Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
/**
 * Driver for Altera PCIe core chaining DMA reference design.
 *
 * Copyright (C) 2008 Leon Woestenberg  <leon.woestenberg@axon.tv>
 * Copyright (C) 2008 Nickolas Heppermann  <heppermannwdt@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *
 * Rationale: This driver exercises the chaining DMA read and write engine
 * in the reference design. It is meant as a complementary reference
 * driver that can be used for testing early designs as well as a basis to
 * write your custom driver.
 *
 * Status: Test results from Leon Woestenberg  <leon.woestenberg@axon.tv>:
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Dell Precision 370 PC, x86, kernel 2.6.20 from Ubuntu 7.04.
 *
 * Sendero Board w/ Cyclone II EP2C35F672C6N, PX1011A PCIe x1 PHY on a
 * Freescale MPC8313E-RDB board, PowerPC, 2.6.24 w/ Freescale patches.
 *
 * Driver tests passed with PCIe Compiler 8.1. With PCIe 8.0 the DMA
 * loopback test had reproducable compare errors. I assume a change
 * in the compiler or reference design, but could not find evidence nor
 * documentation on a change or fix in that direction.
 *
 * The reference design does not have readable locations and thus a
 * dummy read, used to flush PCI posted writes, cannot be performed.
 *
 */

#include <linux/kernel.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/pci.h>


/* by default do not build the character device interface */
/* XXX It is non-functional yet */
#ifndef ALTPCIECHDMA_CDEV
#  define ALTPCIECHDMA_CDEV 0
#endif

/* build the character device interface? */
#if ALTPCIECHDMA_CDEV
#  define MAX_CHDMA_SIZE (8 * 1024 * 1024)
#  include "mapper_user_to_sg.h"
#endif

/** driver name, mimicks Altera naming of the reference design */
#define DRV_NAME "altpciechdma"
/** number of BARs on the device */
#define APE_BAR_NUM (6)
/** BAR number where the RCSLAVE memory sits */
#define APE_BAR_RCSLAVE (0)
/** BAR number where the Descriptor Header sits */
#define APE_BAR_HEADER (2)

/** maximum size in bytes of the descriptor table, chdma logic limit */
#define APE_CHDMA_TABLE_SIZE (4096)
/* single transfer must not exceed 255 table entries. worst case this can be
 * achieved by 255 scattered pages, with only a single byte in the head and
 * tail pages. 253 * PAGE_SIZE is a safe upper bound for the transfer size.
 */
#define APE_CHDMA_MAX_TRANSFER_LEN (253 * PAGE_SIZE)

/**
 * Specifies those BARs to be mapped and the length of each mapping.
 *
 * Zero (0) means do not map, otherwise specifies the BAR lengths to be mapped.
 * If the actual BAR length is less, this is considered an error; then
 * reconfigure your PCIe core.
 *
 * @see ug_pci_express 8.0, table 7-2 at page 7-13.
 */
static const unsigned long bar_min_len[APE_BAR_NUM] =
	{ 32768, 0, 256, 0, 32768, 0 };

/**
 * Descriptor Header, controls the DMA read engine or write engine.
 *
 * The descriptor header is the main data structure for starting DMA transfers.
 *
 * It sits in End Point (FPGA) memory BAR[2] for 32-bit or BAR[3:2] for 64-bit.
 * It references a descriptor table which exists in Root Complex (PC) memory.
 * Writing the rclast field starts the DMA operation, thus all other structures
 * and fields must be setup before doing so.
 *
 * @see ug_pci_express 8.0, tables 7-3, 7-4 and 7-5 at page 7-14.
 * @note This header must be written in four 32-bit (PCI DWORD) writes.
 */
struct ape_chdma_header {
	/**
	 * w0 consists of two 16-bit fields:
	 * lsb u16 number; number of descriptors in ape_chdma_table
	 * msb u16 control; global control flags
	 */
	u32 w0;
	/* bus address to ape_chdma_table in Root Complex memory */
	u32 bdt_addr_h;
	u32 bdt_addr_l;
	/**
	 * w3 consists of two 16-bit fields:
	 * - lsb u16 rclast; last descriptor number available in Root Complex
	 *    - zero (0) means the first descriptor is ready,
	 *    - one (1) means two descriptors are ready, etc.
	 * - msb u16 reserved;
	 *
	 * @note writing to this memory location starts the DMA operation!
	 */
	u32 w3;
} __attribute__ ((packed));

/**
 * Descriptor Entry, describing a (non-scattered) single memory block transfer.
 *
 * There is one descriptor for each memory block involved in the transfer, a
 * block being a contiguous address range on the bus.
 *
 * Multiple descriptors are chained by means of the ape_chdma_table data
 * structure.
 *
 * @see ug_pci_express 8.0, tables 7-6, 7-7 and 7-8 at page 7-14 and page 7-15.
 */
struct ape_chdma_desc {
	/**
	 * w0 consists of two 16-bit fields:
	 * number of DWORDS to transfer
	 * - lsb u16 length;
	 * global control
	 * - msb u16 control;
	 */
	u32 w0;
	/* address of memory in the End Point */
	u32 ep_addr;
	/* bus address of source or destination memory in the Root Complex */
	u32 rc_addr_h;
	u32 rc_addr_l;
} __attribute__ ((packed));

/**
 * Descriptor Table, an array of descriptors describing a chained transfer.
 *
 * An array of descriptors, preceded by workspace for the End Point.
 * It exists in Root Complex memory.
 *
 * The End Point can update its last completed descriptor number in the
 * eplast field if requested by setting the EPLAST_ENA bit either
 * globally in the header's or locally in any descriptor's control field.
 *
 * @note this structure may not exceed 4096 bytes. This results in a
 * maximum of 4096 / (4 * 4) - 1 = 255 descriptors per chained transfer.
 *
 * @see ug_pci_express 8.0, tables 7-9, 7-10 and 7-11 at page 7-17 and page 7-18.
 */
struct ape_chdma_table {
	/* workspace 0x00-0x0b, reserved */
	u32 reserved1[3];
	/* workspace 0x0c-0x0f, last descriptor handled by End Point */
	u32 w3;
	/* the actual array of descriptors
    * 0x10-0x1f, 0x20-0x2f, ... 0xff0-0xfff (255 entries)
    */
	struct ape_chdma_desc desc[255];
} __attribute__ ((packed));

/**
 * Altera PCI Express ('ape') board specific book keeping data
 *
 * Keeps state of the PCIe core and the Chaining DMA controller
 * application.
 */
struct ape_dev {
	/** the kernel pci device data structure provided by probe() */
	struct pci_dev *pci_dev;
	/**
	 * kernel virtual address of the mapped BAR memory and IO regions of
	 * the End Point. Used by map_bars()/unmap_bars().
	 */
	void * __iomem bar[APE_BAR_NUM];
	/** kernel virtual address for Descriptor Table in Root Complex memory */
	struct ape_chdma_table *table_virt;
	/**
	 * bus address for the Descriptor Table in Root Complex memory, in
	 * CPU-native endianess
	 */
	dma_addr_t table_bus;
	/* if the device regions could not be allocated, assume and remember it
	 * is in use by another driver; this driver must not disable the device.
	 */
	int in_use;
	/* whether this driver enabled msi for the device */
	int msi_enabled;
	/* whether this driver could obtain the regions */
	int got_regions;
	/* irq line succesfully requested by this driver, -1 otherwise */
	int irq_line;
	/* board revision */
	u8 revision;
	/* interrupt count, incremented by the interrupt handler */
	int irq_count;
#if ALTPCIECHDMA_CDEV
	/* character device */
	dev_t cdevno;
	struct cdev cdev;
	/* user space scatter gather mapper */
	struct sg_mapping_t *sgm;
#endif
};

/**
 * Using the subsystem vendor id and subsystem id, it is possible to
 * distinguish between different cards bases around the same
 * (third-party) logic core.
 *
 * Default Altera vendor and device ID's, and some (non-reserved)
 * ID's are now used here that are used amongst the testers/developers.
 */
static const struct pci_device_id ids[] = {
	{ PCI_DEVICE(0x1172, 0xE001), },
	{ PCI_DEVICE(0x2071, 0x2071), },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, ids);

#if ALTPCIECHDMA_CDEV
/* prototypes for character device */
static int sg_init(struct ape_dev *ape);
static void sg_exit(struct ape_dev *ape);
#endif

/**
 * altpciechdma_isr() - Interrupt handler
 *
 */
static irqreturn_t altpciechdma_isr(int irq, void *dev_id)
{
	struct ape_dev *ape = (struct ape_dev *)dev_id;
	if (!ape)
		return IRQ_NONE;
	ape->irq_count++;
	return IRQ_HANDLED;
}

static int __devinit scan_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		if (bar_start) {
			unsigned long bar_end = pci_resource_end(dev, i);
			unsigned long bar_flags = pci_resource_flags(dev, i);
			printk(KERN_DEBUG "BAR%d 0x%08lx-0x%08lx flags 0x%08lx\n",
			  i, bar_start, bar_end, bar_flags);
		}
	}
	return 0;
}

/**
 * Unmap the BAR regions that had been mapped earlier using map_bars()
 */
static void unmap_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int i;
	for (i = 0; i < APE_BAR_NUM; i++) {
	  /* is this BAR mapped? */
		if (ape->bar[i]) {
			/* unmap BAR */
			pci_iounmap(dev, ape->bar[i]);
			ape->bar[i] = NULL;
		}
	}
}

/**
 * Map the device memory regions into kernel virtual address space after
 * verifying their sizes respect the minimum sizes needed, given by the
 * bar_min_len[] array.
 */
static int __devinit map_bars(struct ape_dev *ape, struct pci_dev *dev)
{
	int rc;
	int i;
	/* iterate through all the BARs */
	for (i = 0; i < APE_BAR_NUM; i++) {
		unsigned long bar_start = pci_resource_start(dev, i);
		unsigned long bar_end = pci_resource_end(dev, i);
		unsigned long bar_length = bar_end - bar_start + 1;
		ape->bar[i] = NULL;
		/* do not map, and skip, BARs with length 0 */
		if (!bar_min_len[i])
			continue;
		/* do not map BARs with address 0 */
		if (!bar_start || !bar_end) {
            printk(KERN_DEBUG "BAR #%d is not present?!\n", i);
			rc = -1;
			goto fail;
		}
		bar_length = bar_end - bar_start + 1;
		/* BAR length is less than driver requires? */
		if (bar_length < bar_min_len[i]) {
            printk(KERN_DEBUG "BAR #%d length = %lu bytes but driver "
            "requires at least %lu bytes\n", i, bar_length, bar_min_len[i]);
			rc = -1;
			goto fail;
		}
		/* map the device memory or IO region into kernel virtual
		 * address space */
		ape->bar[i] = pci_iomap(dev, i, bar_min_len[i]);
		if (!ape->bar[i]) {
			printk(KERN_DEBUG "Could not map BAR #%d.\n", i);
			rc = -1;
			goto fail;
		}
        printk(KERN_DEBUG "BAR[%d] mapped at 0x%p with length %lu(/%lu).\n", i,
			ape->bar[i], bar_min_len[i], bar_length);
	}
	/* succesfully mapped all required BAR regions */
	rc = 0;
	goto success;
fail:
	/* unmap any BARs that we did map */
	unmap_bars(ape, dev);
success:
	return rc;
}

#if 0 /* not yet implemented fully FIXME add opcode */
static void __devinit rcslave_test(struct ape_dev *ape, struct pci_dev *dev)
{
	u32 *rcslave_mem = (u32 *)ape->bar[APE_BAR_RCSLAVE];
	u32 result = 0;
	/** this number is assumed to be different each time this test runs */
	u32 seed = (u32)jiffies;
	u32 value = seed;
	int i;

	/* write loop */
	value = seed;
	for (i = 1024; i < 32768 / 4 ; i++) {
		printk(KERN_DEBUG "Writing 0x%08x to 0x%p.\n",
			(u32)value, (void *)rcslave_mem + i);
		iowrite32(value, rcslave_mem + i);
		value++;
	}
	/* read-back loop */
	value = seed;
	for (i = 1024; i < 32768 / 4; i++) {
		result = ioread32(rcslave_mem + i);
		if (result != value) {
			printk(KERN_DEBUG "Wrote 0x%08x to 0x%p, but read back 0x%08x.\n",
				(u32)value, (void *)rcslave_mem + i, (u32)result);
			break;
		}
		value++;
	}
}
#endif

/* obtain the 32 most significant (high) bits of a 32-bit or 64-bit address */
#define pci_dma_h(addr) ((addr >> 16) >> 16)
/* obtain the 32 least significant (low) bits of a 32-bit or 64-bit address */
#define pci_dma_l(addr) (addr & 0xffffffffUL)

/* ape_fill_chdma_desc() - Fill a Altera PCI Express Chaining DMA descriptor
 *
 * @desc pointer to descriptor to be filled
 * @addr root complex address
 * @ep_addr end point address
 * @len number of bytes, must be a multiple of 4.
 */
static inline void ape_chdma_desc_set(struct ape_chdma_desc *desc, dma_addr_t addr, u32 ep_addr, int len)
{
  BUG_ON(len & 3);
	desc->w0 = cpu_to_le32(len / 4);
	desc->ep_addr = cpu_to_le32(ep_addr);
	desc->rc_addr_h = cpu_to_le32(pci_dma_h(addr));
	desc->rc_addr_l = cpu_to_le32(pci_dma_l(addr));
}

/*
 * ape_sg_to_chdma_table() - Create a device descriptor table from a scatterlist.
 *
 * The scatterlist must have been mapped by pci_map_sg(sgm->sgl).
 *
 * @sgl scatterlist.
 * @nents Number of entries in the scatterlist.
 * @first Start index in the scatterlist sgm->sgl.
 * @ep_addr End Point address for the scatter/gather transfer.
 * @desc pointer to first descriptor
 *
 * Returns Number of entries in the table on success, -1 on error.
 */
static int ape_sg_to_chdma_table(struct scatterlist *sgl, int nents, int first, struct ape_chdma_desc *desc, u32 ep_addr)
{
	int i = first, j = 0;
	/* inspect first entry */
	dma_addr_t addr = sg_dma_address(&sgl[i]);
	unsigned int len = sg_dma_len(&sgl[i]);
	/* contiguous block */
	dma_addr_t cont_addr = addr;
	unsigned int cont_len = len;
	/* iterate over remaining entries */
	for (; j < 25 && i < nents - 1; i++) {
		/* bus address of next entry i + 1 */
		dma_addr_t next = sg_dma_address(&sgl[i + 1]);
		/* length of this entry i */
		len = sg_dma_len(&sgl[i]);
		printk(KERN_DEBUG "%04d: addr=0x%08x length=0x%08x\n", i, addr, len);
		/* entry i + 1 is non-contiguous with entry i? */
		if (next != addr + len) {
			/* TODO create entry here (we could overwrite i) */
			printk(KERN_DEBUG "%4d: cont_addr=0x%08x cont_len=0x%08x\n", j, cont_addr, cont_len);
			/* set descriptor for contiguous transfer */
			ape_chdma_desc_set(&desc[j], cont_addr, ep_addr, cont_len);
			/* next end point memory address */
			ep_addr += cont_len;
			/* start new contiguous block */
			cont_addr = next;
			cont_len = 0;
			j++;
		}
		/* add entry i + 1 to current contiguous block */
		cont_len += len;
		/* goto entry i + 1 */
		addr = next;
	}
	/* TODO create entry here  (we could overwrite i) */
	printk(KERN_DEBUG "%04d: addr=0x%08x length=0x%08x\n", i, addr, len);
	printk(KERN_DEBUG "%4d: cont_addr=0x%08x length=0x%08x\n", j, cont_addr, cont_len);
	j++;
	return j;
}

/* compare buffers */
static inline int compare(u32 *p, u32 *q, int len)
{
	int result = -1;
	int fail = 0;
	int i;
	for (i = 0; i < len / 4; i++) {
		if (*p == *q) {
			/* every so many u32 words, show equals */
			if ((i & 255) == 0)
				printk(KERN_DEBUG "[%p] = 0x%08x    [%p] = 0x%08x\n", p, *p, q, *q);
		} else {
			fail++;
			/* show the first few miscompares */
			if (fail < 10) {
                printk(KERN_DEBUG "[%p] = 0x%08x != [%p] = 0x%08x ?!\n", p, *p, q, *q);
            /* but stop after a while */
            } else if (fail == 10) {
                printk(KERN_DEBUG "---more errors follow! not printed---\n");
		  	} else {
				/* stop compare after this many errors */
                break;
            }
		}
		p++;
		q++;
	}
	if (!fail)
		result = 0;
	return result;
}

/* dma_test() - Perform DMA loop back test to end point and back to root complex.
 *
 * Allocate a cache-coherent buffer in host memory, consisting of four pages.
 *
 * Fill the four memory pages such that each 32-bit word contains its own address.
 *
 * Now perform a loop back test, have the end point device copy the first buffer
 * half to end point memory, then have it copy back into the second half.
 *
 *   Create a descriptor table to copy the first buffer half into End Point
 *   memory. Instruct the End Point to do a DMA read using that table.
 *
 *   Create a descriptor table to copy End Point memory to the second buffer
 *   half. Instruct the End Point to do a DMA write using that table.
 *
 * Compare results, fail or pass.
 *
 */
static int __devinit dma_test(struct ape_dev *ape, struct pci_dev *dev)
{
	/* test result; guilty until proven innocent */
	int result = -1;
	/* the DMA read header sits at address 0x00 of the DMA engine BAR */
	struct ape_chdma_header *write_header = (struct ape_chdma_header *)ape->bar[APE_BAR_HEADER];
	/* the write DMA header sits after the read header at address 0x10 */
	struct ape_chdma_header *read_header = write_header + 1;
	/* virtual address of the allocated buffer */
	u8 *buffer_virt = 0;
	/* bus address of the allocated buffer */
	dma_addr_t buffer_bus = 0;
	int i, n = 0, irq_count;

	/* temporary value used to construct 32-bit data words */
	u32 w;

	printk(KERN_DEBUG "bar_tests(), PAGE_SIZE = 0x%0x\n", (int)PAGE_SIZE);
	printk(KERN_DEBUG "write_header = 0x%p.\n", write_header);
	printk(KERN_DEBUG "read_header = 0x%p.\n", read_header);
	printk(KERN_DEBUG "&write_header->w3 = 0x%p\n", &write_header->w3);
	printk(KERN_DEBUG "&read_header->w3 = 0x%p\n", &read_header->w3);
	printk(KERN_DEBUG "ape->table_virt = 0x%p.\n", ape->table_virt);

	if (!write_header || !read_header || !ape->table_virt)
        goto fail;

	/* allocate and map coherently-cached memory for a DMA-able buffer */
	/* @see 2.6.26.2/Documentation/DMA-mapping.txt line 318 */
	buffer_virt = (u8 *)pci_alloc_consistent(dev, PAGE_SIZE * 4, &buffer_bus);
	if (!buffer_virt) {
		printk(KERN_DEBUG "Could not allocate coherent DMA buffer.\n");
		goto fail;
	}
	printk(KERN_DEBUG "Allocated cache-coherent DMA buffer (virtual address = 0x%016llx, bus address = 0x%016llx).\n",
		(u64)buffer_virt, (u64)buffer_bus);

	/* fill first half of buffer with its virtual address as data */
	for (i = 0; i < 4 * PAGE_SIZE; i += 4)
#if 0
		*(u32 *)(buffer_virt + i) = i / PAGE_SIZE + 1;
#else
		*(u32 *)(buffer_virt + i) = (buffer_virt + i);
#endif
#if 0
  compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
#endif

#if 0
	/* fill second half of buffer with zeroes */
	for (i = 2 * PAGE_SIZE; i < 4 * PAGE_SIZE; i += 4)
		*(u32 *)(buffer_virt + i) = 0;
#endif

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* fill in first descriptor */
	n = 0;
	/* read 8192 bytes from RC buffer to EP address 4096 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus, 4096, 2 * PAGE_SIZE);
#if 1
	for (i = 0; i < 255; i++) {
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus, 4096, 2 * PAGE_SIZE);
	}
	/* index of last descriptor */
	n = i - 1;
#endif
#if 0
	/* fill in next descriptor */
	n++;
	/* read 1024 bytes from RC buffer to EP address 4096 + 1024 */
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 1024, 4096 + 1024, 1024);
#endif

#if 1
	/* enable MSI after the last descriptor is completed */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Read, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif
	/* set available number of descriptors in table */
	w = (u32)(n + 1);
	w |= (1UL << 18)/*global EPLAST_EN*/;
#if 0
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", w, (void *)&read_header->w0);
	iowrite32(w, &read_header->w0);

	/* write table address (higher 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)((ape->table_bus >> 16) >> 16), (void *)&read_header->bdt_addr_h);
	iowrite32(pci_dma_h(ape->table_bus), &read_header->bdt_addr_h);

	/* write table address (lower 32-bits) */
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)(ape->table_bus & 0xffffffffUL), (void *)&read_header->bdt_addr_l);
	iowrite32(pci_dma_l(ape->table_bus), &read_header->bdt_addr_l);

	/* memory write barrier */
	wmb();
	printk(KERN_DEBUG "Flush posted writes\n");
	/** FIXME Add dummy read to flush posted writes but need a readable location! */
#if 0
	(void)ioread32();
#endif

	/* remember IRQ count before the transfer */
	irq_count = ape->irq_count;
	/* write number of descriptors - this starts the DMA */
	printk(KERN_DEBUG "\nStart DMA read\n");
	printk(KERN_DEBUG "writing 0x%08x to 0x%p\n", (u32)n, (void *)&read_header->w3);
	iowrite32(n, &read_header->w3);
	printk(KERN_DEBUG "EPLAST = %lu\n", le32_to_cpu(*(u32 *)&ape->table_virt->w3) & 0xffffUL);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	printk(KERN_DEBUG "POLL FOR READ:\n");
	/* poll for chain completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
            /* print IRQ count before the transfer */
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}

	/* invalidate EPLAST, outside 0-255, 0xFADE is from the testbench */
	ape->table_virt->w3 = cpu_to_le32(0x0000FADE);

	/* setup first descriptor */
	n = 0;
	ape_chdma_desc_set(&ape->table_virt->desc[n], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
#if 1
	for (i = 0; i < 255; i++) {
		ape_chdma_desc_set(&ape->table_virt->desc[i], buffer_bus + 8192, 4096, 2 * PAGE_SIZE);
	}
	/* index of last descriptor */
	n = i - 1;
#endif
#if 1 /* test variable, make a module option later */
	if (ape->msi_enabled)
		ape->table_virt->desc[n].w0 |= cpu_to_le32(1UL << 16)/*local MSI*/;
#endif
#if 0
	/* dump descriptor table for debugging */
	printk(KERN_DEBUG "Descriptor Table (Write, in Root Complex Memory, # = %d)\n", n + 1);
	for (i = 0; i < 4 + (n + 1) * 4; i += 4) {
		u32 *p = (u32 *)ape->table_virt;
		p += i;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (LEN=0x%x)\n", (u32)p, (u32)p & 15, *p, 4 * le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (EPA=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCH=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
		p++;
		printk(KERN_DEBUG "0x%08x/0x%02x: 0x%08x (RCL=0x%x)\n", (u32)p, (u32)p & 15, *p, le32_to_cpu(*p));
	}
#endif

	/* set number of available descriptors in the table */
	w = (u32)(n + 1);
	/* enable updates of eplast for each descriptor completion */
	w |= (u32)(1UL << 18)/*global EPLAST_EN*/;
#if 0 // test variable, make a module option later
	/* enable MSI for each descriptor completion */
	if (ape->msi_enabled)
		w |= (1UL << 17)/*global MSI*/;
#endif
	iowrite32(w, &write_header->w0);
	iowrite32(pci_dma_h(ape->table_bus), &write_header->bdt_addr_h);
	iowrite32(pci_dma_l(ape->table_bus), &write_header->bdt_addr_l);

	/** memory write barrier and flush posted writes */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	irq_count = ape->irq_count;

	printk(KERN_DEBUG "\nStart DMA write\n");
	iowrite32(n, &write_header->w3);

	/** memory write barrier */
	wmb();
	/** dummy read to flush posted writes */
	//(void)ioread32();

	printk(KERN_DEBUG "POLL FOR WRITE:\n");
	/* poll for completion, 1000 times 1 millisecond */
	for (i = 0; i < 100; i++) {
		volatile u32 *p = &ape->table_virt->w3;
		u32 eplast = le32_to_cpu(*p) & 0xffffUL;
		printk(KERN_DEBUG "EPLAST = %u, n = %d\n", eplast, n);
		if (eplast == n) {
			printk(KERN_DEBUG "DONE\n");
			/* print IRQ count before the transfer */
			printk(KERN_DEBUG "#IRQs during transfer: %d\n", ape->irq_count - irq_count);
			break;
		}
		udelay(100);
	}
	/* soft-reset DMA write engine */
	iowrite32(0x0000ffffUL, &write_header->w0);
	/* soft-reset DMA read engine */
	iowrite32(0x0000ffffUL, &read_header->w0);

	/** memory write barrier */
	wmb();
	/* dummy read to flush posted writes */
	/* FIXME Need a readable location! */
#if 0
	(void)ioread32();
#endif
	/* compare first half of buffer with second half, should be identical */
	result = compare((u32 *)buffer_virt, (u32 *)(buffer_virt + 2 * PAGE_SIZE), 8192);
	printk(KERN_DEBUG "DMA loop back test %s.\n", result ? "FAILED" : "PASSED");

	pci_free_consistent(dev, 4 * PAGE_SIZE, buffer_virt, buffer_bus);
fail:
	printk(KERN_DEBUG "bar_tests() end, result %d\n", result);
	return result;
}

/* Called when the PCI sub system thinks we can control the given device.
 * Inspect if we can support the device and if so take control of it.
 *
 * Return 0 when we have taken control of the given device.
 *
 * - allocate board specific bookkeeping
 * - allocate coherently-mapped memory for the descriptor table
 * - enable the board
 * - verify board revision
 * - request regions
 * - query DMA mask
 * - obtain and request irq
 * - map regions into kernel address space
 */
static int __devinit probe(struct pci_dev *dev, const struct pci_device_id *id)
{
	int rc = 0;
	struct ape_dev *ape = NULL;
	u8 irq_pin, irq_line;
	printk(KERN_DEBUG "probe(dev = 0x%p, pciid = 0x%p)\n", dev, id);

	/* allocate memory for per-board book keeping */
	ape = kzalloc(sizeof(struct ape_dev), GFP_KERNEL);
	if (!ape) {
		printk(KERN_DEBUG "Could not kzalloc()ate memory.\n");
		goto err_ape;
	}
	ape->pci_dev = dev;
	dev->dev.driver_data = (void *)ape;
	printk(KERN_DEBUG "probe() ape = 0x%p\n", ape);

	printk(KERN_DEBUG "sizeof(struct ape_chdma_table) = %d.\n",
		(int)sizeof(struct ape_chdma_table));
	/* the reference design has a size restriction on the table size */
	BUG_ON(sizeof(struct ape_chdma_table) > APE_CHDMA_TABLE_SIZE);

	/* allocate and map coherently-cached memory for a descriptor table */
	/* @see LDD3 page 446 */
	ape->table_virt = (struct ape_chdma_table *)pci_alloc_consistent(dev,
		APE_CHDMA_TABLE_SIZE, &ape->table_bus);
	/* could not allocate table? */
	if (!ape->table_virt) {
		printk(KERN_DEBUG "Could not dma_alloc()ate_coherent memory.\n");
		goto err_table;
	}

	printk(KERN_DEBUG "table_virt = 0x%16llx, table_bus = 0x%16llx.\n",
		(u64)ape->table_virt, (u64)ape->table_bus);

	/* enable device */
	rc = pci_enable_device(dev);
	if (rc) {
		printk(KERN_DEBUG "pci_enable_device() failed\n");
		goto err_enable;
	}

	/* enable bus master capability on device */
	pci_set_master(dev);
	/* enable message signaled interrupts */
	rc = pci_enable_msi(dev);
	/* could not use MSI? */
	if (rc) {
		/* resort to legacy interrupts */
		printk(KERN_DEBUG "Could not enable MSI interrupting.\n");
		ape->msi_enabled = 0;
	/* MSI enabled, remember for cleanup */
	} else {
		printk(KERN_DEBUG "Enabled MSI interrupting.\n");
		ape->msi_enabled = 1;
	}

	pci_read_config_byte(dev, PCI_REVISION_ID, &ape->revision);
#if 0 /* example */
	/* (for example) this driver does not support revision 0x42 */
    if (ape->revision == 0x42) {
		printk(KERN_DEBUG "Revision 0x42 is not supported by this driver.\n");
		rc = -ENODEV;
		goto err_rev;
	}
#endif
	/** XXX check for native or legacy PCIe endpoint? */

	rc = pci_request_regions(dev, DRV_NAME);
	/* could not request all regions? */
	if (rc) {
		/* assume device is in use (and do not disable it later!) */
		ape->in_use = 1;
		goto err_regions;
	}
	ape->got_regions = 1;

#if 1 // @todo For now, disable 64-bit, because I do not understand the implications (DAC!)
	/* query for DMA transfer */
	/* @see Documentation/DMA-mapping.txt */
	if (!pci_set_dma_mask(dev, DMA_64BIT_MASK)) {
		pci_set_consistent_dma_mask(dev, DMA_64BIT_MASK);
		/* use 64-bit DMA */
		printk(KERN_DEBUG "Using a 64-bit DMA mask.\n");
	} else
#endif
	if (!pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
		printk(KERN_DEBUG "Could not set 64-bit DMA mask.\n");
		pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK);
		/* use 32-bit DMA */
		printk(KERN_DEBUG "Using a 32-bit DMA mask.\n");
	} else {
		printk(KERN_DEBUG "No suitable DMA possible.\n");
		/** @todo Choose proper error return code */
		rc = -1;
		goto err_mask;
	}

	rc = pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq_pin);
	/* could not read? */
	if (rc)
		goto err_irq;
	printk(KERN_DEBUG "IRQ pin #%d (0=none, 1=INTA#...4=INTD#).\n", irq_pin);

	/* @see LDD3, page 318 */
	rc = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq_line);
	/* could not read? */
	if (rc) {
		printk(KERN_DEBUG "Could not query PCI_INTERRUPT_LINE, error %d\n", rc);
		goto err_irq;
	}
	printk(KERN_DEBUG "IRQ line #%d.\n", irq_line);
#if 1
	irq_line = dev->irq;
	/* @see LDD3, page 259 */
	rc = request_irq(irq_line, altpciechdma_isr, IRQF_SHARED, DRV_NAME, (void *)ape);
	if (rc) {
		printk(KERN_DEBUG "Could not request IRQ #%d, error %d\n", irq_line, rc);
		ape->irq_line = -1;
		goto err_irq;
	}
	/* remember which irq we allocated */
	ape->irq_line = (int)irq_line;
	printk(KERN_DEBUG "Succesfully requested IRQ #%d with dev_id 0x%p\n", irq_line, ape);
#endif
	/* show BARs */
	scan_bars(ape, dev);
	/* map BARs */
	rc = map_bars(ape, dev);
	if (rc)
		goto err_map;
#if ALTPCIECHDMA_CDEV
	/* initialize character device */
	rc = sg_init(ape);
	if (rc)
		goto err_cdev;
#endif
	/* perform DMA engines loop back test */
	rc = dma_test(ape, dev);
	(void)rc;
	/* succesfully took the device */
	rc = 0;
	printk(KERN_DEBUG "probe() successful.\n");
	goto end;
err_cdev:
	/* unmap the BARs */
	unmap_bars(ape, dev);
err_map:
	/* free allocated irq */
	if (ape->irq_line >= 0)
		free_irq(ape->irq_line, (void *)ape);
err_irq:
	if (ape->msi_enabled)
		pci_disable_msi(dev);
	/* disable the device iff it is not in use */
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		pci_release_regions(dev);
err_mask:
err_regions:
err_rev:
/* clean up everything before device enable() */
err_enable:
	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);
/* clean up everything before allocating descriptor table */
err_table:
	if (ape)
		kfree(ape);
err_ape:
end:
	return rc;
}

static void __devexit remove(struct pci_dev *dev)
{
	struct ape_dev *ape;
	printk(KERN_DEBUG "remove(0x%p)\n", dev);
	if ((dev == 0) || (dev->dev.driver_data == 0)) {
		printk(KERN_DEBUG "remove(dev = 0x%p) dev->dev.driver_data = 0x%p\n", dev, dev->dev.driver_data);
		return;
	}
	ape = (struct ape_dev *)dev->dev.driver_data;
	printk(KERN_DEBUG "remove(dev = 0x%p) where dev->dev.driver_data = 0x%p\n", dev, ape);
	if (ape->pci_dev != dev) {
		printk(KERN_DEBUG "dev->dev.driver_data->pci_dev (0x%08lx) != dev (0x%08lx)\n",
		(unsigned long)ape->pci_dev, (unsigned long)dev);
	}
	/* remove character device */
#if ALTPCIECHDMA_CDEV
	sg_exit(ape);
#endif

	if (ape->table_virt)
		pci_free_consistent(dev, APE_CHDMA_TABLE_SIZE, ape->table_virt, ape->table_bus);

	/* free IRQ
	 * @see LDD3 page 279
	 */
	if (ape->irq_line >= 0) {
		printk(KERN_DEBUG "Freeing IRQ #%d for dev_id 0x%08lx.\n",
		ape->irq_line, (unsigned long)ape);
		free_irq(ape->irq_line, (void *)ape);
	}
	/* MSI was enabled? */
	if (ape->msi_enabled) {
		/* Disable MSI @see Documentation/MSI-HOWTO.txt */
		pci_disable_msi(dev);
		ape->msi_enabled = 0;
	}
	/* unmap the BARs */
	unmap_bars(ape, dev);
	if (!ape->in_use)
		pci_disable_device(dev);
	if (ape->got_regions)
		/* to be called after device disable */
		pci_release_regions(dev);
}

#if ALTPCIECHDMA_CDEV

/*
 * Called when the device goes from unused to used.
 */
static int sg_open(struct inode *inode, struct file *file)
{
	struct ape_dev *ape;
	printk(KERN_DEBUG DRV_NAME "_open()\n");
	/* pointer to containing data structure of the character device inode */
	ape = container_of(inode->i_cdev, struct ape_dev, cdev);
	/* create a reference to our device state in the opened file */
	file->private_data = ape;
	/* create virtual memory mapper */
	ape->sgm = sg_create_mapper(MAX_CHDMA_SIZE);
	return 0;
}

/*
 * Called when the device goes from used to unused.
 */
static int sg_close(struct inode *inode, struct file *file)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_close()\n");
	/* destroy virtual memory mapper */
	sg_destroy_mapper(ape->sgm);
	return 0;
}

static ssize_t sg_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	(void)ape;
	printk(KERN_DEBUG DRV_NAME "_read(buf=0x%p, count=%lld, pos=%llu)\n", buf, (s64)count, (u64)*pos);
	return count;
}

/* sg_write() - Write to the device
 *
 * @buf userspace buffer
 * @count number of bytes in the userspace buffer
 *
 * Iterate over the userspace buffer, taking at most 255 * PAGE_SIZE bytes for
 * each DMA transfer.
 *   For each transfer, get the user pages, build a sglist, map, build a
 *   descriptor table. submit the transfer. wait for the interrupt handler
 *   to wake us on completion.
 */
static ssize_t sg_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
	int hwnents, tents;
	size_t transfer_len, remaining = count, done = 0;
	u64 transfer_addr = (u64)buf;
	/* fetch device specific data stored earlier during open */
	struct ape_dev *ape = (struct ape_dev *)file->private_data;
	printk(KERN_DEBUG DRV_NAME "_write(buf=0x%p, count=%lld, pos=%llu)\n",
		buf, (s64)count, (u64)*pos);
	/* TODO transfer boundaries at PAGE_SIZE granularity */
	while (remaining > 0)
	{
		/* limit DMA transfer size */
		transfer_len = (remaining < APE_CHDMA_MAX_TRANSFER_LEN)? remaining:
			APE_CHDMA_MAX_TRANSFER_LEN;
		/* get all user space buffer pages and create a scattergather list */
		sgm_map_user_pages(ape->sgm, transfer_addr, transfer_len, 0/*read from userspace*/);
		printk(KERN_DEBUG DRV_NAME "mapped_pages=%d\n", ape->sgm->mapped_pages);
		/* map all entries in the scattergather list */
		hwnents = pci_map_sg(ape->pci_dev, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		printk(KERN_DEBUG DRV_NAME "hwnents=%d\n", hwnents);
		/* build device descriptor tables and submit them to the DMA engine */
		tents = ape_sg_to_chdma_table(ape->sgm->sgl, hwnents, 0, &ape->table_virt->desc[0], 4096);
		printk(KERN_DEBUG DRV_NAME "tents=%d\n", hwnents);
#if 0
		while (tables) {
			/* TODO build table */
			/* TODO submit table to the device */
			/* if engine stopped and unfinished work then start engine */
		}
		put ourselves on wait queue
#endif

		dma_unmap_sg(NULL, ape->sgm->sgl, ape->sgm->mapped_pages, DMA_TO_DEVICE);
		/* dirty and free the pages */
		sgm_unmap_user_pages(ape->sgm, 1/*dirtied*/);
		/* book keeping */
		transfer_addr += transfer_len;
		remaining -= transfer_len;
		done += transfer_len;
	}
	return done;
}

/*
 * character device file operations
 */
static struct file_operations sg_fops = {
  .owner = THIS_MODULE,
  .open = sg_open,
  .release = sg_close,
  .read = sg_read,
  .write = sg_write,
};

/* sg_init() - Initialize character device
 *
 * XXX Should ideally be tied to the device, on device probe, not module init.
 */
static int sg_init(struct ape_dev *ape)
{
	int rc;
	printk(KERN_DEBUG DRV_NAME " sg_init()\n");
	/* allocate a dynamically allocated character device node */
	rc = alloc_chrdev_region(&ape->cdevno, 0/*requested minor*/, 1/*count*/, DRV_NAME);
	/* allocation failed? */
	if (rc < 0) {
		printk("alloc_chrdev_region() = %d\n", rc);
		goto fail_alloc;
	}
	/* couple the device file operations to the character device */
	cdev_init(&ape->cdev, &sg_fops);
	ape->cdev.owner = THIS_MODULE;
	/* bring character device live */
	rc = cdev_add(&ape->cdev, ape->cdevno, 1/*count*/);
	if (rc < 0) {
		printk("cdev_add() = %d\n", rc);
		goto fail_add;
	}
	printk(KERN_DEBUG "altpciechdma = %d:%d\n", MAJOR(ape->cdevno), MINOR(ape->cdevno));
	return 0;
fail_add:
	/* free the dynamically allocated character device node */
    unregister_chrdev_region(ape->cdevno, 1/*count*/);
fail_alloc:
	return -1;
}

/* sg_exit() - Cleanup character device
 *
 * XXX Should ideally be tied to the device, on device remove, not module exit.
 */

static void sg_exit(struct ape_dev *ape)
{
	printk(KERN_DEBUG DRV_NAME " sg_exit()\n");
	/* remove the character device */
	cdev_del(&ape->cdev);
	/* free the dynamically allocated character device node */
	unregister_chrdev_region(ape->cdevno, 1/*count*/);
}

#endif /* ALTPCIECHDMA_CDEV */

/* used to register the driver with the PCI kernel sub system
 * @see LDD3 page 311
 */
static struct pci_driver pci_driver = {
	.name = DRV_NAME,
	.id_table = ids,
	.probe = probe,
	.remove = remove,
	/* resume, suspend are optional */
};

/**
 * alterapciechdma_init() - Module initialization, registers devices.
 */
static int __init alterapciechdma_init(void)
{
  int rc = 0;
	printk(KERN_DEBUG DRV_NAME " init(), built at " __DATE__ " " __TIME__ "\n");
	/* register this driver with the PCI bus driver */
	rc = pci_register_driver(&pci_driver);
	if (rc < 0)
	  return rc;
	return 0;
}

/**
 * alterapciechdma_init() - Module cleanup, unregisters devices.
 */
static void __exit alterapciechdma_exit(void)
{
	printk(KERN_DEBUG DRV_NAME " exit(), built at " __DATE__ " " __TIME__ "\n");
	/* unregister this driver from the PCI bus driver */
	pci_unregister_driver(&pci_driver);
}

MODULE_LICENSE("GPL");

module_init(alterapciechdma_init);
module_exit(alterapciechdma_exit);