Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*
    comedi/drivers/gsc_hpdi.c
    This is a driver for the General Standards Corporation High
    Speed Parallel Digital Interface rs485 boards.

    Author:  Frank Mori Hess <fmhess@users.sourceforge.net>
    Copyright (C) 2003 Coherent Imaging Systems

    COMEDI - Linux Control and Measurement Device Interface
    Copyright (C) 1997-8 David A. Schleef <ds@schleef.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
*/

/*
 * Driver: gsc_hpdi
 * Description: General Standards Corporation High
 *    Speed Parallel Digital Interface rs485 boards
 * Author: Frank Mori Hess <fmhess@users.sourceforge.net>
 * Status: only receive mode works, transmit not supported
 * Updated: Thu, 01 Nov 2012 16:17:38 +0000
 * Devices: [General Standards Corporation] PCI-HPDI32 (gsc_hpdi),
 *   PMC-HPDI32
 *
 * Configuration options:
 *    None.
 *
 * Manual configuration of supported devices is not supported; they are
 * configured automatically.
 *
 * There are some additional hpdi models available from GSC for which
 * support could be added to this driver.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>

#include "../comedidev.h"

#include "plx9080.h"
#include "comedi_fc.h"

static void abort_dma(struct comedi_device *dev, unsigned int channel);
static int hpdi_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
static int hpdi_cmd_test(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_cmd *cmd);
static int hpdi_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
static irqreturn_t handle_interrupt(int irq, void *d);
static int dio_config_block_size(struct comedi_device *dev, unsigned int *data);

#define TIMER_BASE 50		/*  20MHz master clock */
#define DMA_BUFFER_SIZE 0x10000
#define NUM_DMA_BUFFERS 4
#define NUM_DMA_DESCRIPTORS 256

enum hpdi_registers {
	FIRMWARE_REV_REG = 0x0,
	BOARD_CONTROL_REG = 0x4,
	BOARD_STATUS_REG = 0x8,
	TX_PROG_ALMOST_REG = 0xc,
	RX_PROG_ALMOST_REG = 0x10,
	FEATURES_REG = 0x14,
	FIFO_REG = 0x18,
	TX_STATUS_COUNT_REG = 0x1c,
	TX_LINE_VALID_COUNT_REG = 0x20,
	TX_LINE_INVALID_COUNT_REG = 0x24,
	RX_STATUS_COUNT_REG = 0x28,
	RX_LINE_COUNT_REG = 0x2c,
	INTERRUPT_CONTROL_REG = 0x30,
	INTERRUPT_STATUS_REG = 0x34,
	TX_CLOCK_DIVIDER_REG = 0x38,
	TX_FIFO_SIZE_REG = 0x40,
	RX_FIFO_SIZE_REG = 0x44,
	TX_FIFO_WORDS_REG = 0x48,
	RX_FIFO_WORDS_REG = 0x4c,
	INTERRUPT_EDGE_LEVEL_REG = 0x50,
	INTERRUPT_POLARITY_REG = 0x54,
};

/* bit definitions */

enum firmware_revision_bits {
	FEATURES_REG_PRESENT_BIT = 0x8000,
};

enum board_control_bits {
	BOARD_RESET_BIT = 0x1,	/* wait 10usec before accessing fifos */
	TX_FIFO_RESET_BIT = 0x2,
	RX_FIFO_RESET_BIT = 0x4,
	TX_ENABLE_BIT = 0x10,
	RX_ENABLE_BIT = 0x20,
	DEMAND_DMA_DIRECTION_TX_BIT = 0x40,
		/* for ch 0, ch 1 can only transmit (when present) */
	LINE_VALID_ON_STATUS_VALID_BIT = 0x80,
	START_TX_BIT = 0x10,
	CABLE_THROTTLE_ENABLE_BIT = 0x20,
	TEST_MODE_ENABLE_BIT = 0x80000000,
};

enum board_status_bits {
	COMMAND_LINE_STATUS_MASK = 0x7f,
	TX_IN_PROGRESS_BIT = 0x80,
	TX_NOT_EMPTY_BIT = 0x100,
	TX_NOT_ALMOST_EMPTY_BIT = 0x200,
	TX_NOT_ALMOST_FULL_BIT = 0x400,
	TX_NOT_FULL_BIT = 0x800,
	RX_NOT_EMPTY_BIT = 0x1000,
	RX_NOT_ALMOST_EMPTY_BIT = 0x2000,
	RX_NOT_ALMOST_FULL_BIT = 0x4000,
	RX_NOT_FULL_BIT = 0x8000,
	BOARD_JUMPER0_INSTALLED_BIT = 0x10000,
	BOARD_JUMPER1_INSTALLED_BIT = 0x20000,
	TX_OVERRUN_BIT = 0x200000,
	RX_UNDERRUN_BIT = 0x400000,
	RX_OVERRUN_BIT = 0x800000,
};

static uint32_t almost_full_bits(unsigned int num_words)
{
	/* XXX need to add or subtract one? */
	return (num_words << 16) & 0xff0000;
}

static uint32_t almost_empty_bits(unsigned int num_words)
{
	return num_words & 0xffff;
}

enum features_bits {
	FIFO_SIZE_PRESENT_BIT = 0x1,
	FIFO_WORDS_PRESENT_BIT = 0x2,
	LEVEL_EDGE_INTERRUPTS_PRESENT_BIT = 0x4,
	GPIO_SUPPORTED_BIT = 0x8,
	PLX_DMA_CH1_SUPPORTED_BIT = 0x10,
	OVERRUN_UNDERRUN_SUPPORTED_BIT = 0x20,
};

enum interrupt_sources {
	FRAME_VALID_START_INTR = 0,
	FRAME_VALID_END_INTR = 1,
	TX_FIFO_EMPTY_INTR = 8,
	TX_FIFO_ALMOST_EMPTY_INTR = 9,
	TX_FIFO_ALMOST_FULL_INTR = 10,
	TX_FIFO_FULL_INTR = 11,
	RX_EMPTY_INTR = 12,
	RX_ALMOST_EMPTY_INTR = 13,
	RX_ALMOST_FULL_INTR = 14,
	RX_FULL_INTR = 15,
};

static uint32_t intr_bit(int interrupt_source)
{
	return 0x1 << interrupt_source;
}

static unsigned int fifo_size(uint32_t fifo_size_bits)
{
	return fifo_size_bits & 0xfffff;
}

struct hpdi_board {
	const char *name;	/*  board name */
	int device_id;		/*  pci device id */
	int subdevice_id;	/*  pci subdevice id */
};

static const struct hpdi_board hpdi_boards[] = {
	{
	 .name = "pci-hpdi32",
	 .device_id = PCI_DEVICE_ID_PLX_9080,
	 .subdevice_id = 0x2400,
	 },
#if 0
	{
	 .name = "pxi-hpdi32",
	 .device_id = 0x9656,
	 .subdevice_id = 0x2705,
	 },
#endif
};

struct hpdi_private {
	/*  base addresses (ioremapped) */
	void __iomem *plx9080_iobase;
	void __iomem *hpdi_iobase;
	uint32_t *dio_buffer[NUM_DMA_BUFFERS];	/*  dma buffers */
	/* physical addresses of dma buffers */
	dma_addr_t dio_buffer_phys_addr[NUM_DMA_BUFFERS];
	/* array of dma descriptors read by plx9080, allocated to get proper
	 * alignment */
	struct plx_dma_desc *dma_desc;
	/* physical address of dma descriptor array */
	dma_addr_t dma_desc_phys_addr;
	unsigned int num_dma_descriptors;
	/* pointer to start of buffers indexed by descriptor */
	uint32_t *desc_dio_buffer[NUM_DMA_DESCRIPTORS];
	/* index of the dma descriptor that is currently being used */
	volatile unsigned int dma_desc_index;
	unsigned int tx_fifo_size;
	unsigned int rx_fifo_size;
	volatile unsigned long dio_count;
	/* software copies of values written to hpdi registers */
	volatile uint32_t bits[24];
	/* number of bytes at which to generate COMEDI_CB_BLOCK events */
	volatile unsigned int block_size;
};

static int dio_config_insn(struct comedi_device *dev,
			   struct comedi_subdevice *s,
			   struct comedi_insn *insn,
			   unsigned int *data)
{
	int ret;

	switch (data[0]) {
	case INSN_CONFIG_BLOCK_SIZE:
		return dio_config_block_size(dev, data);
	default:
		ret = comedi_dio_insn_config(dev, s, insn, data, 0xffffffff);
		if (ret)
			return ret;
		break;
	}

	return insn->n;
}

static void disable_plx_interrupts(struct comedi_device *dev)
{
	struct hpdi_private *devpriv = dev->private;

	writel(0, devpriv->plx9080_iobase + PLX_INTRCS_REG);
}

/* initialize plx9080 chip */
static void init_plx9080(struct comedi_device *dev)
{
	struct hpdi_private *devpriv = dev->private;
	uint32_t bits;
	void __iomem *plx_iobase = devpriv->plx9080_iobase;

#ifdef __BIG_ENDIAN
	bits = BIGEND_DMA0 | BIGEND_DMA1;
#else
	bits = 0;
#endif
	writel(bits, devpriv->plx9080_iobase + PLX_BIGEND_REG);

	disable_plx_interrupts(dev);

	abort_dma(dev, 0);
	abort_dma(dev, 1);

	/*  configure dma0 mode */
	bits = 0;
	/*  enable ready input */
	bits |= PLX_DMA_EN_READYIN_BIT;
	/*  enable dma chaining */
	bits |= PLX_EN_CHAIN_BIT;
	/*  enable interrupt on dma done
	 *  (probably don't need this, since chain never finishes) */
	bits |= PLX_EN_DMA_DONE_INTR_BIT;
	/*  don't increment local address during transfers
	 *  (we are transferring from a fixed fifo register) */
	bits |= PLX_LOCAL_ADDR_CONST_BIT;
	/*  route dma interrupt to pci bus */
	bits |= PLX_DMA_INTR_PCI_BIT;
	/*  enable demand mode */
	bits |= PLX_DEMAND_MODE_BIT;
	/*  enable local burst mode */
	bits |= PLX_DMA_LOCAL_BURST_EN_BIT;
	bits |= PLX_LOCAL_BUS_32_WIDE_BITS;
	writel(bits, plx_iobase + PLX_DMA0_MODE_REG);
}

/* Allocate and initialize the subdevice structures.
 */
static int setup_subdevices(struct comedi_device *dev)
{
	struct comedi_subdevice *s;
	int ret;

	ret = comedi_alloc_subdevices(dev, 1);
	if (ret)
		return ret;

	s = &dev->subdevices[0];
	/* analog input subdevice */
	dev->read_subdev = s;
/*	dev->write_subdev = s; */
	s->type = COMEDI_SUBD_DIO;
	s->subdev_flags =
	    SDF_READABLE | SDF_WRITEABLE | SDF_LSAMPL | SDF_CMD_READ;
	s->n_chan = 32;
	s->len_chanlist = 32;
	s->maxdata = 1;
	s->range_table = &range_digital;
	s->insn_config = dio_config_insn;
	s->do_cmd = hpdi_cmd;
	s->do_cmdtest = hpdi_cmd_test;
	s->cancel = hpdi_cancel;

	return 0;
}

static int init_hpdi(struct comedi_device *dev)
{
	struct hpdi_private *devpriv = dev->private;
	uint32_t plx_intcsr_bits;

	writel(BOARD_RESET_BIT, devpriv->hpdi_iobase + BOARD_CONTROL_REG);
	udelay(10);

	writel(almost_empty_bits(32) | almost_full_bits(32),
	       devpriv->hpdi_iobase + RX_PROG_ALMOST_REG);
	writel(almost_empty_bits(32) | almost_full_bits(32),
	       devpriv->hpdi_iobase + TX_PROG_ALMOST_REG);

	devpriv->tx_fifo_size = fifo_size(readl(devpriv->hpdi_iobase +
						  TX_FIFO_SIZE_REG));
	devpriv->rx_fifo_size = fifo_size(readl(devpriv->hpdi_iobase +
						  RX_FIFO_SIZE_REG));

	writel(0, devpriv->hpdi_iobase + INTERRUPT_CONTROL_REG);

	/*  enable interrupts */
	plx_intcsr_bits =
	    ICS_AERR | ICS_PERR | ICS_PIE | ICS_PLIE | ICS_PAIE | ICS_LIE |
	    ICS_DMA0_E;
	writel(plx_intcsr_bits, devpriv->plx9080_iobase + PLX_INTRCS_REG);

	return 0;
}

/* setup dma descriptors so a link completes every 'transfer_size' bytes */
static int setup_dma_descriptors(struct comedi_device *dev,
				 unsigned int transfer_size)
{
	struct hpdi_private *devpriv = dev->private;
	unsigned int buffer_index, buffer_offset;
	uint32_t next_bits = PLX_DESC_IN_PCI_BIT | PLX_INTR_TERM_COUNT |
	    PLX_XFER_LOCAL_TO_PCI;
	unsigned int i;

	if (transfer_size > DMA_BUFFER_SIZE)
		transfer_size = DMA_BUFFER_SIZE;
	transfer_size -= transfer_size % sizeof(uint32_t);
	if (transfer_size == 0)
		return -1;

	buffer_offset = 0;
	buffer_index = 0;
	for (i = 0; i < NUM_DMA_DESCRIPTORS &&
	     buffer_index < NUM_DMA_BUFFERS; i++) {
		devpriv->dma_desc[i].pci_start_addr =
		    cpu_to_le32(devpriv->dio_buffer_phys_addr[buffer_index] +
				buffer_offset);
		devpriv->dma_desc[i].local_start_addr = cpu_to_le32(FIFO_REG);
		devpriv->dma_desc[i].transfer_size =
		    cpu_to_le32(transfer_size);
		devpriv->dma_desc[i].next =
		    cpu_to_le32((devpriv->dma_desc_phys_addr + (i +
								  1) *
				 sizeof(devpriv->dma_desc[0])) | next_bits);

		devpriv->desc_dio_buffer[i] =
		    devpriv->dio_buffer[buffer_index] +
		    (buffer_offset / sizeof(uint32_t));

		buffer_offset += transfer_size;
		if (transfer_size + buffer_offset > DMA_BUFFER_SIZE) {
			buffer_offset = 0;
			buffer_index++;
		}
	}
	devpriv->num_dma_descriptors = i;
	/*  fix last descriptor to point back to first */
	devpriv->dma_desc[i - 1].next =
	    cpu_to_le32(devpriv->dma_desc_phys_addr | next_bits);

	devpriv->block_size = transfer_size;

	return transfer_size;
}

static const struct hpdi_board *hpdi_find_board(struct pci_dev *pcidev)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(hpdi_boards); i++)
		if (pcidev->device == hpdi_boards[i].device_id &&
		    pcidev->subsystem_device == hpdi_boards[i].subdevice_id)
			return &hpdi_boards[i];
	return NULL;
}

static int hpdi_auto_attach(struct comedi_device *dev,
				      unsigned long context_unused)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	const struct hpdi_board *thisboard;
	struct hpdi_private *devpriv;
	int i;
	int retval;

	thisboard = hpdi_find_board(pcidev);
	if (!thisboard) {
		dev_err(dev->class_dev, "gsc_hpdi: pci %s not supported\n",
			pci_name(pcidev));
		return -EINVAL;
	}
	dev->board_ptr = thisboard;
	dev->board_name = thisboard->name;

	devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
	if (!devpriv)
		return -ENOMEM;

	retval = comedi_pci_enable(dev);
	if (retval)
		return retval;
	pci_set_master(pcidev);

	devpriv->plx9080_iobase = pci_ioremap_bar(pcidev, 0);
	devpriv->hpdi_iobase = pci_ioremap_bar(pcidev, 2);
	if (!devpriv->plx9080_iobase || !devpriv->hpdi_iobase) {
		dev_warn(dev->class_dev, "failed to remap io memory\n");
		return -ENOMEM;
	}

	init_plx9080(dev);

	/*  get irq */
	if (request_irq(pcidev->irq, handle_interrupt, IRQF_SHARED,
			dev->board_name, dev)) {
		dev_warn(dev->class_dev,
			 "unable to allocate irq %u\n", pcidev->irq);
		return -EINVAL;
	}
	dev->irq = pcidev->irq;

	dev_dbg(dev->class_dev, " irq %u\n", dev->irq);

	/*  allocate pci dma buffers */
	for (i = 0; i < NUM_DMA_BUFFERS; i++) {
		devpriv->dio_buffer[i] =
		    pci_alloc_consistent(pcidev, DMA_BUFFER_SIZE,
					 &devpriv->dio_buffer_phys_addr[i]);
	}
	/*  allocate dma descriptors */
	devpriv->dma_desc = pci_alloc_consistent(pcidev,
						 sizeof(struct plx_dma_desc) *
						 NUM_DMA_DESCRIPTORS,
						 &devpriv->dma_desc_phys_addr);
	if (devpriv->dma_desc_phys_addr & 0xf) {
		dev_warn(dev->class_dev,
			 " dma descriptors not quad-word aligned (bug)\n");
		return -EIO;
	}

	retval = setup_dma_descriptors(dev, 0x1000);
	if (retval < 0)
		return retval;

	retval = setup_subdevices(dev);
	if (retval < 0)
		return retval;

	return init_hpdi(dev);
}

static void hpdi_detach(struct comedi_device *dev)
{
	struct pci_dev *pcidev = comedi_to_pci_dev(dev);
	struct hpdi_private *devpriv = dev->private;
	unsigned int i;

	if (dev->irq)
		free_irq(dev->irq, dev);
	if (devpriv) {
		if (devpriv->plx9080_iobase) {
			disable_plx_interrupts(dev);
			iounmap(devpriv->plx9080_iobase);
		}
		if (devpriv->hpdi_iobase)
			iounmap(devpriv->hpdi_iobase);
		/*  free pci dma buffers */
		for (i = 0; i < NUM_DMA_BUFFERS; i++) {
			if (devpriv->dio_buffer[i])
				pci_free_consistent(pcidev,
						    DMA_BUFFER_SIZE,
						    devpriv->dio_buffer[i],
						    devpriv->
						    dio_buffer_phys_addr[i]);
		}
		/*  free dma descriptors */
		if (devpriv->dma_desc)
			pci_free_consistent(pcidev,
					    sizeof(struct plx_dma_desc) *
					    NUM_DMA_DESCRIPTORS,
					    devpriv->dma_desc,
					    devpriv->dma_desc_phys_addr);
	}
	comedi_pci_disable(dev);
}

static int dio_config_block_size(struct comedi_device *dev, unsigned int *data)
{
	unsigned int requested_block_size;
	int retval;

	requested_block_size = data[1];

	retval = setup_dma_descriptors(dev, requested_block_size);
	if (retval < 0)
		return retval;

	data[1] = retval;

	return 2;
}

static int di_cmd_test(struct comedi_device *dev, struct comedi_subdevice *s,
		       struct comedi_cmd *cmd)
{
	int err = 0;
	int i;

	/* Step 1 : check if triggers are trivially valid */

	err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_begin_src, TRIG_EXT);
	err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_NOW);
	err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
	err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);

	if (err)
		return 1;

	/* Step 2a : make sure trigger sources are unique */

	err |= cfc_check_trigger_is_unique(cmd->stop_src);

	/* Step 2b : and mutually compatible */

	if (err)
		return 2;

	/* Step 3: check if arguments are trivially valid */

	if (!cmd->chanlist_len) {
		cmd->chanlist_len = 32;
		err |= -EINVAL;
	}
	err |= cfc_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len);

	switch (cmd->stop_src) {
	case TRIG_COUNT:
		err |= cfc_check_trigger_arg_min(&cmd->stop_arg, 1);
		break;
	case TRIG_NONE:
		err |= cfc_check_trigger_arg_is(&cmd->stop_arg, 0);
		break;
	default:
		break;
	}

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (err)
		return 4;

	if (!cmd->chanlist)
		return 0;

	for (i = 1; i < cmd->chanlist_len; i++) {
		if (CR_CHAN(cmd->chanlist[i]) != i) {
			/*  XXX could support 8 or 16 channels */
			comedi_error(dev,
				     "chanlist must be ch 0 to 31 in order");
			err++;
			break;
		}
	}

	if (err)
		return 5;

	return 0;
}

static int hpdi_cmd_test(struct comedi_device *dev, struct comedi_subdevice *s,
			 struct comedi_cmd *cmd)
{
	if (s->io_bits)
		return -EINVAL;
	else
		return di_cmd_test(dev, s, cmd);
}

static inline void hpdi_writel(struct comedi_device *dev, uint32_t bits,
			       unsigned int offset)
{
	struct hpdi_private *devpriv = dev->private;

	writel(bits | devpriv->bits[offset / sizeof(uint32_t)],
	       devpriv->hpdi_iobase + offset);
}

static int di_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct hpdi_private *devpriv = dev->private;
	uint32_t bits;
	unsigned long flags;
	struct comedi_async *async = s->async;
	struct comedi_cmd *cmd = &async->cmd;

	hpdi_writel(dev, RX_FIFO_RESET_BIT, BOARD_CONTROL_REG);

	abort_dma(dev, 0);

	devpriv->dma_desc_index = 0;

	/* These register are supposedly unused during chained dma,
	 * but I have found that left over values from last operation
	 * occasionally cause problems with transfer of first dma
	 * block.  Initializing them to zero seems to fix the problem. */
	writel(0, devpriv->plx9080_iobase + PLX_DMA0_TRANSFER_SIZE_REG);
	writel(0, devpriv->plx9080_iobase + PLX_DMA0_PCI_ADDRESS_REG);
	writel(0, devpriv->plx9080_iobase + PLX_DMA0_LOCAL_ADDRESS_REG);
	/*  give location of first dma descriptor */
	bits =
	    devpriv->dma_desc_phys_addr | PLX_DESC_IN_PCI_BIT |
	    PLX_INTR_TERM_COUNT | PLX_XFER_LOCAL_TO_PCI;
	writel(bits, devpriv->plx9080_iobase + PLX_DMA0_DESCRIPTOR_REG);

	/*  spinlock for plx dma control/status reg */
	spin_lock_irqsave(&dev->spinlock, flags);
	/*  enable dma transfer */
	writeb(PLX_DMA_EN_BIT | PLX_DMA_START_BIT | PLX_CLEAR_DMA_INTR_BIT,
	       devpriv->plx9080_iobase + PLX_DMA0_CS_REG);
	spin_unlock_irqrestore(&dev->spinlock, flags);

	if (cmd->stop_src == TRIG_COUNT)
		devpriv->dio_count = cmd->stop_arg;
	else
		devpriv->dio_count = 1;

	/*  clear over/under run status flags */
	writel(RX_UNDERRUN_BIT | RX_OVERRUN_BIT,
	       devpriv->hpdi_iobase + BOARD_STATUS_REG);
	/*  enable interrupts */
	writel(intr_bit(RX_FULL_INTR),
	       devpriv->hpdi_iobase + INTERRUPT_CONTROL_REG);

	hpdi_writel(dev, RX_ENABLE_BIT, BOARD_CONTROL_REG);

	return 0;
}

static int hpdi_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
	if (s->io_bits)
		return -EINVAL;
	else
		return di_cmd(dev, s);
}

static void drain_dma_buffers(struct comedi_device *dev, unsigned int channel)
{
	struct hpdi_private *devpriv = dev->private;
	struct comedi_async *async = dev->read_subdev->async;
	uint32_t next_transfer_addr;
	int j;
	int num_samples = 0;
	void __iomem *pci_addr_reg;

	if (channel)
		pci_addr_reg =
		    devpriv->plx9080_iobase + PLX_DMA1_PCI_ADDRESS_REG;
	else
		pci_addr_reg =
		    devpriv->plx9080_iobase + PLX_DMA0_PCI_ADDRESS_REG;

	/*  loop until we have read all the full buffers */
	j = 0;
	for (next_transfer_addr = readl(pci_addr_reg);
	     (next_transfer_addr <
	      le32_to_cpu(devpriv->dma_desc[devpriv->dma_desc_index].
			  pci_start_addr)
	      || next_transfer_addr >=
	      le32_to_cpu(devpriv->dma_desc[devpriv->dma_desc_index].
			  pci_start_addr) + devpriv->block_size)
	     && j < devpriv->num_dma_descriptors; j++) {
		/*  transfer data from dma buffer to comedi buffer */
		num_samples = devpriv->block_size / sizeof(uint32_t);
		if (async->cmd.stop_src == TRIG_COUNT) {
			if (num_samples > devpriv->dio_count)
				num_samples = devpriv->dio_count;
			devpriv->dio_count -= num_samples;
		}
		cfc_write_array_to_buffer(dev->read_subdev,
					  devpriv->desc_dio_buffer[devpriv->
								     dma_desc_index],
					  num_samples * sizeof(uint32_t));
		devpriv->dma_desc_index++;
		devpriv->dma_desc_index %= devpriv->num_dma_descriptors;
	}
	/*  XXX check for buffer overrun somehow */
}

static irqreturn_t handle_interrupt(int irq, void *d)
{
	struct comedi_device *dev = d;
	struct hpdi_private *devpriv = dev->private;
	struct comedi_subdevice *s = dev->read_subdev;
	struct comedi_async *async = s->async;
	uint32_t hpdi_intr_status, hpdi_board_status;
	uint32_t plx_status;
	uint32_t plx_bits;
	uint8_t dma0_status, dma1_status;
	unsigned long flags;

	if (!dev->attached)
		return IRQ_NONE;

	plx_status = readl(devpriv->plx9080_iobase + PLX_INTRCS_REG);
	if ((plx_status & (ICS_DMA0_A | ICS_DMA1_A | ICS_LIA)) == 0)
		return IRQ_NONE;

	hpdi_intr_status = readl(devpriv->hpdi_iobase + INTERRUPT_STATUS_REG);
	hpdi_board_status = readl(devpriv->hpdi_iobase + BOARD_STATUS_REG);

	async->events = 0;

	if (hpdi_intr_status) {
		writel(hpdi_intr_status,
		       devpriv->hpdi_iobase + INTERRUPT_STATUS_REG);
	}
	/*  spin lock makes sure no one else changes plx dma control reg */
	spin_lock_irqsave(&dev->spinlock, flags);
	dma0_status = readb(devpriv->plx9080_iobase + PLX_DMA0_CS_REG);
	if (plx_status & ICS_DMA0_A) {	/*  dma chan 0 interrupt */
		writeb((dma0_status & PLX_DMA_EN_BIT) | PLX_CLEAR_DMA_INTR_BIT,
		       devpriv->plx9080_iobase + PLX_DMA0_CS_REG);

		if (dma0_status & PLX_DMA_EN_BIT)
			drain_dma_buffers(dev, 0);
	}
	spin_unlock_irqrestore(&dev->spinlock, flags);

	/*  spin lock makes sure no one else changes plx dma control reg */
	spin_lock_irqsave(&dev->spinlock, flags);
	dma1_status = readb(devpriv->plx9080_iobase + PLX_DMA1_CS_REG);
	if (plx_status & ICS_DMA1_A) {	/*  XXX *//*  dma chan 1 interrupt */
		writeb((dma1_status & PLX_DMA_EN_BIT) | PLX_CLEAR_DMA_INTR_BIT,
		       devpriv->plx9080_iobase + PLX_DMA1_CS_REG);
	}
	spin_unlock_irqrestore(&dev->spinlock, flags);

	/*  clear possible plx9080 interrupt sources */
	if (plx_status & ICS_LDIA) {	/*  clear local doorbell interrupt */
		plx_bits = readl(devpriv->plx9080_iobase + PLX_DBR_OUT_REG);
		writel(plx_bits, devpriv->plx9080_iobase + PLX_DBR_OUT_REG);
	}

	if (hpdi_board_status & RX_OVERRUN_BIT) {
		comedi_error(dev, "rx fifo overrun");
		async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR;
	}

	if (hpdi_board_status & RX_UNDERRUN_BIT) {
		comedi_error(dev, "rx fifo underrun");
		async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR;
	}

	if (devpriv->dio_count == 0)
		async->events |= COMEDI_CB_EOA;

	cfc_handle_events(dev, s);

	return IRQ_HANDLED;
}

static void abort_dma(struct comedi_device *dev, unsigned int channel)
{
	struct hpdi_private *devpriv = dev->private;
	unsigned long flags;

	/*  spinlock for plx dma control/status reg */
	spin_lock_irqsave(&dev->spinlock, flags);

	plx9080_abort_dma(devpriv->plx9080_iobase, channel);

	spin_unlock_irqrestore(&dev->spinlock, flags);
}

static int hpdi_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{
	struct hpdi_private *devpriv = dev->private;

	hpdi_writel(dev, 0, BOARD_CONTROL_REG);

	writel(0, devpriv->hpdi_iobase + INTERRUPT_CONTROL_REG);

	abort_dma(dev, 0);

	return 0;
}

static struct comedi_driver gsc_hpdi_driver = {
	.driver_name	= "gsc_hpdi",
	.module		= THIS_MODULE,
	.auto_attach	= hpdi_auto_attach,
	.detach		= hpdi_detach,
};

static int gsc_hpdi_pci_probe(struct pci_dev *dev,
			      const struct pci_device_id *id)
{
	return comedi_pci_auto_config(dev, &gsc_hpdi_driver, id->driver_data);
}

static const struct pci_device_id gsc_hpdi_pci_table[] = {
	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9080, PCI_VENDOR_ID_PLX,
		    0x2400, 0, 0, 0},
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, gsc_hpdi_pci_table);

static struct pci_driver gsc_hpdi_pci_driver = {
	.name		= "gsc_hpdi",
	.id_table	= gsc_hpdi_pci_table,
	.probe		= gsc_hpdi_pci_probe,
	.remove		= comedi_pci_auto_unconfig,
};
module_comedi_pci_driver(gsc_hpdi_driver, gsc_hpdi_pci_driver);

MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");