Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
/*
	Written 1999-2000 by Donald Becker.

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

	Support and updates available at
	http://www.scyld.com/network/sundance.html
	[link no longer provides useful info -jgarzik]
	Archives of the mailing list are still available at
	http://www.beowulf.org/pipermail/netdrivers/

*/

#define DRV_NAME	"sundance"
#define DRV_VERSION	"1.2"
#define DRV_RELDATE	"11-Sep-2006"


/* The user-configurable values.
   These may be modified when a driver module is loaded.*/
static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   Typical is a 64 element hash table based on the Ethernet CRC.  */
static const int multicast_filter_limit = 32;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature.
   This chip can receive into offset buffers, so the Alpha does not
   need a copy-align. */
static int rx_copybreak;
static int flowctrl=1;

/* media[] specifies the media type the NIC operates at.
		 autosense	Autosensing active media.
		 10mbps_hd 	10Mbps half duplex.
		 10mbps_fd 	10Mbps full duplex.
		 100mbps_hd 	100Mbps half duplex.
		 100mbps_fd 	100Mbps full duplex.
		 0		Autosensing active media.
		 1	 	10Mbps half duplex.
		 2	 	10Mbps full duplex.
		 3	 	100Mbps half duplex.
		 4	 	100Mbps full duplex.
*/
#define MAX_UNITS 8
static char *media[MAX_UNITS];


/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority, and more than 128 requires modifying the
   Tx error recovery.
   Large receive rings merely waste memory. */
#define TX_RING_SIZE	32
#define TX_QUEUE_LEN	(TX_RING_SIZE - 1) /* Limit ring entries actually used.  */
#define RX_RING_SIZE	64
#define RX_BUDGET	32
#define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct netdev_desc)
#define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct netdev_desc)

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (4*HZ)
#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/

/* Include files, designed to support most kernel versions 2.0.0 and later. */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include <linux/mii.h>

/* These identify the driver base version and may not be removed. */
static const char version[] __devinitconst =
	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
	" Written by Donald Becker\n";

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
MODULE_LICENSE("GPL");

module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param_array(media, charp, NULL, 0);
module_param(flowctrl, int, 0);
MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");

/*
				Theory of Operation

I. Board Compatibility

This driver is designed for the Sundance Technologies "Alta" ST201 chip.

II. Board-specific settings

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
Some chips explicitly use only 2^N sized rings, while others use a
'next descriptor' pointer that the driver forms into rings.

IIIb/c. Transmit/Receive Structure

This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack.  Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets.  When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine.  Copying also preloads the cache, which is
most useful with small frames.

A subtle aspect of the operation is that the IP header at offset 14 in an
ethernet frame isn't longword aligned for further processing.
Unaligned buffers are permitted by the Sundance hardware, so
frames are received into the skbuff at an offset of "+2", 16-byte aligning
the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.

IV. Notes

IVb. References

The Sundance ST201 datasheet, preliminary version.
The Kendin KS8723 datasheet, preliminary version.
The ICplus IP100 datasheet, preliminary version.
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html

IVc. Errata

*/

/* Work-around for Kendin chip bugs. */
#ifndef CONFIG_SUNDANCE_MMIO
#define USE_IO_OPS 1
#endif

static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
	{ 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
	{ 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
	{ 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
	{ 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
	{ 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
	{ 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
	{ 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
	{ }
};
MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);

enum {
	netdev_io_size = 128
};

struct pci_id_info {
        const char *name;
};
static const struct pci_id_info pci_id_tbl[] __devinitdata = {
	{"D-Link DFE-550TX FAST Ethernet Adapter"},
	{"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
	{"D-Link DFE-580TX 4 port Server Adapter"},
	{"D-Link DFE-530TXS FAST Ethernet Adapter"},
	{"D-Link DL10050-based FAST Ethernet Adapter"},
	{"Sundance Technology Alta"},
	{"IC Plus Corporation IP100A FAST Ethernet Adapter"},
	{ }	/* terminate list. */
};

/* This driver was written to use PCI memory space, however x86-oriented
   hardware often uses I/O space accesses. */

/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.  The name can only partially document the semantics and make
   the driver longer and more difficult to read.
   In general, only the important configuration values or bits changed
   multiple times should be defined symbolically.
*/
enum alta_offsets {
	DMACtrl = 0x00,
	TxListPtr = 0x04,
	TxDMABurstThresh = 0x08,
	TxDMAUrgentThresh = 0x09,
	TxDMAPollPeriod = 0x0a,
	RxDMAStatus = 0x0c,
	RxListPtr = 0x10,
	DebugCtrl0 = 0x1a,
	DebugCtrl1 = 0x1c,
	RxDMABurstThresh = 0x14,
	RxDMAUrgentThresh = 0x15,
	RxDMAPollPeriod = 0x16,
	LEDCtrl = 0x1a,
	ASICCtrl = 0x30,
	EEData = 0x34,
	EECtrl = 0x36,
	FlashAddr = 0x40,
	FlashData = 0x44,
	TxStatus = 0x46,
	TxFrameId = 0x47,
	DownCounter = 0x18,
	IntrClear = 0x4a,
	IntrEnable = 0x4c,
	IntrStatus = 0x4e,
	MACCtrl0 = 0x50,
	MACCtrl1 = 0x52,
	StationAddr = 0x54,
	MaxFrameSize = 0x5A,
	RxMode = 0x5c,
	MIICtrl = 0x5e,
	MulticastFilter0 = 0x60,
	MulticastFilter1 = 0x64,
	RxOctetsLow = 0x68,
	RxOctetsHigh = 0x6a,
	TxOctetsLow = 0x6c,
	TxOctetsHigh = 0x6e,
	TxFramesOK = 0x70,
	RxFramesOK = 0x72,
	StatsCarrierError = 0x74,
	StatsLateColl = 0x75,
	StatsMultiColl = 0x76,
	StatsOneColl = 0x77,
	StatsTxDefer = 0x78,
	RxMissed = 0x79,
	StatsTxXSDefer = 0x7a,
	StatsTxAbort = 0x7b,
	StatsBcastTx = 0x7c,
	StatsBcastRx = 0x7d,
	StatsMcastTx = 0x7e,
	StatsMcastRx = 0x7f,
	/* Aliased and bogus values! */
	RxStatus = 0x0c,
};

#define ASIC_HI_WORD(x)	((x) + 2)

enum ASICCtrl_HiWord_bit {
	GlobalReset = 0x0001,
	RxReset = 0x0002,
	TxReset = 0x0004,
	DMAReset = 0x0008,
	FIFOReset = 0x0010,
	NetworkReset = 0x0020,
	HostReset = 0x0040,
	ResetBusy = 0x0400,
};

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
	IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
	IntrDrvRqst=0x0040,
	StatsMax=0x0080, LinkChange=0x0100,
	IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
};

/* Bits in the RxMode register. */
enum rx_mode_bits {
	AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
	AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
};
/* Bits in MACCtrl. */
enum mac_ctrl0_bits {
	EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
	EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
};
enum mac_ctrl1_bits {
	StatsEnable=0x0020,	StatsDisable=0x0040, StatsEnabled=0x0080,
	TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
	RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
};

/* The Rx and Tx buffer descriptors. */
/* Note that using only 32 bit fields simplifies conversion to big-endian
   architectures. */
struct netdev_desc {
	__le32 next_desc;
	__le32 status;
	struct desc_frag { __le32 addr, length; } frag[1];
};

/* Bits in netdev_desc.status */
enum desc_status_bits {
	DescOwn=0x8000,
	DescEndPacket=0x4000,
	DescEndRing=0x2000,
	LastFrag=0x80000000,
	DescIntrOnTx=0x8000,
	DescIntrOnDMADone=0x80000000,
	DisableAlign = 0x00000001,
};

#define PRIV_ALIGN	15 	/* Required alignment mask */
/* Use  __attribute__((aligned (L1_CACHE_BYTES)))  to maintain alignment
   within the structure. */
#define MII_CNT		4
struct netdev_private {
	/* Descriptor rings first for alignment. */
	struct netdev_desc *rx_ring;
	struct netdev_desc *tx_ring;
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
        dma_addr_t tx_ring_dma;
        dma_addr_t rx_ring_dma;
	struct timer_list timer;		/* Media monitoring timer. */
	/* ethtool extra stats */
	struct {
		u64 tx_multiple_collisions;
		u64 tx_single_collisions;
		u64 tx_late_collisions;
		u64 tx_deferred;
		u64 tx_deferred_excessive;
		u64 tx_aborted;
		u64 tx_bcasts;
		u64 rx_bcasts;
		u64 tx_mcasts;
		u64 rx_mcasts;
	} xstats;
	/* Frequently used values: keep some adjacent for cache effect. */
	spinlock_t lock;
	int msg_enable;
	int chip_id;
	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
	unsigned int rx_buf_sz;			/* Based on MTU+slack. */
	struct netdev_desc *last_tx;		/* Last Tx descriptor used. */
	unsigned int cur_tx, dirty_tx;
	/* These values are keep track of the transceiver/media in use. */
	unsigned int flowctrl:1;
	unsigned int default_port:4;		/* Last dev->if_port value. */
	unsigned int an_enable:1;
	unsigned int speed;
	struct tasklet_struct rx_tasklet;
	struct tasklet_struct tx_tasklet;
	int budget;
	int cur_task;
	/* Multicast and receive mode. */
	spinlock_t mcastlock;			/* SMP lock multicast updates. */
	u16 mcast_filter[4];
	/* MII transceiver section. */
	struct mii_if_info mii_if;
	int mii_preamble_required;
	unsigned char phys[MII_CNT];		/* MII device addresses, only first one used. */
	struct pci_dev *pci_dev;
	void __iomem *base;
	spinlock_t statlock;
};

/* The station address location in the EEPROM. */
#define EEPROM_SA_OFFSET	0x10
#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
			IntrDrvRqst | IntrTxDone | StatsMax | \
			LinkChange)

static int  change_mtu(struct net_device *dev, int new_mtu);
static int  eeprom_read(void __iomem *ioaddr, int location);
static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  mdio_wait_link(struct net_device *dev, int wait);
static int  netdev_open(struct net_device *dev);
static void check_duplex(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static void init_ring(struct net_device *dev);
static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
static int reset_tx (struct net_device *dev);
static irqreturn_t intr_handler(int irq, void *dev_instance);
static void rx_poll(unsigned long data);
static void tx_poll(unsigned long data);
static void refill_rx (struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static int __set_mac_addr(struct net_device *dev);
static int sundance_set_mac_addr(struct net_device *dev, void *data);
static struct net_device_stats *get_stats(struct net_device *dev);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int  netdev_close(struct net_device *dev);
static const struct ethtool_ops ethtool_ops;

static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base + ASICCtrl;
	int countdown;

	/* ST201 documentation states ASICCtrl is a 32bit register */
	iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
	/* ST201 documentation states reset can take up to 1 ms */
	countdown = 10 + 1;
	while (ioread32 (ioaddr) & (ResetBusy << 16)) {
		if (--countdown == 0) {
			printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
			break;
		}
		udelay(100);
	}
}

static const struct net_device_ops netdev_ops = {
	.ndo_open		= netdev_open,
	.ndo_stop		= netdev_close,
	.ndo_start_xmit		= start_tx,
	.ndo_get_stats 		= get_stats,
	.ndo_set_rx_mode	= set_rx_mode,
	.ndo_do_ioctl 		= netdev_ioctl,
	.ndo_tx_timeout		= tx_timeout,
	.ndo_change_mtu		= change_mtu,
	.ndo_set_mac_address 	= sundance_set_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

static int __devinit sundance_probe1 (struct pci_dev *pdev,
				      const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int irq;
	int i;
	void __iomem *ioaddr;
	u16 mii_ctl;
	void *ring_space;
	dma_addr_t ring_dma;
#ifdef USE_IO_OPS
	int bar = 0;
#else
	int bar = 1;
#endif
	int phy, phy_end, phy_idx = 0;

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	if (pci_enable_device(pdev))
		return -EIO;
	pci_set_master(pdev);

	irq = pdev->irq;

	dev = alloc_etherdev(sizeof(*np));
	if (!dev)
		return -ENOMEM;
	SET_NETDEV_DEV(dev, &pdev->dev);

	if (pci_request_regions(pdev, DRV_NAME))
		goto err_out_netdev;

	ioaddr = pci_iomap(pdev, bar, netdev_io_size);
	if (!ioaddr)
		goto err_out_res;

	for (i = 0; i < 3; i++)
		((__le16 *)dev->dev_addr)[i] =
			cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);

	dev->base_addr = (unsigned long)ioaddr;
	dev->irq = irq;

	np = netdev_priv(dev);
	np->base = ioaddr;
	np->pci_dev = pdev;
	np->chip_id = chip_idx;
	np->msg_enable = (1 << debug) - 1;
	spin_lock_init(&np->lock);
	spin_lock_init(&np->statlock);
	tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
	tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);

	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
			&ring_dma, GFP_KERNEL);
	if (!ring_space)
		goto err_out_cleardev;
	np->tx_ring = (struct netdev_desc *)ring_space;
	np->tx_ring_dma = ring_dma;

	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
			&ring_dma, GFP_KERNEL);
	if (!ring_space)
		goto err_out_unmap_tx;
	np->rx_ring = (struct netdev_desc *)ring_space;
	np->rx_ring_dma = ring_dma;

	np->mii_if.dev = dev;
	np->mii_if.mdio_read = mdio_read;
	np->mii_if.mdio_write = mdio_write;
	np->mii_if.phy_id_mask = 0x1f;
	np->mii_if.reg_num_mask = 0x1f;

	/* The chip-specific entries in the device structure. */
	dev->netdev_ops = &netdev_ops;
	SET_ETHTOOL_OPS(dev, &ethtool_ops);
	dev->watchdog_timeo = TX_TIMEOUT;

	pci_set_drvdata(pdev, dev);

	i = register_netdev(dev);
	if (i)
		goto err_out_unmap_rx;

	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
	       dev->name, pci_id_tbl[chip_idx].name, ioaddr,
	       dev->dev_addr, irq);

	np->phys[0] = 1;		/* Default setting */
	np->mii_preamble_required++;

	/*
	 * It seems some phys doesn't deal well with address 0 being accessed
	 * first
	 */
	if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
		phy = 0;
		phy_end = 31;
	} else {
		phy = 1;
		phy_end = 32;	/* wraps to zero, due to 'phy & 0x1f' */
	}
	for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
		int phyx = phy & 0x1f;
		int mii_status = mdio_read(dev, phyx, MII_BMSR);
		if (mii_status != 0xffff  &&  mii_status != 0x0000) {
			np->phys[phy_idx++] = phyx;
			np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
			if ((mii_status & 0x0040) == 0)
				np->mii_preamble_required++;
			printk(KERN_INFO "%s: MII PHY found at address %d, status "
				   "0x%4.4x advertising %4.4x.\n",
				   dev->name, phyx, mii_status, np->mii_if.advertising);
		}
	}
	np->mii_preamble_required--;

	if (phy_idx == 0) {
		printk(KERN_INFO "%s: No MII transceiver found, aborting.  ASIC status %x\n",
			   dev->name, ioread32(ioaddr + ASICCtrl));
		goto err_out_unregister;
	}

	np->mii_if.phy_id = np->phys[0];

	/* Parse override configuration */
	np->an_enable = 1;
	if (card_idx < MAX_UNITS) {
		if (media[card_idx] != NULL) {
			np->an_enable = 0;
			if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
			    strcmp (media[card_idx], "4") == 0) {
				np->speed = 100;
				np->mii_if.full_duplex = 1;
			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
				   strcmp (media[card_idx], "3") == 0) {
				np->speed = 100;
				np->mii_if.full_duplex = 0;
			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
				   strcmp (media[card_idx], "2") == 0) {
				np->speed = 10;
				np->mii_if.full_duplex = 1;
			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
				   strcmp (media[card_idx], "1") == 0) {
				np->speed = 10;
				np->mii_if.full_duplex = 0;
			} else {
				np->an_enable = 1;
			}
		}
		if (flowctrl == 1)
			np->flowctrl = 1;
	}

	/* Fibre PHY? */
	if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
		/* Default 100Mbps Full */
		if (np->an_enable) {
			np->speed = 100;
			np->mii_if.full_duplex = 1;
			np->an_enable = 0;
		}
	}
	/* Reset PHY */
	mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
	mdelay (300);
	/* If flow control enabled, we need to advertise it.*/
	if (np->flowctrl)
		mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
	mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
	/* Force media type */
	if (!np->an_enable) {
		mii_ctl = 0;
		mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
		mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
		mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
		printk (KERN_INFO "Override speed=%d, %s duplex\n",
			np->speed, np->mii_if.full_duplex ? "Full" : "Half");

	}

	/* Perhaps move the reset here? */
	/* Reset the chip to erase previous misconfiguration. */
	if (netif_msg_hw(np))
		printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
	sundance_reset(dev, 0x00ff << 16);
	if (netif_msg_hw(np))
		printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));

	card_idx++;
	return 0;

err_out_unregister:
	unregister_netdev(dev);
err_out_unmap_rx:
	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
		np->rx_ring, np->rx_ring_dma);
err_out_unmap_tx:
	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
		np->tx_ring, np->tx_ring_dma);
err_out_cleardev:
	pci_set_drvdata(pdev, NULL);
	pci_iounmap(pdev, ioaddr);
err_out_res:
	pci_release_regions(pdev);
err_out_netdev:
	free_netdev (dev);
	return -ENODEV;
}

static int change_mtu(struct net_device *dev, int new_mtu)
{
	if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
		return -EINVAL;
	if (netif_running(dev))
		return -EBUSY;
	dev->mtu = new_mtu;
	return 0;
}

#define eeprom_delay(ee_addr)	ioread32(ee_addr)
/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
static int __devinit eeprom_read(void __iomem *ioaddr, int location)
{
	int boguscnt = 10000;		/* Typical 1900 ticks. */
	iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
	do {
		eeprom_delay(ioaddr + EECtrl);
		if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
			return ioread16(ioaddr + EEData);
		}
	} while (--boguscnt > 0);
	return 0;
}

/*  MII transceiver control section.
	Read and write the MII registers using software-generated serial
	MDIO protocol.  See the MII specifications or DP83840A data sheet
	for details.

	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
	met by back-to-back 33Mhz PCI cycles. */
#define mdio_delay() ioread8(mdio_addr)

enum mii_reg_bits {
	MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
};
#define MDIO_EnbIn  (0)
#define MDIO_WRITE0 (MDIO_EnbOutput)
#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)

/* Generate the preamble required for initial synchronization and
   a few older transceivers. */
static void mdio_sync(void __iomem *mdio_addr)
{
	int bits = 32;

	/* Establish sync by sending at least 32 logic ones. */
	while (--bits >= 0) {
		iowrite8(MDIO_WRITE1, mdio_addr);
		mdio_delay();
		iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
}

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *mdio_addr = np->base + MIICtrl;
	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
	int i, retval = 0;

	if (np->mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the read command bits out. */
	for (i = 15; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		iowrite8(dataval, mdio_addr);
		mdio_delay();
		iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Read the two transition, 16 data, and wire-idle bits. */
	for (i = 19; i > 0; i--) {
		iowrite8(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
		iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	return (retval>>1) & 0xffff;
}

static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *mdio_addr = np->base + MIICtrl;
	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
	int i;

	if (np->mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the command bits out. */
	for (i = 31; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		iowrite8(dataval, mdio_addr);
		mdio_delay();
		iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Clear out extra bits. */
	for (i = 2; i > 0; i--) {
		iowrite8(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
}

static int mdio_wait_link(struct net_device *dev, int wait)
{
	int bmsr;
	int phy_id;
	struct netdev_private *np;

	np = netdev_priv(dev);
	phy_id = np->phys[0];

	do {
		bmsr = mdio_read(dev, phy_id, MII_BMSR);
		if (bmsr & 0x0004)
			return 0;
		mdelay(1);
	} while (--wait > 0);
	return -1;
}

static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	unsigned long flags;
	int i;

	/* Do we need to reset the chip??? */

	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
	if (i)
		return i;

	if (netif_msg_ifup(np))
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
			   dev->name, dev->irq);
	init_ring(dev);

	iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
	/* The Tx list pointer is written as packets are queued. */

	/* Initialize other registers. */
	__set_mac_addr(dev);
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
	iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
#else
	iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
#endif
	if (dev->mtu > 2047)
		iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);

	/* Configure the PCI bus bursts and FIFO thresholds. */

	if (dev->if_port == 0)
		dev->if_port = np->default_port;

	spin_lock_init(&np->mcastlock);

	set_rx_mode(dev);
	iowrite16(0, ioaddr + IntrEnable);
	iowrite16(0, ioaddr + DownCounter);
	/* Set the chip to poll every N*320nsec. */
	iowrite8(100, ioaddr + RxDMAPollPeriod);
	iowrite8(127, ioaddr + TxDMAPollPeriod);
	/* Fix DFE-580TX packet drop issue */
	if (np->pci_dev->revision >= 0x14)
		iowrite8(0x01, ioaddr + DebugCtrl1);
	netif_start_queue(dev);

	spin_lock_irqsave(&np->lock, flags);
	reset_tx(dev);
	spin_unlock_irqrestore(&np->lock, flags);

	iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);

	if (netif_msg_ifup(np))
		printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
			   "MAC Control %x, %4.4x %4.4x.\n",
			   dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
			   ioread32(ioaddr + MACCtrl0),
			   ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));

	/* Set the timer to check for link beat. */
	init_timer(&np->timer);
	np->timer.expires = jiffies + 3*HZ;
	np->timer.data = (unsigned long)dev;
	np->timer.function = netdev_timer;				/* timer handler */
	add_timer(&np->timer);

	/* Enable interrupts by setting the interrupt mask. */
	iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);

	return 0;
}

static void check_duplex(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
	int negotiated = mii_lpa & np->mii_if.advertising;
	int duplex;

	/* Force media */
	if (!np->an_enable || mii_lpa == 0xffff) {
		if (np->mii_if.full_duplex)
			iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
				ioaddr + MACCtrl0);
		return;
	}

	/* Autonegotiation */
	duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
	if (np->mii_if.full_duplex != duplex) {
		np->mii_if.full_duplex = duplex;
		if (netif_msg_link(np))
			printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
				   "negotiated capability %4.4x.\n", dev->name,
				   duplex ? "full" : "half", np->phys[0], negotiated);
		iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
	}
}

static void netdev_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int next_tick = 10*HZ;

	if (netif_msg_timer(np)) {
		printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
			   "Tx %x Rx %x.\n",
			   dev->name, ioread16(ioaddr + IntrEnable),
			   ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
	}
	check_duplex(dev);
	np->timer.expires = jiffies + next_tick;
	add_timer(&np->timer);
}

static void tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	unsigned long flag;

	netif_stop_queue(dev);
	tasklet_disable(&np->tx_tasklet);
	iowrite16(0, ioaddr + IntrEnable);
	printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
		   "TxFrameId %2.2x,"
		   " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
		   ioread8(ioaddr + TxFrameId));

	{
		int i;
		for (i=0; i<TX_RING_SIZE; i++) {
			printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
				(unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
				le32_to_cpu(np->tx_ring[i].next_desc),
				le32_to_cpu(np->tx_ring[i].status),
				(le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
				le32_to_cpu(np->tx_ring[i].frag[0].addr),
				le32_to_cpu(np->tx_ring[i].frag[0].length));
		}
		printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
			ioread32(np->base + TxListPtr),
			netif_queue_stopped(dev));
		printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
			np->cur_tx, np->cur_tx % TX_RING_SIZE,
			np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
		printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
		printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
	}
	spin_lock_irqsave(&np->lock, flag);

	/* Stop and restart the chip's Tx processes . */
	reset_tx(dev);
	spin_unlock_irqrestore(&np->lock, flag);

	dev->if_port = 0;

	dev->trans_start = jiffies; /* prevent tx timeout */
	dev->stats.tx_errors++;
	if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
		netif_wake_queue(dev);
	}
	iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
	tasklet_enable(&np->tx_tasklet);
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	np->cur_rx = np->cur_tx = 0;
	np->dirty_rx = np->dirty_tx = 0;
	np->cur_task = 0;

	np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);

	/* Initialize all Rx descriptors. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
			((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
		np->rx_ring[i].status = 0;
		np->rx_ring[i].frag[0].length = 0;
		np->rx_skbuff[i] = NULL;
	}

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb =
			netdev_alloc_skb(dev, np->rx_buf_sz + 2);
		np->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
		np->rx_ring[i].frag[0].addr = cpu_to_le32(
			dma_map_single(&np->pci_dev->dev, skb->data,
				np->rx_buf_sz, DMA_FROM_DEVICE));
		if (dma_mapping_error(&np->pci_dev->dev,
					np->rx_ring[i].frag[0].addr)) {
			dev_kfree_skb(skb);
			np->rx_skbuff[i] = NULL;
			break;
		}
		np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
	}
	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = NULL;
		np->tx_ring[i].status = 0;
	}
}

static void tx_poll (unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	unsigned head = np->cur_task % TX_RING_SIZE;
	struct netdev_desc *txdesc =
		&np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];

	/* Chain the next pointer */
	for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
		int entry = np->cur_task % TX_RING_SIZE;
		txdesc = &np->tx_ring[entry];
		if (np->last_tx) {
			np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
				entry*sizeof(struct netdev_desc));
		}
		np->last_tx = txdesc;
	}
	/* Indicate the latest descriptor of tx ring */
	txdesc->status |= cpu_to_le32(DescIntrOnTx);

	if (ioread32 (np->base + TxListPtr) == 0)
		iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
			np->base + TxListPtr);
}

static netdev_tx_t
start_tx (struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	struct netdev_desc *txdesc;
	unsigned entry;

	/* Calculate the next Tx descriptor entry. */
	entry = np->cur_tx % TX_RING_SIZE;
	np->tx_skbuff[entry] = skb;
	txdesc = &np->tx_ring[entry];

	txdesc->next_desc = 0;
	txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
	txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
				skb->data, skb->len, DMA_TO_DEVICE));
	if (dma_mapping_error(&np->pci_dev->dev,
				txdesc->frag[0].addr))
			goto drop_frame;
	txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);

	/* Increment cur_tx before tasklet_schedule() */
	np->cur_tx++;
	mb();
	/* Schedule a tx_poll() task */
	tasklet_schedule(&np->tx_tasklet);

	/* On some architectures: explicitly flush cache lines here. */
	if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
	    !netif_queue_stopped(dev)) {
		/* do nothing */
	} else {
		netif_stop_queue (dev);
	}
	if (netif_msg_tx_queued(np)) {
		printk (KERN_DEBUG
			"%s: Transmit frame #%d queued in slot %d.\n",
			dev->name, np->cur_tx, entry);
	}
	return NETDEV_TX_OK;

drop_frame:
	dev_kfree_skb(skb);
	np->tx_skbuff[entry] = NULL;
	dev->stats.tx_dropped++;
	return NETDEV_TX_OK;
}

/* Reset hardware tx and free all of tx buffers */
static int
reset_tx (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	struct sk_buff *skb;
	int i;

	/* Reset tx logic, TxListPtr will be cleaned */
	iowrite16 (TxDisable, ioaddr + MACCtrl1);
	sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);

	/* free all tx skbuff */
	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_ring[i].next_desc = 0;

		skb = np->tx_skbuff[i];
		if (skb) {
			dma_unmap_single(&np->pci_dev->dev,
				le32_to_cpu(np->tx_ring[i].frag[0].addr),
				skb->len, DMA_TO_DEVICE);
			dev_kfree_skb_any(skb);
			np->tx_skbuff[i] = NULL;
			dev->stats.tx_dropped++;
		}
	}
	np->cur_tx = np->dirty_tx = 0;
	np->cur_task = 0;

	np->last_tx = NULL;
	iowrite8(127, ioaddr + TxDMAPollPeriod);

	iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
	return 0;
}

/* The interrupt handler cleans up after the Tx thread,
   and schedule a Rx thread work */
static irqreturn_t intr_handler(int irq, void *dev_instance)
{
	struct net_device *dev = (struct net_device *)dev_instance;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	int hw_frame_id;
	int tx_cnt;
	int tx_status;
	int handled = 0;
	int i;


	do {
		int intr_status = ioread16(ioaddr + IntrStatus);
		iowrite16(intr_status, ioaddr + IntrStatus);

		if (netif_msg_intr(np))
			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
				   dev->name, intr_status);

		if (!(intr_status & DEFAULT_INTR))
			break;

		handled = 1;

		if (intr_status & (IntrRxDMADone)) {
			iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
					ioaddr + IntrEnable);
			if (np->budget < 0)
				np->budget = RX_BUDGET;
			tasklet_schedule(&np->rx_tasklet);
		}
		if (intr_status & (IntrTxDone | IntrDrvRqst)) {
			tx_status = ioread16 (ioaddr + TxStatus);
			for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
				if (netif_msg_tx_done(np))
					printk
					    ("%s: Transmit status is %2.2x.\n",
				     	dev->name, tx_status);
				if (tx_status & 0x1e) {
					if (netif_msg_tx_err(np))
						printk("%s: Transmit error status %4.4x.\n",
							   dev->name, tx_status);
					dev->stats.tx_errors++;
					if (tx_status & 0x10)
						dev->stats.tx_fifo_errors++;
					if (tx_status & 0x08)
						dev->stats.collisions++;
					if (tx_status & 0x04)
						dev->stats.tx_fifo_errors++;
					if (tx_status & 0x02)
						dev->stats.tx_window_errors++;

					/*
					** This reset has been verified on
					** DFE-580TX boards ! phdm@macqel.be.
					*/
					if (tx_status & 0x10) {	/* TxUnderrun */
						/* Restart Tx FIFO and transmitter */
						sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
						/* No need to reset the Tx pointer here */
					}
					/* Restart the Tx. Need to make sure tx enabled */
					i = 10;
					do {
						iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
						if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
							break;
						mdelay(1);
					} while (--i);
				}
				/* Yup, this is a documentation bug.  It cost me *hours*. */
				iowrite16 (0, ioaddr + TxStatus);
				if (tx_cnt < 0) {
					iowrite32(5000, ioaddr + DownCounter);
					break;
				}
				tx_status = ioread16 (ioaddr + TxStatus);
			}
			hw_frame_id = (tx_status >> 8) & 0xff;
		} else 	{
			hw_frame_id = ioread8(ioaddr + TxFrameId);
		}

		if (np->pci_dev->revision >= 0x14) {
			spin_lock(&np->lock);
			for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
				int entry = np->dirty_tx % TX_RING_SIZE;
				struct sk_buff *skb;
				int sw_frame_id;
				sw_frame_id = (le32_to_cpu(
					np->tx_ring[entry].status) >> 2) & 0xff;
				if (sw_frame_id == hw_frame_id &&
					!(le32_to_cpu(np->tx_ring[entry].status)
					& 0x00010000))
						break;
				if (sw_frame_id == (hw_frame_id + 1) %
					TX_RING_SIZE)
						break;
				skb = np->tx_skbuff[entry];
				/* Free the original skb. */
				dma_unmap_single(&np->pci_dev->dev,
					le32_to_cpu(np->tx_ring[entry].frag[0].addr),
					skb->len, DMA_TO_DEVICE);
				dev_kfree_skb_irq (np->tx_skbuff[entry]);
				np->tx_skbuff[entry] = NULL;
				np->tx_ring[entry].frag[0].addr = 0;
				np->tx_ring[entry].frag[0].length = 0;
			}
			spin_unlock(&np->lock);
		} else {
			spin_lock(&np->lock);
			for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
				int entry = np->dirty_tx % TX_RING_SIZE;
				struct sk_buff *skb;
				if (!(le32_to_cpu(np->tx_ring[entry].status)
							& 0x00010000))
					break;
				skb = np->tx_skbuff[entry];
				/* Free the original skb. */
				dma_unmap_single(&np->pci_dev->dev,
					le32_to_cpu(np->tx_ring[entry].frag[0].addr),
					skb->len, DMA_TO_DEVICE);
				dev_kfree_skb_irq (np->tx_skbuff[entry]);
				np->tx_skbuff[entry] = NULL;
				np->tx_ring[entry].frag[0].addr = 0;
				np->tx_ring[entry].frag[0].length = 0;
			}
			spin_unlock(&np->lock);
		}

		if (netif_queue_stopped(dev) &&
			np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
			/* The ring is no longer full, clear busy flag. */
			netif_wake_queue (dev);
		}
		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
			netdev_error(dev, intr_status);
	} while (0);
	if (netif_msg_intr(np))
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
			   dev->name, ioread16(ioaddr + IntrStatus));
	return IRQ_RETVAL(handled);
}

static void rx_poll(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->cur_rx % RX_RING_SIZE;
	int boguscnt = np->budget;
	void __iomem *ioaddr = np->base;
	int received = 0;

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while (1) {
		struct netdev_desc *desc = &(np->rx_ring[entry]);
		u32 frame_status = le32_to_cpu(desc->status);
		int pkt_len;

		if (--boguscnt < 0) {
			goto not_done;
		}
		if (!(frame_status & DescOwn))
			break;
		pkt_len = frame_status & 0x1fff;	/* Chip omits the CRC. */
		if (netif_msg_rx_status(np))
			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n",
				   frame_status);
		if (frame_status & 0x001f4000) {
			/* There was a error. */
			if (netif_msg_rx_err(np))
				printk(KERN_DEBUG "  netdev_rx() Rx error was %8.8x.\n",
					   frame_status);
			dev->stats.rx_errors++;
			if (frame_status & 0x00100000)
				dev->stats.rx_length_errors++;
			if (frame_status & 0x00010000)
				dev->stats.rx_fifo_errors++;
			if (frame_status & 0x00060000)
				dev->stats.rx_frame_errors++;
			if (frame_status & 0x00080000)
				dev->stats.rx_crc_errors++;
			if (frame_status & 0x00100000) {
				printk(KERN_WARNING "%s: Oversized Ethernet frame,"
					   " status %8.8x.\n",
					   dev->name, frame_status);
			}
		} else {
			struct sk_buff *skb;
#ifndef final_version
			if (netif_msg_rx_status(np))
				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
					   ", bogus_cnt %d.\n",
					   pkt_len, boguscnt);
#endif
			/* Check if the packet is long enough to accept without copying
			   to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak &&
			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
				dma_sync_single_for_cpu(&np->pci_dev->dev,
						le32_to_cpu(desc->frag[0].addr),
						np->rx_buf_sz, DMA_FROM_DEVICE);
				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
				dma_sync_single_for_device(&np->pci_dev->dev,
						le32_to_cpu(desc->frag[0].addr),
						np->rx_buf_sz, DMA_FROM_DEVICE);
				skb_put(skb, pkt_len);
			} else {
				dma_unmap_single(&np->pci_dev->dev,
					le32_to_cpu(desc->frag[0].addr),
					np->rx_buf_sz, DMA_FROM_DEVICE);
				skb_put(skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			/* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
			netif_rx(skb);
		}
		entry = (entry + 1) % RX_RING_SIZE;
		received++;
	}
	np->cur_rx = entry;
	refill_rx (dev);
	np->budget -= received;
	iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
	return;

not_done:
	np->cur_rx = entry;
	refill_rx (dev);
	if (!received)
		received = 1;
	np->budget -= received;
	if (np->budget <= 0)
		np->budget = RX_BUDGET;
	tasklet_schedule(&np->rx_tasklet);
}

static void refill_rx (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int entry;
	int cnt = 0;

	/* Refill the Rx ring buffers. */
	for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
		np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
		struct sk_buff *skb;
		entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_skbuff[entry] == NULL) {
			skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
			np->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;		/* Better luck next round. */
			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
			np->rx_ring[entry].frag[0].addr = cpu_to_le32(
				dma_map_single(&np->pci_dev->dev, skb->data,
					np->rx_buf_sz, DMA_FROM_DEVICE));
			if (dma_mapping_error(&np->pci_dev->dev,
				    np->rx_ring[entry].frag[0].addr)) {
			    dev_kfree_skb_irq(skb);
			    np->rx_skbuff[entry] = NULL;
			    break;
			}
		}
		/* Perhaps we need not reset this field. */
		np->rx_ring[entry].frag[0].length =
			cpu_to_le32(np->rx_buf_sz | LastFrag);
		np->rx_ring[entry].status = 0;
		cnt++;
	}
}
static void netdev_error(struct net_device *dev, int intr_status)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	u16 mii_ctl, mii_advertise, mii_lpa;
	int speed;

	if (intr_status & LinkChange) {
		if (mdio_wait_link(dev, 10) == 0) {
			printk(KERN_INFO "%s: Link up\n", dev->name);
			if (np->an_enable) {
				mii_advertise = mdio_read(dev, np->phys[0],
							   MII_ADVERTISE);
				mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
				mii_advertise &= mii_lpa;
				printk(KERN_INFO "%s: Link changed: ",
					dev->name);
				if (mii_advertise & ADVERTISE_100FULL) {
					np->speed = 100;
					printk("100Mbps, full duplex\n");
				} else if (mii_advertise & ADVERTISE_100HALF) {
					np->speed = 100;
					printk("100Mbps, half duplex\n");
				} else if (mii_advertise & ADVERTISE_10FULL) {
					np->speed = 10;
					printk("10Mbps, full duplex\n");
				} else if (mii_advertise & ADVERTISE_10HALF) {
					np->speed = 10;
					printk("10Mbps, half duplex\n");
				} else
					printk("\n");

			} else {
				mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
				speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
				np->speed = speed;
				printk(KERN_INFO "%s: Link changed: %dMbps ,",
					dev->name, speed);
				printk("%s duplex.\n",
					(mii_ctl & BMCR_FULLDPLX) ?
						"full" : "half");
			}
			check_duplex(dev);
			if (np->flowctrl && np->mii_if.full_duplex) {
				iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
					ioaddr + MulticastFilter1+2);
				iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
					ioaddr + MACCtrl0);
			}
			netif_carrier_on(dev);
		} else {
			printk(KERN_INFO "%s: Link down\n", dev->name);
			netif_carrier_off(dev);
		}
	}
	if (intr_status & StatsMax) {
		get_stats(dev);
	}
	if (intr_status & IntrPCIErr) {
		printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
			   dev->name, intr_status);
		/* We must do a global reset of DMA to continue. */
	}
}

static struct net_device_stats *get_stats(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	unsigned long flags;
	u8 late_coll, single_coll, mult_coll;

	spin_lock_irqsave(&np->statlock, flags);
	/* The chip only need report frame silently dropped. */
	dev->stats.rx_missed_errors	+= ioread8(ioaddr + RxMissed);
	dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
	dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
	dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);

	mult_coll = ioread8(ioaddr + StatsMultiColl);
	np->xstats.tx_multiple_collisions += mult_coll;
	single_coll = ioread8(ioaddr + StatsOneColl);
	np->xstats.tx_single_collisions += single_coll;
	late_coll = ioread8(ioaddr + StatsLateColl);
	np->xstats.tx_late_collisions += late_coll;
	dev->stats.collisions += mult_coll
		+ single_coll
		+ late_coll;

	np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
	np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
	np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
	np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
	np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
	np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
	np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);

	dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
	dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
	dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
	dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;

	spin_unlock_irqrestore(&np->statlock, flags);

	return &dev->stats;
}

static void set_rx_mode(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	u16 mc_filter[4];			/* Multicast hash filter */
	u32 rx_mode;
	int i;

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
		   (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
	} else if (!netdev_mc_empty(dev)) {
		struct netdev_hw_addr *ha;
		int bit;
		int index;
		int crc;
		memset (mc_filter, 0, sizeof (mc_filter));
		netdev_for_each_mc_addr(ha, dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
			for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
				if (crc & 0x80000000) index |= 1 << bit;
			mc_filter[index/16] |= (1 << (index % 16));
		}
		rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
	} else {
		iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
		return;
	}
	if (np->mii_if.full_duplex && np->flowctrl)
		mc_filter[3] |= 0x0200;

	for (i = 0; i < 4; i++)
		iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
	iowrite8(rx_mode, ioaddr + RxMode);
}

static int __set_mac_addr(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	u16 addr16;

	addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
	iowrite16(addr16, np->base + StationAddr);
	addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
	iowrite16(addr16, np->base + StationAddr+2);
	addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
	iowrite16(addr16, np->base + StationAddr+4);
	return 0;
}

/* Invoked with rtnl_lock held */
static int sundance_set_mac_addr(struct net_device *dev, void *data)
{
	const struct sockaddr *addr = data;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;
	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
	__set_mac_addr(dev);

	return 0;
}

static const struct {
	const char name[ETH_GSTRING_LEN];
} sundance_stats[] = {
	{ "tx_multiple_collisions" },
	{ "tx_single_collisions" },
	{ "tx_late_collisions" },
	{ "tx_deferred" },
	{ "tx_deferred_excessive" },
	{ "tx_aborted" },
	{ "tx_bcasts" },
	{ "rx_bcasts" },
	{ "tx_mcasts" },
	{ "rx_mcasts" },
};

static int check_if_running(struct net_device *dev)
{
	if (!netif_running(dev))
		return -EINVAL;
	return 0;
}

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct netdev_private *np = netdev_priv(dev);
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
}

static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	spin_lock_irq(&np->lock);
	mii_ethtool_gset(&np->mii_if, ecmd);
	spin_unlock_irq(&np->lock);
	return 0;
}

static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	int res;
	spin_lock_irq(&np->lock);
	res = mii_ethtool_sset(&np->mii_if, ecmd);
	spin_unlock_irq(&np->lock);
	return res;
}

static int nway_reset(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return mii_nway_restart(&np->mii_if);
}

static u32 get_link(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return mii_link_ok(&np->mii_if);
}

static u32 get_msglevel(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return np->msg_enable;
}

static void set_msglevel(struct net_device *dev, u32 val)
{
	struct netdev_private *np = netdev_priv(dev);
	np->msg_enable = val;
}

static void get_strings(struct net_device *dev, u32 stringset,
		u8 *data)
{
	if (stringset == ETH_SS_STATS)
		memcpy(data, sundance_stats, sizeof(sundance_stats));
}

static int get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return ARRAY_SIZE(sundance_stats);
	default:
		return -EOPNOTSUPP;
	}
}

static void get_ethtool_stats(struct net_device *dev,
		struct ethtool_stats *stats, u64 *data)
{
	struct netdev_private *np = netdev_priv(dev);
	int i = 0;

	get_stats(dev);
	data[i++] = np->xstats.tx_multiple_collisions;
	data[i++] = np->xstats.tx_single_collisions;
	data[i++] = np->xstats.tx_late_collisions;
	data[i++] = np->xstats.tx_deferred;
	data[i++] = np->xstats.tx_deferred_excessive;
	data[i++] = np->xstats.tx_aborted;
	data[i++] = np->xstats.tx_bcasts;
	data[i++] = np->xstats.rx_bcasts;
	data[i++] = np->xstats.tx_mcasts;
	data[i++] = np->xstats.rx_mcasts;
}

static const struct ethtool_ops ethtool_ops = {
	.begin = check_if_running,
	.get_drvinfo = get_drvinfo,
	.get_settings = get_settings,
	.set_settings = set_settings,
	.nway_reset = nway_reset,
	.get_link = get_link,
	.get_msglevel = get_msglevel,
	.set_msglevel = set_msglevel,
	.get_strings = get_strings,
	.get_sset_count = get_sset_count,
	.get_ethtool_stats = get_ethtool_stats,
};

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct netdev_private *np = netdev_priv(dev);
	int rc;

	if (!netif_running(dev))
		return -EINVAL;

	spin_lock_irq(&np->lock);
	rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
	spin_unlock_irq(&np->lock);

	return rc;
}

static int netdev_close(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = np->base;
	struct sk_buff *skb;
	int i;

	/* Wait and kill tasklet */
	tasklet_kill(&np->rx_tasklet);
	tasklet_kill(&np->tx_tasklet);
	np->cur_tx = 0;
	np->dirty_tx = 0;
	np->cur_task = 0;
	np->last_tx = NULL;

	netif_stop_queue(dev);

	if (netif_msg_ifdown(np)) {
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
			   "Rx %4.4x Int %2.2x.\n",
			   dev->name, ioread8(ioaddr + TxStatus),
			   ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
			   dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
	}

	/* Disable interrupts by clearing the interrupt mask. */
	iowrite16(0x0000, ioaddr + IntrEnable);

	/* Disable Rx and Tx DMA for safely release resource */
	iowrite32(0x500, ioaddr + DMACtrl);

	/* Stop the chip's Tx and Rx processes. */
	iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);

    	for (i = 2000; i > 0; i--) {
 		if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
			break;
		mdelay(1);
    	}

    	iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
			ioaddr + ASIC_HI_WORD(ASICCtrl));

    	for (i = 2000; i > 0; i--) {
		if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
			break;
		mdelay(1);
    	}

#ifdef __i386__
	if (netif_msg_hw(np)) {
		printk(KERN_DEBUG "  Tx ring at %8.8x:\n",
			   (int)(np->tx_ring_dma));
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
				   i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
				   np->tx_ring[i].frag[0].length);
		printk(KERN_DEBUG "  Rx ring %8.8x:\n",
			   (int)(np->rx_ring_dma));
		for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
			printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
				   i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
				   np->rx_ring[i].frag[0].length);
		}
	}
#endif /* __i386__ debugging only */

	free_irq(dev->irq, dev);

	del_timer_sync(&np->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].status = 0;
		skb = np->rx_skbuff[i];
		if (skb) {
			dma_unmap_single(&np->pci_dev->dev,
				le32_to_cpu(np->rx_ring[i].frag[0].addr),
				np->rx_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb(skb);
			np->rx_skbuff[i] = NULL;
		}
		np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_ring[i].next_desc = 0;
		skb = np->tx_skbuff[i];
		if (skb) {
			dma_unmap_single(&np->pci_dev->dev,
				le32_to_cpu(np->tx_ring[i].frag[0].addr),
				skb->len, DMA_TO_DEVICE);
			dev_kfree_skb(skb);
			np->tx_skbuff[i] = NULL;
		}
	}

	return 0;
}

static void __devexit sundance_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);

	if (dev) {
	    struct netdev_private *np = netdev_priv(dev);
	    unregister_netdev(dev);
	    dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
		    np->rx_ring, np->rx_ring_dma);
	    dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
		    np->tx_ring, np->tx_ring_dma);
	    pci_iounmap(pdev, np->base);
	    pci_release_regions(pdev);
	    free_netdev(dev);
	    pci_set_drvdata(pdev, NULL);
	}
}

#ifdef CONFIG_PM

static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata(pci_dev);

	if (!netif_running(dev))
		return 0;

	netdev_close(dev);
	netif_device_detach(dev);

	pci_save_state(pci_dev);
	pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));

	return 0;
}

static int sundance_resume(struct pci_dev *pci_dev)
{
	struct net_device *dev = pci_get_drvdata(pci_dev);
	int err = 0;

	if (!netif_running(dev))
		return 0;

	pci_set_power_state(pci_dev, PCI_D0);
	pci_restore_state(pci_dev);

	err = netdev_open(dev);
	if (err) {
		printk(KERN_ERR "%s: Can't resume interface!\n",
				dev->name);
		goto out;
	}

	netif_device_attach(dev);

out:
	return err;
}

#endif /* CONFIG_PM */

static struct pci_driver sundance_driver = {
	.name		= DRV_NAME,
	.id_table	= sundance_pci_tbl,
	.probe		= sundance_probe1,
	.remove		= __devexit_p(sundance_remove1),
#ifdef CONFIG_PM
	.suspend	= sundance_suspend,
	.resume		= sundance_resume,
#endif /* CONFIG_PM */
};

static int __init sundance_init(void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
#endif
	return pci_register_driver(&sundance_driver);
}

static void __exit sundance_exit(void)
{
	pci_unregister_driver(&sundance_driver);
}

module_init(sundance_init);
module_exit(sundance_exit);