Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
 * 10Apr2002	Andrew Morton
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
#include "internal.h"

#define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)

/*
 * We don't actually have pdflush, but this one is exported though /proc...
 */
int nr_pdflush_threads;

/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
struct wb_writeback_args {
	long nr_pages;
	struct super_block *sb;
	enum writeback_sync_modes sync_mode;
	int for_kupdate:1;
	int range_cyclic:1;
	int for_background:1;
};

/*
 * Work items for the bdi_writeback threads
 */
struct bdi_work {
	struct list_head list;		/* pending work list */
	struct rcu_head rcu_head;	/* for RCU free/clear of work */

	unsigned long seen;		/* threads that have seen this work */
	atomic_t pending;		/* number of threads still to do work */

	struct wb_writeback_args args;	/* writeback arguments */

	unsigned long state;		/* flag bits, see WS_* */
};

enum {
	WS_USED_B = 0,
	WS_ONSTACK_B,
};

#define WS_USED (1 << WS_USED_B)
#define WS_ONSTACK (1 << WS_ONSTACK_B)

static inline bool bdi_work_on_stack(struct bdi_work *work)
{
	return test_bit(WS_ONSTACK_B, &work->state);
}

static inline void bdi_work_init(struct bdi_work *work,
				 struct wb_writeback_args *args)
{
	INIT_RCU_HEAD(&work->rcu_head);
	work->args = *args;
	work->state = WS_USED;
}

/**
 * writeback_in_progress - determine whether there is writeback in progress
 * @bdi: the device's backing_dev_info structure.
 *
 * Determine whether there is writeback waiting to be handled against a
 * backing device.
 */
int writeback_in_progress(struct backing_dev_info *bdi)
{
	return !list_empty(&bdi->work_list);
}

static void bdi_work_clear(struct bdi_work *work)
{
	clear_bit(WS_USED_B, &work->state);
	smp_mb__after_clear_bit();
	/*
	 * work can have disappeared at this point. bit waitq functions
	 * should be able to tolerate this, provided bdi_sched_wait does
	 * not dereference it's pointer argument.
	*/
	wake_up_bit(&work->state, WS_USED_B);
}

static void bdi_work_free(struct rcu_head *head)
{
	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);

	if (!bdi_work_on_stack(work))
		kfree(work);
	else
		bdi_work_clear(work);
}

static void wb_work_complete(struct bdi_work *work)
{
	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
	int onstack = bdi_work_on_stack(work);

	/*
	 * For allocated work, we can clear the done/seen bit right here.
	 * For on-stack work, we need to postpone both the clear and free
	 * to after the RCU grace period, since the stack could be invalidated
	 * as soon as bdi_work_clear() has done the wakeup.
	 */
	if (!onstack)
		bdi_work_clear(work);
	if (sync_mode == WB_SYNC_NONE || onstack)
		call_rcu(&work->rcu_head, bdi_work_free);
}

static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
{
	/*
	 * The caller has retrieved the work arguments from this work,
	 * drop our reference. If this is the last ref, delete and free it
	 */
	if (atomic_dec_and_test(&work->pending)) {
		struct backing_dev_info *bdi = wb->bdi;

		spin_lock(&bdi->wb_lock);
		list_del_rcu(&work->list);
		spin_unlock(&bdi->wb_lock);

		wb_work_complete(work);
	}
}

static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
{
	work->seen = bdi->wb_mask;
	BUG_ON(!work->seen);
	atomic_set(&work->pending, bdi->wb_cnt);
	BUG_ON(!bdi->wb_cnt);

	/*
	 * list_add_tail_rcu() contains the necessary barriers to
	 * make sure the above stores are seen before the item is
	 * noticed on the list
	 */
	spin_lock(&bdi->wb_lock);
	list_add_tail_rcu(&work->list, &bdi->work_list);
	spin_unlock(&bdi->wb_lock);

	/*
	 * If the default thread isn't there, make sure we add it. When
	 * it gets created and wakes up, we'll run this work.
	 */
	if (unlikely(list_empty_careful(&bdi->wb_list)))
		wake_up_process(default_backing_dev_info.wb.task);
	else {
		struct bdi_writeback *wb = &bdi->wb;

		if (wb->task)
			wake_up_process(wb->task);
	}
}

/*
 * Used for on-stack allocated work items. The caller needs to wait until
 * the wb threads have acked the work before it's safe to continue.
 */
static void bdi_wait_on_work_clear(struct bdi_work *work)
{
	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
		    TASK_UNINTERRUPTIBLE);
}

static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
				 struct wb_writeback_args *args)
{
	struct bdi_work *work;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kmalloc(sizeof(*work), GFP_ATOMIC);
	if (work) {
		bdi_work_init(work, args);
		bdi_queue_work(bdi, work);
	} else {
		struct bdi_writeback *wb = &bdi->wb;

		if (wb->task)
			wake_up_process(wb->task);
	}
}

/**
 * bdi_sync_writeback - start and wait for writeback
 * @bdi: the backing device to write from
 * @sb: write inodes from this super_block
 *
 * Description:
 *   This does WB_SYNC_ALL data integrity writeback and waits for the
 *   IO to complete. Callers must hold the sb s_umount semaphore for
 *   reading, to avoid having the super disappear before we are done.
 */
static void bdi_sync_writeback(struct backing_dev_info *bdi,
			       struct super_block *sb)
{
	struct wb_writeback_args args = {
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
	};
	struct bdi_work work;

	bdi_work_init(&work, &args);
	work.state |= WS_ONSTACK;

	bdi_queue_work(bdi, &work);
	bdi_wait_on_work_clear(&work);
}

/**
 * bdi_start_writeback - start writeback
 * @bdi: the backing device to write from
 * @sb: write inodes from this super_block
 * @nr_pages: the number of pages to write
 *
 * Description:
 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
 *   started when this function returns, we make no guarentees on
 *   completion. Caller need not hold sb s_umount semaphore.
 *
 */
void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
			 long nr_pages)
{
	struct wb_writeback_args args = {
		.sb		= sb,
		.sync_mode	= WB_SYNC_NONE,
		.nr_pages	= nr_pages,
		.range_cyclic	= 1,
	};

	/*
	 * We treat @nr_pages=0 as the special case to do background writeback,
	 * ie. to sync pages until the background dirty threshold is reached.
	 */
	if (!nr_pages) {
		args.nr_pages = LONG_MAX;
		args.for_background = 1;
	}

	bdi_alloc_queue_work(bdi, &args);
}

/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
static void redirty_tail(struct inode *inode)
{
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;

	if (!list_empty(&wb->b_dirty)) {
		struct inode *tail;

		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
		if (time_before(inode->dirtied_when, tail->dirtied_when))
			inode->dirtied_when = jiffies;
	}
	list_move(&inode->i_list, &wb->b_dirty);
}

/*
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
 */
static void requeue_io(struct inode *inode)
{
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;

	list_move(&inode->i_list, &wb->b_more_io);
}

static void inode_sync_complete(struct inode *inode)
{
	/*
	 * Prevent speculative execution through spin_unlock(&inode_lock);
	 */
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
	 * from permanently stopping the whole bdi writeback.
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

/*
 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
 */
static void move_expired_inodes(struct list_head *delaying_queue,
			       struct list_head *dispatch_queue,
				unsigned long *older_than_this)
{
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
	struct super_block *sb = NULL;
	struct inode *inode;
	int do_sb_sort = 0;

	while (!list_empty(delaying_queue)) {
		inode = list_entry(delaying_queue->prev, struct inode, i_list);
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
			break;
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
		list_move(&inode->i_list, &tmp);
	}

	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
		return;
	}

	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
		inode = list_entry(tmp.prev, struct inode, i_list);
		sb = inode->i_sb;
		list_for_each_prev_safe(pos, node, &tmp) {
			inode = list_entry(pos, struct inode, i_list);
			if (inode->i_sb == sb)
				list_move(&inode->i_list, dispatch_queue);
		}
	}
}

/*
 * Queue all expired dirty inodes for io, eldest first.
 */
static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
{
	list_splice_init(&wb->b_more_io, wb->b_io.prev);
	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
}

static int write_inode(struct inode *inode, struct writeback_control *wbc)
{
	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
		return inode->i_sb->s_op->write_inode(inode, wbc);
	return 0;
}

/*
 * Wait for writeback on an inode to complete.
 */
static void inode_wait_for_writeback(struct inode *inode)
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	do {
		spin_unlock(&inode_lock);
		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
		spin_lock(&inode_lock);
	} while (inode->i_state & I_SYNC);
}

/*
 * Write out an inode's dirty pages.  Called under inode_lock.  Either the
 * caller has ref on the inode (either via __iget or via syscall against an fd)
 * or the inode has I_WILL_FREE set (via generic_forget_inode)
 *
 * If `wait' is set, wait on the writeout.
 *
 * The whole writeout design is quite complex and fragile.  We want to avoid
 * starvation of particular inodes when others are being redirtied, prevent
 * livelocks, etc.
 *
 * Called under inode_lock.
 */
static int
writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
{
	struct address_space *mapping = inode->i_mapping;
	unsigned dirty;
	int ret;

	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		/*
		 * If this inode is locked for writeback and we are not doing
		 * writeback-for-data-integrity, move it to b_more_io so that
		 * writeback can proceed with the other inodes on s_io.
		 *
		 * We'll have another go at writing back this inode when we
		 * completed a full scan of b_io.
		 */
		if (wbc->sync_mode != WB_SYNC_ALL) {
			requeue_io(inode);
			return 0;
		}

		/*
		 * It's a data-integrity sync.  We must wait.
		 */
		inode_wait_for_writeback(inode);
	}

	BUG_ON(inode->i_state & I_SYNC);

	/* Set I_SYNC, reset I_DIRTY */
	dirty = inode->i_state & I_DIRTY;
	inode->i_state |= I_SYNC;
	inode->i_state &= ~I_DIRTY;

	spin_unlock(&inode_lock);

	ret = do_writepages(mapping, wbc);

	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
	 * I/O completion.
	 */
	if (wbc->sync_mode == WB_SYNC_ALL) {
		int err = filemap_fdatawait(mapping);
		if (ret == 0)
			ret = err;
	}

	/* Don't write the inode if only I_DIRTY_PAGES was set */
	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
		int err = write_inode(inode, wbc);
		if (ret == 0)
			ret = err;
	}

	spin_lock(&inode_lock);
	inode->i_state &= ~I_SYNC;
	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
			/*
			 * More pages get dirtied by a fast dirtier.
			 */
			goto select_queue;
		} else if (inode->i_state & I_DIRTY) {
			/*
			 * At least XFS will redirty the inode during the
			 * writeback (delalloc) and on io completion (isize).
			 */
			redirty_tail(inode);
		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
			/*
			 * We didn't write back all the pages.  nfs_writepages()
			 * sometimes bales out without doing anything. Redirty
			 * the inode; Move it from b_io onto b_more_io/b_dirty.
			 */
			/*
			 * akpm: if the caller was the kupdate function we put
			 * this inode at the head of b_dirty so it gets first
			 * consideration.  Otherwise, move it to the tail, for
			 * the reasons described there.  I'm not really sure
			 * how much sense this makes.  Presumably I had a good
			 * reasons for doing it this way, and I'd rather not
			 * muck with it at present.
			 */
			if (wbc->for_kupdate) {
				/*
				 * For the kupdate function we move the inode
				 * to b_more_io so it will get more writeout as
				 * soon as the queue becomes uncongested.
				 */
				inode->i_state |= I_DIRTY_PAGES;
select_queue:
				if (wbc->nr_to_write <= 0) {
					/*
					 * slice used up: queue for next turn
					 */
					requeue_io(inode);
				} else {
					/*
					 * somehow blocked: retry later
					 */
					redirty_tail(inode);
				}
			} else {
				/*
				 * Otherwise fully redirty the inode so that
				 * other inodes on this superblock will get some
				 * writeout.  Otherwise heavy writing to one
				 * file would indefinitely suspend writeout of
				 * all the other files.
				 */
				inode->i_state |= I_DIRTY_PAGES;
				redirty_tail(inode);
			}
		} else if (atomic_read(&inode->i_count)) {
			/*
			 * The inode is clean, inuse
			 */
			list_move(&inode->i_list, &inode_in_use);
		} else {
			/*
			 * The inode is clean, unused
			 */
			list_move(&inode->i_list, &inode_unused);
		}
	}
	inode_sync_complete(inode);
	return ret;
}

static void unpin_sb_for_writeback(struct super_block **psb)
{
	struct super_block *sb = *psb;

	if (sb) {
		up_read(&sb->s_umount);
		put_super(sb);
		*psb = NULL;
	}
}

/*
 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
 * before calling writeback. So make sure that we do pin it, so it doesn't
 * go away while we are writing inodes from it.
 *
 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
 * 1 if we failed.
 */
static int pin_sb_for_writeback(struct writeback_control *wbc,
				struct inode *inode, struct super_block **psb)
{
	struct super_block *sb = inode->i_sb;

	/*
	 * If this sb is already pinned, nothing more to do. If not and
	 * *psb is non-NULL, unpin the old one first
	 */
	if (sb == *psb)
		return 0;
	else if (*psb)
		unpin_sb_for_writeback(psb);

	/*
	 * Caller must already hold the ref for this
	 */
	if (wbc->sync_mode == WB_SYNC_ALL) {
		WARN_ON(!rwsem_is_locked(&sb->s_umount));
		return 0;
	}

	spin_lock(&sb_lock);
	sb->s_count++;
	if (down_read_trylock(&sb->s_umount)) {
		if (sb->s_root) {
			spin_unlock(&sb_lock);
			goto pinned;
		}
		/*
		 * umounted, drop rwsem again and fall through to failure
		 */
		up_read(&sb->s_umount);
	}

	sb->s_count--;
	spin_unlock(&sb_lock);
	return 1;
pinned:
	*psb = sb;
	return 0;
}

static void writeback_inodes_wb(struct bdi_writeback *wb,
				struct writeback_control *wbc)
{
	struct super_block *sb = wbc->sb, *pin_sb = NULL;
	const unsigned long start = jiffies;	/* livelock avoidance */

	spin_lock(&inode_lock);

	if (!wbc->for_kupdate || list_empty(&wb->b_io))
		queue_io(wb, wbc->older_than_this);

	while (!list_empty(&wb->b_io)) {
		struct inode *inode = list_entry(wb->b_io.prev,
						struct inode, i_list);
		long pages_skipped;

		/*
		 * super block given and doesn't match, skip this inode
		 */
		if (sb && sb != inode->i_sb) {
			redirty_tail(inode);
			continue;
		}

		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
			requeue_io(inode);
			continue;
		}

		/*
		 * Was this inode dirtied after sync_sb_inodes was called?
		 * This keeps sync from extra jobs and livelock.
		 */
		if (inode_dirtied_after(inode, start))
			break;

		if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
			requeue_io(inode);
			continue;
		}

		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
		__iget(inode);
		pages_skipped = wbc->pages_skipped;
		writeback_single_inode(inode, wbc);
		if (wbc->pages_skipped != pages_skipped) {
			/*
			 * writeback is not making progress due to locked
			 * buffers.  Skip this inode for now.
			 */
			redirty_tail(inode);
		}
		spin_unlock(&inode_lock);
		iput(inode);
		cond_resched();
		spin_lock(&inode_lock);
		if (wbc->nr_to_write <= 0) {
			wbc->more_io = 1;
			break;
		}
		if (!list_empty(&wb->b_more_io))
			wbc->more_io = 1;
	}

	unpin_sb_for_writeback(&pin_sb);

	spin_unlock(&inode_lock);
	/* Leave any unwritten inodes on b_io */
}

void writeback_inodes_wbc(struct writeback_control *wbc)
{
	struct backing_dev_info *bdi = wbc->bdi;

	writeback_inodes_wb(&bdi->wb, wbc);
}

/*
 * The maximum number of pages to writeout in a single bdi flush/kupdate
 * operation.  We do this so we don't hold I_SYNC against an inode for
 * enormous amounts of time, which would block a userspace task which has
 * been forced to throttle against that inode.  Also, the code reevaluates
 * the dirty each time it has written this many pages.
 */
#define MAX_WRITEBACK_PAGES     1024

static inline bool over_bground_thresh(void)
{
	unsigned long background_thresh, dirty_thresh;

	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);

	return (global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
}

/*
 * Explicit flushing or periodic writeback of "old" data.
 *
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
 *
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
 *
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
 */
static long wb_writeback(struct bdi_writeback *wb,
			 struct wb_writeback_args *args)
{
	struct writeback_control wbc = {
		.bdi			= wb->bdi,
		.sb			= args->sb,
		.sync_mode		= args->sync_mode,
		.older_than_this	= NULL,
		.for_kupdate		= args->for_kupdate,
		.for_background		= args->for_background,
		.range_cyclic		= args->range_cyclic,
	};
	unsigned long oldest_jif;
	long wrote = 0;
	struct inode *inode;

	if (wbc.for_kupdate) {
		wbc.older_than_this = &oldest_jif;
		oldest_jif = jiffies -
				msecs_to_jiffies(dirty_expire_interval * 10);
	}
	if (!wbc.range_cyclic) {
		wbc.range_start = 0;
		wbc.range_end = LLONG_MAX;
	}

	for (;;) {
		/*
		 * Stop writeback when nr_pages has been consumed
		 */
		if (args->nr_pages <= 0)
			break;

		/*
		 * For background writeout, stop when we are below the
		 * background dirty threshold
		 */
		if (args->for_background && !over_bground_thresh())
			break;

		wbc.more_io = 0;
		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
		wbc.pages_skipped = 0;
		writeback_inodes_wb(wb, &wbc);
		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;

		/*
		 * If we consumed everything, see if we have more
		 */
		if (wbc.nr_to_write <= 0)
			continue;
		/*
		 * Didn't write everything and we don't have more IO, bail
		 */
		if (!wbc.more_io)
			break;
		/*
		 * Did we write something? Try for more
		 */
		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
			continue;
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		spin_lock(&inode_lock);
		if (!list_empty(&wb->b_more_io))  {
			inode = list_entry(wb->b_more_io.prev,
						struct inode, i_list);
			inode_wait_for_writeback(inode);
		}
		spin_unlock(&inode_lock);
	}

	return wrote;
}

/*
 * Return the next bdi_work struct that hasn't been processed by this
 * wb thread yet. ->seen is initially set for each thread that exists
 * for this device, when a thread first notices a piece of work it
 * clears its bit. Depending on writeback type, the thread will notify
 * completion on either receiving the work (WB_SYNC_NONE) or after
 * it is done (WB_SYNC_ALL).
 */
static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
					   struct bdi_writeback *wb)
{
	struct bdi_work *work, *ret = NULL;

	rcu_read_lock();

	list_for_each_entry_rcu(work, &bdi->work_list, list) {
		if (!test_bit(wb->nr, &work->seen))
			continue;
		clear_bit(wb->nr, &work->seen);

		ret = work;
		break;
	}

	rcu_read_unlock();
	return ret;
}

static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
	nr_pages = global_page_state(NR_FILE_DIRTY) +
			global_page_state(NR_UNSTABLE_NFS) +
			(inodes_stat.nr_inodes - inodes_stat.nr_unused);

	if (nr_pages) {
		struct wb_writeback_args args = {
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
		};

		return wb_writeback(wb, &args);
	}

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
{
	struct backing_dev_info *bdi = wb->bdi;
	struct bdi_work *work;
	long wrote = 0;

	while ((work = get_next_work_item(bdi, wb)) != NULL) {
		struct wb_writeback_args args = work->args;

		/*
		 * Override sync mode, in case we must wait for completion
		 */
		if (force_wait)
			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;

		/*
		 * If this isn't a data integrity operation, just notify
		 * that we have seen this work and we are now starting it.
		 */
		if (args.sync_mode == WB_SYNC_NONE)
			wb_clear_pending(wb, work);

		wrote += wb_writeback(wb, &args);

		/*
		 * This is a data integrity writeback, so only do the
		 * notification when we have completed the work.
		 */
		if (args.sync_mode == WB_SYNC_ALL)
			wb_clear_pending(wb, work);
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
 * wakes up periodically and does kupdated style flushing.
 */
int bdi_writeback_task(struct bdi_writeback *wb)
{
	unsigned long last_active = jiffies;
	unsigned long wait_jiffies = -1UL;
	long pages_written;

	while (!kthread_should_stop()) {
		pages_written = wb_do_writeback(wb, 0);

		if (pages_written)
			last_active = jiffies;
		else if (wait_jiffies != -1UL) {
			unsigned long max_idle;

			/*
			 * Longest period of inactivity that we tolerate. If we
			 * see dirty data again later, the task will get
			 * recreated automatically.
			 */
			max_idle = max(5UL * 60 * HZ, wait_jiffies);
			if (time_after(jiffies, max_idle + last_active))
				break;
		}

		wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
		schedule_timeout_interruptible(wait_jiffies);
		try_to_freeze();
	}

	return 0;
}

/*
 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
 * writeback, for integrity writeback see bdi_sync_writeback().
 */
static void bdi_writeback_all(struct super_block *sb, long nr_pages)
{
	struct wb_writeback_args args = {
		.sb		= sb,
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
	};
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_alloc_queue_work(bdi, &args);
	}

	rcu_read_unlock();
}

/*
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
 */
void wakeup_flusher_threads(long nr_pages)
{
	if (nr_pages == 0)
		nr_pages = global_page_state(NR_FILE_DIRTY) +
				global_page_state(NR_UNSTABLE_NFS);
	bdi_writeback_all(NULL, nr_pages);
}

static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
 *
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
 *
 * This function *must* be atomic for the I_DIRTY_PAGES case -
 * set_page_dirty() is called under spinlock in several places.
 *
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
 */
void __mark_inode_dirty(struct inode *inode, int flags)
{
	struct super_block *sb = inode->i_sb;

	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
		if (sb->s_op->dirty_inode)
			sb->s_op->dirty_inode(inode);
	}

	/*
	 * make sure that changes are seen by all cpus before we test i_state
	 * -- mikulas
	 */
	smp_mb();

	/* avoid the locking if we can */
	if ((inode->i_state & flags) == flags)
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

	spin_lock(&inode_lock);
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
			goto out;

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
			if (hlist_unhashed(&inode->i_hash))
				goto out;
		}
		if (inode->i_state & (I_FREEING|I_CLEAR))
			goto out;

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
			struct backing_dev_info *bdi = wb->bdi;

			if (bdi_cap_writeback_dirty(bdi) &&
			    !test_bit(BDI_registered, &bdi->state)) {
				WARN_ON(1);
				printk(KERN_ERR "bdi-%s not registered\n",
								bdi->name);
			}

			inode->dirtied_when = jiffies;
			list_move(&inode->i_list, &wb->b_dirty);
		}
	}
out:
	spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(__mark_inode_dirty);

/*
 * Write out a superblock's list of dirty inodes.  A wait will be performed
 * upon no inodes, all inodes or the final one, depending upon sync_mode.
 *
 * If older_than_this is non-NULL, then only write out inodes which
 * had their first dirtying at a time earlier than *older_than_this.
 *
 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
 * This function assumes that the blockdev superblock's inodes are backed by
 * a variety of queues, so all inodes are searched.  For other superblocks,
 * assume that all inodes are backed by the same queue.
 *
 * The inodes to be written are parked on bdi->b_io.  They are moved back onto
 * bdi->b_dirty as they are selected for writing.  This way, none can be missed
 * on the writer throttling path, and we get decent balancing between many
 * throttled threads: we don't want them all piling up on inode_sync_wait.
 */
static void wait_sb_inodes(struct super_block *sb)
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

	spin_lock(&inode_lock);

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
		struct address_space *mapping;

		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
			continue;
		mapping = inode->i_mapping;
		if (mapping->nrpages == 0)
			continue;
		__iget(inode);
		spin_unlock(&inode_lock);
		/*
		 * We hold a reference to 'inode' so it couldn't have
		 * been removed from s_inodes list while we dropped the
		 * inode_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it
		 * under inode_lock. So we keep the reference and iput
		 * it later.
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

		spin_lock(&inode_lock);
	}
	spin_unlock(&inode_lock);
	iput(old_inode);
}

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO. The number of pages submitted is
 * returned.
 */
void writeback_inodes_sb(struct super_block *sb)
{
	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
	long nr_to_write;

	nr_to_write = nr_dirty + nr_unstable +
			(inodes_stat.nr_inodes - inodes_stat.nr_unused);

	bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
}
EXPORT_SYMBOL(writeback_inodes_sb);

/**
 * writeback_inodes_sb_if_idle	-	start writeback if none underway
 * @sb: the superblock
 *
 * Invoke writeback_inodes_sb if no writeback is currently underway.
 * Returns 1 if writeback was started, 0 if not.
 */
int writeback_inodes_sb_if_idle(struct super_block *sb)
{
	if (!writeback_in_progress(sb->s_bdi)) {
		writeback_inodes_sb(sb);
		return 1;
	} else
		return 0;
}
EXPORT_SYMBOL(writeback_inodes_sb_if_idle);

/**
 * sync_inodes_sb	-	sync sb inode pages
 * @sb: the superblock
 *
 * This function writes and waits on any dirty inode belonging to this
 * super_block. The number of pages synced is returned.
 */
void sync_inodes_sb(struct super_block *sb)
{
	bdi_sync_writeback(sb->s_bdi, sb);
	wait_sb_inodes(sb);
}
EXPORT_SYMBOL(sync_inodes_sb);

/**
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
 *
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
 */
int write_inode_now(struct inode *inode, int sync)
{
	int ret;
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
		.range_start = 0,
		.range_end = LLONG_MAX,
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
		wbc.nr_to_write = 0;

	might_sleep();
	spin_lock(&inode_lock);
	ret = writeback_single_inode(inode, &wbc);
	spin_unlock(&inode_lock);
	if (sync)
		inode_sync_wait(inode);
	return ret;
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
	int ret;

	spin_lock(&inode_lock);
	ret = writeback_single_inode(inode, wbc);
	spin_unlock(&inode_lock);
	return ret;
}
EXPORT_SYMBOL(sync_inode);