUND_UP(twd_hold_time_ns
				    * (clk_get_rate(dev->clk) / 1000), 1000000);
		hold -= 3;
		if (hold < 0)
			hold = 0;
		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
			dev_warn(dev->dev,
				 "HOLD field set to its maximum value (%d instead of %d)\n",
				 AT91_TWI_CWGR_HOLD_MAX, hold);
			hold = AT91_TWI_CWGR_HOLD_MAX;
		}
	}

	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
			    | AT91_TWI_CWGR_HOLD(hold);

	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
		cdiv, ckdiv, hold, twd_hold_time_ns);
}

static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
{
	struct at91_twi_dma *dma = &dev->dma;

	at91_twi_irq_save(dev);

	if (dma->xfer_in_progress) {
		if (dma->direction == DMA_FROM_DEVICE)
			dmaengine_terminate_all(dma->chan_rx);
		else
			dmaengine_terminate_all(dma->chan_tx);
		dma->xfer_in_progress = false;
	}
	if (dma->buf_mapped) {
		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
				 dev->buf_len, dma->direction);
		dma->buf_mapped = false;
	}

	at91_twi_irq_restore(dev);
}

static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
{
	if (!dev->buf_len)
		return;

	/* 8bit write works with and without FIFO */
	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);

	/* send stop when last byte has been written */
	if (--dev->buf_len == 0)
		if (!dev->use_alt_cmd)
			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);

	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);

	++dev->buf;
}

static void at91_twi_write_data_dma_callback(void *data)
{
	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;

	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
			 dev->buf_len, DMA_TO_DEVICE);

	/*
	 * When this callback is called, THR/TX FIFO is likely not to be empty
	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
	 * Status Register to be sure that the STOP bit has been sent and the
	 * transfer is completed. The NACK interrupt has already been enabled,
	 * we just have to enable TXCOMP one.
	 */
	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
	if (!dev->use_alt_cmd)
		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
}

static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
{
	dma_addr_t dma_addr;
	struct dma_async_tx_descriptor *txdesc;
	struct at91_twi_dma *dma = &dev->dma;
	struct dma_chan *chan_tx = dma->chan_tx;
	unsigned int sg_len = 1;

	if (!dev->buf_len)
		return;

	dma->direction = DMA_TO_DEVICE;

	at91_twi_irq_save(dev);
	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
				  DMA_TO_DEVICE);
	if (dma_mapping_error(dev->dev, dma_addr)) {
		dev_err(dev->dev, "dma map failed\n");
		return;
	}
	dma->buf_mapped = true;
	at91_twi_irq_restore(dev);

	if (dev->fifo_size) {
		size_t part1_len, part2_len;
		struct scatterlist *sg;
		unsigned fifo_mr;

		sg_len = 0;

		part1_len = dev->buf_len & ~0x3;
		if (part1_len) {
			sg = &dma->sg[sg_len++];
			sg_dma_len(sg) = part1_len;
			sg_dma_address(sg) = dma_addr;
		}

		part2_len = dev->buf_len & 0x3;
		if (part2_len) {
			sg = &dma->sg[sg_len++];
			sg_dma_len(sg) = part2_len;
			sg_dma_address(sg) = dma_addr + part1_len;
		}

		/*
		 * DMA controller is triggered when at least 4 data can be
		 * written into the TX FIFO
		 */
		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
	} else {
		sg_dma_len(&dma->sg[0]) = dev->buf_len;
		sg_dma_address(&dma->sg[0]) = dma_addr;
	}

	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
					 DMA_MEM_TO_DEV,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc) {
		dev_err(dev->dev, "dma prep slave sg failed\n");
		goto error;
	}

	txdesc->callback = at91_twi_write_data_dma_callback;
	txdesc->callback_param = dev;

	dma->xfer_in_progress = true;
	dmaengine_submit(txdesc);
	dma_async_issue_pending(chan_tx);

	return;

error:
	at91_twi_dma_cleanup(dev);
}

static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
{
	/*
	 * If we are in this case, it means there is garbage data in RHR, so
	 * delete them.
	 */
	if (!dev->buf_len) {
		at91_twi_read(dev, AT91_TWI_RHR);
		return;
	}

	/* 8bit read works with and without FIFO */
	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
	--dev->buf_len;

	/* return if aborting, we only needed to read RHR to clear RXRDY*/
	if (dev->recv_len_abort)
		return;

	/* handle I2C_SMBUS_BLOCK_DATA */
	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
		/* ensure length byte is a valid value */
		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
			dev->msg->flags &= ~I2C_M_RECV_LEN;
			dev->buf_len += *dev->buf;
			dev->msg->len = dev->buf_len + 1;
			dev_dbg(dev->dev, "received block length %zu\n",
					 dev->buf_len);
		} else {
			/* abort and send the stop by reading one more byte */
			dev->recv_len_abort = true;
			dev->buf_len = 1;
		}
	}

	/* send stop if second but last byte has been read */
	if (!dev->use_alt_cmd && dev->buf_len == 1)
		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);

	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);

	++dev->buf;
}

static void at91_twi_read_data_dma_callback(void *data)
{
	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
	unsigned ier = AT91_TWI_TXCOMP;

	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
			 dev->buf_len, DMA_FROM_DEVICE);

	if (!dev->use_alt_cmd) {
		/* The last two bytes have to be read without using dma */
		dev->buf += dev->buf_len - 2;
		dev->buf_len = 2;
		ier |= AT91_TWI_RXRDY;
	}
	at91_twi_write(dev, AT91_TWI_IER, ier);
}

static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
{
	dma_addr_t dma_addr;
	struct dma_async_tx_descriptor *rxdesc;
	struct at91_twi_dma *dma = &dev->dma;
	struct dma_chan *chan_rx = dma->chan_rx;
	size_t buf_len;

	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
	dma->direction = DMA_FROM_DEVICE;

	/* Keep in mind that we won't use dma to read the last two bytes */
	at91_twi_irq_save(dev);
	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
	if (dma_mapping_error(dev->dev, dma_addr)) {
		dev_err(dev->dev, "dma map failed\n");
		return;
	}
	dma->buf_mapped = true;
	at91_twi_irq_restore(dev);

	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
		unsigned fifo_mr;

		/*
		 * DMA controller is triggered when at least 4 data can be
		 * read from the RX FIFO
		 */
		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
	}

	sg_dma_len(&dma->sg[0]) = buf_len;
	sg_dma_address(&dma->sg[0]) = dma_addr;

	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc) {
		dev_err(dev->dev, "dma prep slave sg failed\n");
		goto error;
	}

	rxdesc->callback = at91_twi_read_data_dma_callback;
	rxdesc->callback_param = dev;

	dma->xfer_in_progress = true;
	dmaengine_submit(rxdesc);
	dma_async_issue_pending(dma->chan_rx);

	return;

error:
	at91_twi_dma_cleanup(dev);
}

static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
{
	struct at91_twi_dev *dev = dev_id;
	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);

	if (!irqstatus)
		return IRQ_NONE;
	/*
	 * In reception, the behavior of the twi device (before sama5d2) is
	 * weird. There is some magic about RXRDY flag! When a data has been
	 * almost received, the reception of a new one is anticipated if there
	 * is no stop command to send. That is the reason why ask for sending
	 * the stop command not on the last data but on the second last one.
	 *
	 * Unfortunately, we could still have the RXRDY flag set even if the
	 * transfer is done and we have read the last data. It might happen
	 * when the i2c slave device sends too quickly data after receiving the
	 * ack from the master. The data has been almost received before having
	 * the order to send stop. In this case, sending the stop command could
	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
	 * the RXRDY interrupt first in order to not keep garbage data in the
	 * Receive Holding Register for the next transfer.
	 */
	if (irqstatus & AT91_TWI_RXRDY)
		at91_twi_read_next_byte(dev);

	/*
	 * When a NACK condition is detected, the I2C controller sets the NACK,
	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
	 *
	 * 1 - Handling NACK errors with CPU write transfer.
	 *
	 * In such case, we should not write the next byte into the Transmit
	 * Holding Register (THR) otherwise the I2C controller would start a new
	 * transfer and the I2C slave is likely to reply by another NACK.
	 *
	 * 2 - Handling NACK errors with DMA write transfer.
	 *
	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
	 * the DMA controller to write the next data into the THR. Then the
	 * result depends on the hardware version of the I2C controller.
	 *
	 * 2a - Without support of the Alternative Command mode.
	 *
	 * This is the worst case: the DMA controller is triggered to write the
	 * next data into the THR, hence starting a new transfer: the I2C slave
	 * is likely to reply by another NACK.
	 * Concurrently, this interrupt handler is likely to be called to manage
	 * the first NACK before the I2C controller detects the second NACK and
	 * sets once again the NACK bit into the SR.
	 * When handling the first NACK, this interrupt handler disables the I2C
	 * controller interruptions, especially the NACK interrupt.
	 * Hence, the NACK bit is pending into the SR. This is why we should
	 * read the SR to clear all pending interrupts at the beginning of
	 * at91_do_twi_transfer() before actually starting a new transfer.
	 *
	 * 2b - With support of the Alternative Command mode.
	 *
	 * When a NACK condition is detected, the I2C controller also locks the
	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
	 * is triggered by the TXRDY bit to write the next data into the THR,
	 * this data actually won't go on the I2C bus hence a second NACK is not
	 * generated.
	 */
	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
		at91_disable_twi_interrupts(dev);
		complete(&dev->cmd_complete);
	} else if (irqstatus & AT91_TWI_TXRDY) {
		at91_twi_write_next_byte(dev);
	}

	/* catch error flags */
	dev->transfer_status |= status;

	return IRQ_HANDLED;
}

static int at91_do_twi_transfer(struct at91_twi_dev *dev)
{
	int ret;
	unsigned long time_left;
	bool has_unre_flag = dev->pdata->has_unre_flag;
	bool has_alt_cmd = dev->pdata->has_alt_cmd;

	/*
	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
	 * read flag but shows the state of the transmission at the time the
	 * Status Register is read. According to the programmer datasheet,
	 * TXCOMP is set when both holding register and internal shifter are
	 * empty and STOP condition has been sent.
	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
	 * detect transmission failure.
	 * Indeed let's take the case of an i2c write command using DMA.
	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
	 * TXCOMP bits are set together into the Status Register.
	 * LOCK is a clear on write bit, which is set to prevent the DMA
	 * controller from sending new data on the i2c bus after a NACK
	 * condition has happened. Once locked, this i2c peripheral stops
	 * triggering the DMA controller for new data but it is more than
	 * likely that a new DMA transaction is already in progress, writing
	 * into the Transmit Holding Register. Since the peripheral is locked,
	 * these new data won't be sent to the i2c bus but they will remain
	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
	 * Then when the interrupt handler is called, the Status Register is
	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
	 * manage the error properly, without waiting for timeout.
	 * This case can be reproduced easyly when writing into an at24 eeprom.
	 *
	 * Besides, the TXCOMP bit is already set before the i2c transaction
	 * has been started. For read transactions, this bit is cleared when
	 * writing the START bit into the Control Register. So the
	 * corresponding interrupt can safely be enabled just after.
	 * However for write transactions managed by the CPU, we first write
	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
	 * the interrupt handler would be called immediately and the i2c command
	 * would be reported as completed.
	 * Also when a write transaction is managed by the DMA controller,
	 * enabling the TXCOMP interrupt in this function may lead to a race
	 * condition since we don't know whether the TXCOMP interrupt is enabled
	 * before or after the DMA has started to write into THR. So the TXCOMP
	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
	 * Immediately after in that DMA callback, if the alternative command
	 * mode is not used, we still need to send the STOP condition manually
	 * writing the corresponding bit into the Control Register.
	 */

	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);

	reinit_completion(&dev->cmd_complete);
	dev->transfer_status = 0;

	/* Clear pending interrupts, such as NACK. */
	at91_twi_read(dev, AT91_TWI_SR);

	if (dev->fifo_size) {
		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);

		/* Reset FIFO mode register */
		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
			     AT91_TWI_FMR_RXRDYM_MASK);
		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);

		/* Flush FIFOs */
		at91_twi_write(dev, AT91_TWI_CR,
			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
	}

	if (!dev->buf_len) {
		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
	} else if (dev->msg->flags & I2C_M_RD) {
		unsigned start_flags = AT91_TWI_START;

		/* if only one byte is to be read, immediately stop transfer */
		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
		    !(dev->msg->flags & I2C_M_RECV_LEN))
			start_flags |= AT91_TWI_STOP;
		at91_twi_write(dev, AT91_TWI_CR, start_flags);
		/*
		 * When using dma without alternative command mode, the last
		 * byte has to be read manually in order to not send the stop
		 * command too late and then to receive extra data.
		 * In practice, there are some issues if you use the dma to
		 * read n-1 bytes because of latency.
		 * Reading n-2 bytes with dma and the two last ones manually
		 * seems to be the best solution.
		 */
		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
			at91_twi_read_data_dma(dev);
		} else {
			at91_twi_write(dev, AT91_TWI_IER,
				       AT91_TWI_TXCOMP |
				       AT91_TWI_NACK |
				       AT91_TWI_RXRDY);
		}
	} else {
		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
			at91_twi_write_data_dma(dev);
		} else {
			at91_twi_write_next_byte(dev);
			at91_twi_write(dev, AT91_TWI_IER,
				       AT91_TWI_TXCOMP |
				       AT91_TWI_NACK |
				       AT91_TWI_TXRDY);
		}
	}

	time_left = wait_for_completion_timeout(&dev->cmd_complete,
					      dev->adapter.timeout);
	if (time_left == 0) {
		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
		dev_err(dev->dev, "controller timed out\n");
		at91_init_twi_bus(dev);
		ret = -ETIMEDOUT;
		goto error;
	}
	if (dev->transfer_status & AT91_TWI_NACK) {
		dev_dbg(dev->dev, "received nack\n");
		ret = -EREMOTEIO;
		goto error;
	}
	if (dev->transfer_status & AT91_TWI_OVRE) {
		dev_err(dev->dev, "overrun while reading\n");
		ret = -EIO;
		goto error;
	}
	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
		dev_err(dev->dev, "underrun while writing\n");
		ret = -EIO;
		goto error;
	}
	if ((has_alt_cmd || dev->fifo_size) &&
	    (dev->transfer_status & AT91_TWI_LOCK)) {
		dev_err(dev->dev, "tx locked\n");
		ret = -EIO;
		goto error;
	}
	if (dev->recv_len_abort) {
		dev_err(dev->dev, "invalid smbus block length recvd\n");
		ret = -EPROTO;
		goto error;
	}

	dev_dbg(dev->dev, "transfer complete\n");

	return 0;

error:
	/* first stop DMA transfer if still in progress */
	at91_twi_dma_cleanup(dev);
	/* then flush THR/FIFO and unlock TX if locked */
	if ((has_alt_cmd || dev->fifo_size) &&
	    (dev->transfer_status & AT91_TWI_LOCK)) {
		dev_dbg(dev->dev, "unlock tx\n");
		at91_twi_write(dev, AT91_TWI_CR,
			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
	}
	return ret;
}

static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
{
	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
	int ret;
	unsigned int_addr_flag = 0;
	struct i2c_msg *m_start = msg;
	bool is_read;

	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);

	ret = pm_runtime_get_sync(dev->dev);
	if (ret < 0)
		goto out;

	if (num == 2) {
		int internal_address = 0;
		int i;

		/* 1st msg is put into the internal address, start with 2nd */
		m_start = &msg[1];
		for (i = 0; i < msg->len; ++i) {
			const unsigned addr = msg->buf[msg->len - 1 - i];

			internal_address |= addr << (8 * i);
			int_addr_flag += AT91_TWI_IADRSZ_1;
		}
		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
	}

	dev->use_alt_cmd = false;
	is_read = (m_start->flags & I2C_M_RD);
	if (dev->pdata->has_alt_cmd) {
		if (m_start->len > 0 &&
		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
			at91_twi_write(dev, AT91_TWI_ACR,
				       AT91_TWI_ACR_DATAL(m_start->len) |
				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
			dev->use_alt_cmd = true;
		} else {
			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
		}
	}

	at91_twi_write(dev, AT91_TWI_MMR,
		       (m_start->addr << 16) |
		       int_addr_flag |
		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));

	dev->buf_len = m_start->len;
	dev->buf = m_start->buf;
	dev->msg = m_start;
	dev->recv_len_abort = false;

	ret = at91_do_twi_transfer(dev);

	ret = (ret < 0) ? ret : num;
out:
	pm_runtime_mark_last_busy(dev->dev);
	pm_runtime_put_autosuspend(dev->dev);

	return ret;
}

/*
 * The hardware can handle at most two messages concatenated by a
 * repeated start via it's internal address feature.
 */
static const struct i2c_adapter_quirks at91_twi_quirks = {
	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
	.max_comb_1st_msg_len = 3,
};

static u32 at91_twi_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
}

static const struct i2c_algorithm at91_twi_algorithm = {
	.master_xfer	= at91_twi_xfer,
	.functionality	= at91_twi_func,
};

static struct at91_twi_pdata at91rm9200_config = {
	.clk_max_div = 5,
	.clk_offset = 3,
	.has_unre_flag = true,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static struct at91_twi_pdata at91sam9261_config = {
	.clk_max_div = 5,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static struct at91_twi_pdata at91sam9260_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static struct at91_twi_pdata at91sam9g20_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static struct at91_twi_pdata at91sam9g10_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static const struct platform_device_id at91_twi_devtypes[] = {
	{
		.name = "i2c-at91rm9200",
		.driver_data = (unsigned long) &at91rm9200_config,
	}, {
		.name = "i2c-at91sam9261",
		.driver_data = (unsigned long) &at91sam9261_config,
	}, {
		.name = "i2c-at91sam9260",
		.driver_data = (unsigned long) &at91sam9260_config,
	}, {
		.name = "i2c-at91sam9g20",
		.driver_data = (unsigned long) &at91sam9g20_config,
	}, {
		.name = "i2c-at91sam9g10",
		.driver_data = (unsigned long) &at91sam9g10_config,
	}, {
		/* sentinel */
	}
};

#if defined(CONFIG_OF)
static struct at91_twi_pdata at91sam9x5_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = false,
};

static struct at91_twi_pdata sama5d4_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = false,
	.has_alt_cmd = false,
	.has_hold_field = true,
};

static struct at91_twi_pdata sama5d2_config = {
	.clk_max_div = 7,
	.clk_offset = 4,
	.has_unre_flag = true,
	.has_alt_cmd = true,
	.has_hold_field = true,
};

static const struct of_device_id atmel_twi_dt_ids[] = {
	{
		.compatible = "atmel,at91rm9200-i2c",
		.data = &at91rm9200_config,
	} , {
		.compatible = "atmel,at91sam9260-i2c",
		.data = &at91sam9260_config,
	} , {
		.compatible = "atmel,at91sam9261-i2c",
		.data = &at91sam9261_config,
	} , {
		.compatible = "atmel,at91sam9g20-i2c",
		.data = &at91sam9g20_config,
	} , {
		.compatible = "atmel,at91sam9g10-i2c",
		.data = &at91sam9g10_config,
	}, {
		.compatible = "atmel,at91sam9x5-i2c",
		.data = &at91sam9x5_config,
	}, {
		.compatible = "atmel,sama5d4-i2c",
		.data = &sama5d4_config,
	}, {
		.compatible = "atmel,sama5d2-i2c",
		.data = &sama5d2_config,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
#endif

static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
{
	int ret = 0;
	struct dma_slave_config slave_config;
	struct at91_twi_dma *dma = &dev->dma;
	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;

	/*
	 * The actual width of the access will be chosen in
	 * dmaengine_prep_slave_sg():
	 * for each buffer in the scatter-gather list, if its size is aligned
	 * to addr_width then addr_width accesses will be performed to transfer
	 * the buffer. On the other hand, if the buffer size is not aligned to
	 * addr_width then the buffer is transferred using single byte accesses.
	 * Please refer to the Atmel eXtended DMA controller driver.
	 * When FIFOs are used, the TXRDYM threshold can always be set to
	 * trigger the XDMAC when at least 4 data can be written into the TX
	 * FIFO, even if single byte accesses are performed.
	 * However the RXRDYM threshold must be set to fit the access width,
	 * deduced from buffer length, so the XDMAC is triggered properly to
	 * read data from the RX FIFO.
	 */
	if (dev->fifo_size)
		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

	memset(&slave_config, 0, sizeof(slave_config));
	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
	slave_config.src_addr_width = addr_width;
	slave_config.src_maxburst = 1;
	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
	slave_config.dst_addr_width = addr_width;
	slave_config.dst_maxburst = 1;
	slave_config.device_fc = false;

	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
	if (IS_ERR(dma->chan_tx)) {
		ret = PTR_ERR(dma->chan_tx);
		dma->chan_tx = NULL;
		goto error;
	}

	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
	if (IS_ERR(dma->chan_rx)) {
		ret = PTR_ERR(dma->chan_rx);
		dma->chan_rx = NULL;
		goto error;
	}

	slave_config.direction = DMA_MEM_TO_DEV;
	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
		dev_err(dev->dev, "failed to configure tx channel\n");
		ret = -EINVAL;
		goto error;
	}

	slave_config.direction = DMA_DEV_TO_MEM;
	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
		dev_err(dev->dev, "failed to configure rx channel\n");
		ret = -EINVAL;
		goto error;
	}

	sg_init_table(dma->sg, 2);
	dma->buf_mapped = false;
	dma->xfer_in_progress = false;
	dev->use_dma = true;

	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));

	return ret;

error:
	if (ret != -EPROBE_DEFER)
		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
	if (dma->chan_rx)
		dma_release_channel(dma->chan_rx);
	if (dma->chan_tx)
		dma_release_channel(dma->chan_tx);
	return ret;
}

static struct at91_twi_pdata *at91_twi_get_driver_data(
					struct platform_device *pdev)
{
	if (pdev->dev.of_node) {
		const struct of_device_id *match;
		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
		if (!match)
			return NULL;
		return (struct at91_twi_pdata *)match->data;
	}
	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
}

static int at91_twi_probe(struct platform_device *pdev)
{
	struct at91_twi_dev *dev;
	struct resource *mem;
	int rc;
	u32 phy_addr;
	u32 bus_clk_rate;

	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
	if (!dev)
		return -ENOMEM;
	init_completion(&dev->cmd_complete);
	dev->dev = &pdev->dev;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!mem)
		return -ENODEV;
	phy_addr = mem->start;

	dev->pdata = at91_twi_get_driver_data(pdev);
	if (!dev->pdata)
		return -ENODEV;

	dev->base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(dev->base))
		return PTR_ERR(dev->base);

	dev->irq = platform_get_irq(pdev, 0);
	if (dev->irq < 0)
		return dev->irq;

	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
			 dev_name(dev->dev), dev);
	if (rc) {
		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
		return rc;
	}

	platform_set_drvdata(pdev, dev);

	dev->clk = devm_clk_get(dev->dev, NULL);
	if (IS_ERR(dev->clk)) {
		dev_err(dev->dev, "no clock defined\n");
		return -ENODEV;
	}
	rc = clk_prepare_enable(dev->clk);
	if (rc)
		return rc;

	if (dev->dev->of_node) {
		rc = at91_twi_configure_dma(dev, phy_addr);
		if (rc == -EPROBE_DEFER) {
			clk_disable_unprepare(dev->clk);
			return rc;
		}
	}

	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
				  &dev->fifo_size)) {
		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
	}

	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
			&bus_clk_rate);
	if (rc)
		bus_clk_rate = DEFAULT_TWI_CLK_HZ;

	at91_calc_twi_clock(dev, bus_clk_rate);
	at91_init_twi_bus(dev);

	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
	i2c_set_adapdata(&dev->adapter, dev);
	dev->adapter.owner = THIS_MODULE;
	dev->adapter.class = I2C_CLASS_DEPRECATED;
	dev->adapter.algo = &at91_twi_algorithm;
	dev->adapter.quirks = &at91_twi_quirks;
	dev->adapter.dev.parent = dev->dev;
	dev->adapter.nr = pdev->id;
	dev->adapter.timeout = AT91_I2C_TIMEOUT;
	dev->adapter.dev.of_node = pdev->dev.of_node;

	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
	pm_runtime_use_autosuspend(dev->dev);
	pm_runtime_set_active(dev->dev);
	pm_runtime_enable(dev->dev);

	rc = i2c_add_numbered_adapter(&dev->adapter);
	if (rc) {
		clk_disable_unprepare(dev->clk);

		pm_runtime_disable(dev->dev);
		pm_runtime_set_suspended(dev->dev);

		return rc;
	}

	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
		 at91_twi_read(dev, AT91_TWI_VER));
	return 0;
}

static int at91_twi_remove(struct platform_device *pdev)
{
	struct at91_twi_dev *dev = platform_get_drvdata(pdev);

	i2c_del_adapter(&dev->adapter);
	clk_disable_unprepare(dev->clk);

	pm_runtime_disable(dev->dev);
	pm_runtime_set_suspended(dev->dev);

	return 0;
}

#ifdef CONFIG_PM

static int at91_twi_runtime_suspend(struct device *dev)
{
	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);

	clk_disable_unprepare(twi_dev->clk);

	pinctrl_pm_select_sleep_state(dev);

	return 0;
}

static int at91_twi_runtime_resume(struct device *dev)
{
	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);

	pinctrl_pm_select_default_state(dev);

	return clk_prepare_enable(twi_dev->clk);
}

static int at91_twi_suspend_noirq(struct device *dev)
{
	if (!pm_runtime_status_suspended(dev))
		at91_twi_runtime_suspend(dev);

	return 0;
}

static int at91_twi_resume_noirq(struct device *dev)
{
	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
	int ret;

	if (!pm_runtime_status_suspended(dev)) {
		ret = at91_twi_runtime_resume(dev);
		if (ret)
			return ret;
	}

	pm_runtime_mark_last_busy(dev);
	pm_request_autosuspend(dev);

	at91_init_twi_bus(twi_dev);

	return 0;
}

static const struct dev_pm_ops at91_twi_pm = {
	.suspend_noirq	= at91_twi_suspend_noirq,
	.resume_noirq	= at91_twi_resume_noirq,
	.runtime_suspend	= at91_twi_runtime_suspend,
	.runtime_resume		= at91_twi_runtime_resume,
};

#define at91_twi_pm_ops (&at91_twi_pm)
#else
#define at91_twi_pm_ops NULL
#endif

static struct platform_driver at91_twi_driver = {
	.probe		= at91_twi_probe,
	.remove		= at91_twi_remove,
	.id_table	= at91_twi_devtypes,
	.driver		= {
		.name	= "at91_i2c",
		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
		.pm	= at91_twi_pm_ops,
	},
};

static int __init at91_twi_init(void)
{
	return platform_driver_register(&at91_twi_driver);
}

static void __exit at91_twi_exit(void)
{
	platform_driver_unregister(&at91_twi_driver);
}

subsys_initcall(at91_twi_init);
module_exit(at91_twi_exit);

MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:at91_i2c");