Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp_lock.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
#include <asm/tlb.h>
#include <asm/rmap.h>

#include <linux/sysctl.h>

int htlbpage_max;

/* This lock protects the two counters and list below */
static spinlock_t htlbpage_lock = SPIN_LOCK_UNLOCKED;

static int htlbpage_free; /* = 0 */
static int htlbpage_total; /* = 0 */
static struct list_head hugepage_freelists[MAX_NUMNODES];

static void enqueue_huge_page(struct page *page)
{
	list_add(&page->list,
		&hugepage_freelists[page_zone(page)->zone_pgdat->node_id]);
}

/* XXX make this a sysctl */
unsigned long largepage_roundrobin = 1;

static struct page *dequeue_huge_page(void)
{
	static int nid = 0;
	struct page *page = NULL;
	int i;

	if (!largepage_roundrobin)
		nid = numa_node_id();

	for (i = 0; i < numnodes; i++) {
		if (!list_empty(&hugepage_freelists[nid]))
			break;
		nid = (nid + 1) % numnodes;
	}

	if (!list_empty(&hugepage_freelists[nid])) {
		page = list_entry(hugepage_freelists[nid].next, struct page, list);
		list_del(&page->list);
	}

	if (largepage_roundrobin)
		nid = (nid + 1) % numnodes;

	return page;
}

static struct page *alloc_fresh_huge_page(void)
{
	static int nid = 0;
	struct page *page;

	page = alloc_pages_node(nid, GFP_HIGHUSER, HUGETLB_PAGE_ORDER);
	if (!page)
		return NULL;

	nid = page_zone(page)->zone_pgdat->node_id;
	nid = (nid + 1) % numnodes;
	return page;
}

/* HugePTE layout:
 *
 * 31 30 ... 15 14 13 12 10 9  8  7   6    5    4    3    2    1    0
 * PFN>>12..... -  -  -  -  -  -  HASH_IX....   2ND  HASH RW   -    HG=1
 */

#define HUGEPTE_SHIFT	15
#define _HUGEPAGE_PFN		0xffff8000
#define _HUGEPAGE_BAD		0x00007f00
#define _HUGEPAGE_HASHPTE	0x00000008
#define _HUGEPAGE_SECONDARY	0x00000010
#define _HUGEPAGE_GROUP_IX	0x000000e0
#define _HUGEPAGE_HPTEFLAGS	(_HUGEPAGE_HASHPTE | _HUGEPAGE_SECONDARY | \
				 _HUGEPAGE_GROUP_IX)
#define _HUGEPAGE_RW		0x00000004

typedef struct {unsigned int val;} hugepte_t;
#define hugepte_val(hugepte)	((hugepte).val)
#define __hugepte(x)		((hugepte_t) { (x) } )
#define hugepte_pfn(x)		\
	((unsigned long)(hugepte_val(x)>>HUGEPTE_SHIFT) << HUGETLB_PAGE_ORDER)
#define mk_hugepte(page,wr)	__hugepte( \
	((page_to_pfn(page)>>HUGETLB_PAGE_ORDER) << HUGEPTE_SHIFT ) \
	| (!!(wr) * _HUGEPAGE_RW) | _PMD_HUGEPAGE )

#define hugepte_bad(x)	( !(hugepte_val(x) & _PMD_HUGEPAGE) || \
			  (hugepte_val(x) & _HUGEPAGE_BAD) )
#define hugepte_page(x)	pfn_to_page(hugepte_pfn(x))
#define hugepte_none(x)	(!(hugepte_val(x) & _HUGEPAGE_PFN))


static void free_huge_page(struct page *page);
static void flush_hash_hugepage(mm_context_t context, unsigned long ea,
				hugepte_t pte, int local);

static inline unsigned int hugepte_update(hugepte_t *p, unsigned int clr,
					  unsigned int set)
{
	unsigned int old, tmp;

	__asm__ __volatile__(
	"1:	lwarx	%0,0,%3		# pte_update\n\
	andc	%1,%0,%4 \n\
	or	%1,%1,%5 \n\
	stwcx.	%1,0,%3 \n\
	bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*p)
	: "r" (p), "r" (clr), "r" (set), "m" (*p)
	: "cc" );
	return old;
}

static inline void set_hugepte(hugepte_t *ptep, hugepte_t pte)
{
	hugepte_update(ptep, ~_HUGEPAGE_HPTEFLAGS,
		       hugepte_val(pte) & ~_HUGEPAGE_HPTEFLAGS);
}

static struct page *alloc_hugetlb_page(void)
{
	int i;
	struct page *page;

	spin_lock(&htlbpage_lock);
	page = dequeue_huge_page();
	if (!page) {
		spin_unlock(&htlbpage_lock);
		return NULL;
	}

	htlbpage_free--;
	spin_unlock(&htlbpage_lock);
	set_page_count(page, 1);
	page->lru.prev = (void *)free_huge_page;
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
		clear_highpage(&page[i]);
	return page;
}

static hugepte_t *hugepte_alloc(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pmd_t *pmd = NULL;

	BUG_ON(!in_hugepage_area(mm->context, addr));

	pgd = pgd_offset(mm, addr);
	pmd = pmd_alloc(mm, pgd, addr);

	/* We shouldn't find a (normal) PTE page pointer here */
	BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd));
	
	return (hugepte_t *)pmd;
}

static hugepte_t *hugepte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pmd_t *pmd = NULL;

	BUG_ON(!in_hugepage_area(mm->context, addr));

	pgd = pgd_offset(mm, addr);
	pmd = pmd_offset(pgd, addr);

	/* We shouldn't find a (normal) PTE page pointer here */
	BUG_ON(!pmd_none(*pmd) && !pmd_hugepage(*pmd));

	return (hugepte_t *)pmd;
}

static void setup_huge_pte(struct mm_struct *mm, struct page *page,
			   hugepte_t *ptep, int write_access)
{
	hugepte_t entry;
	int i;

	mm->rss += (HPAGE_SIZE / PAGE_SIZE);
	entry = mk_hugepte(page, write_access);
	for (i = 0; i < HUGEPTE_BATCH_SIZE; i++)
		set_hugepte(ptep+i, entry);
}

static void teardown_huge_pte(hugepte_t *ptep)
{
	int i;

	for (i = 0; i < HUGEPTE_BATCH_SIZE; i++)
		pmd_clear((pmd_t *)(ptep+i));
}

/*
 * This function checks for proper alignment of input addr and len parameters.
 */
int is_aligned_hugepage_range(unsigned long addr, unsigned long len)
{
	if (len & ~HPAGE_MASK)
		return -EINVAL;
	if (addr & ~HPAGE_MASK)
		return -EINVAL;
	if (! is_hugepage_only_range(addr, len))
		return -EINVAL;
	return 0;
}

static void do_slbia(void *unused)
{
	asm volatile ("isync; slbia; isync":::"memory");
}

/* Activate the low hpage region for 32bit processes.  mmap_sem must
 * be held*/
static int open_32bit_htlbpage_range(struct mm_struct *mm)
{
	struct vm_area_struct *vma;
	unsigned long addr;

	if (mm->context & CONTEXT_LOW_HPAGES)
		return 0; /* The window is already open */
	
	/* Check no VMAs are in the region */
	vma = find_vma(mm, TASK_HPAGE_BASE_32);

	if (vma && (vma->vm_start < TASK_HPAGE_END_32))
		return -EBUSY;

	/* Clean up any leftover PTE pages in the region */
	spin_lock(&mm->page_table_lock);
	for (addr = TASK_HPAGE_BASE_32; addr < TASK_HPAGE_END_32;
	     addr += PMD_SIZE) {
		pgd_t *pgd = pgd_offset(mm, addr);
		pmd_t *pmd = pmd_offset(pgd, addr);

		if (! pmd_none(*pmd)) {
			struct page *page = pmd_page(*pmd);
			pte_t *pte = (pte_t *)pmd_page_kernel(*pmd);
			int i;

			/* No VMAs, so there should be no PTEs, check
			 * just in case. */
			for (i = 0; i < PTRS_PER_PTE; i++) {
				BUG_ON(! pte_none(*pte));
				pte++;
			}

			pmd_clear(pmd);
			pgtable_remove_rmap(page);
			pte_free(page);
		}
	}
	spin_unlock(&mm->page_table_lock);

	/* FIXME: do we need to scan for PTEs too? */

	mm->context |= CONTEXT_LOW_HPAGES;

	/* the context change must make it to memory before the slbia,
	 * so that further SLB misses do the right thing. */
	mb();

	on_each_cpu(do_slbia, NULL, 0, 1);

	return 0;
}

int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			struct vm_area_struct *vma)
{
	hugepte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;

	while (addr < end) {
		BUG_ON(! in_hugepage_area(src->context, addr));
		BUG_ON(! in_hugepage_area(dst->context, addr));

		dst_pte = hugepte_alloc(dst, addr);
		if (!dst_pte)
			return -ENOMEM;

		src_pte = hugepte_offset(src, addr);
		entry = *src_pte;
		
		if ((addr % HPAGE_SIZE) == 0) {
			/* This is the first hugepte in a batch */
			ptepage = hugepte_page(entry);
			get_page(ptepage);
			dst->rss += (HPAGE_SIZE / PAGE_SIZE);
		}
		set_hugepte(dst_pte, entry);


		addr += PMD_SIZE;
	}
	return 0;
}

int
follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
		    struct page **pages, struct vm_area_struct **vmas,
		    unsigned long *position, int *length, int i)
{
	unsigned long vpfn, vaddr = *position;
	int remainder = *length;

	WARN_ON(!is_vm_hugetlb_page(vma));

	vpfn = vaddr/PAGE_SIZE;
	while (vaddr < vma->vm_end && remainder) {
		BUG_ON(!in_hugepage_area(mm->context, vaddr));

		if (pages) {
			hugepte_t *pte;
			struct page *page;

			pte = hugepte_offset(mm, vaddr);

			/* hugetlb should be locked, and hence, prefaulted */
			WARN_ON(!pte || hugepte_none(*pte));

			page = &hugepte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];

			WARN_ON(!PageCompound(page));

			get_page(page);
			pages[i] = page;
		}

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
		++vpfn;
		--remainder;
		++i;
	}

	*length = remainder;
	*position = vaddr;

	return i;
}

struct page *
follow_huge_addr(struct mm_struct *mm,
	struct vm_area_struct *vma, unsigned long address, int write)
{
	return NULL;
}

struct vm_area_struct *hugepage_vma(struct mm_struct *mm, unsigned long addr)
{
	return NULL;
}

int pmd_huge(pmd_t pmd)
{
	return pmd_hugepage(pmd);
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	BUG_ON(! pmd_hugepage(*pmd));

	page = hugepte_page(*(hugepte_t *)pmd);
	if (page) {
		page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
		get_page(page);
	}
	return page;
}

static void free_huge_page(struct page *page)
{
	BUG_ON(page_count(page));
	BUG_ON(page->mapping);

	INIT_LIST_HEAD(&page->list);

	spin_lock(&htlbpage_lock);
	enqueue_huge_page(page);
	htlbpage_free++;
	spin_unlock(&htlbpage_lock);
}

void huge_page_release(struct page *page)
{
	if (!put_page_testzero(page))
		return;

	free_huge_page(page);
}

void unmap_hugepage_range(struct vm_area_struct *vma,
			  unsigned long start, unsigned long end)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long addr;
	hugepte_t *ptep;
	struct page *page;
	int local = 0;
	cpumask_t tmp;

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON((start % HPAGE_SIZE) != 0);
	BUG_ON((end % HPAGE_SIZE) != 0);

	/* XXX are there races with checking cpu_vm_mask? - Anton */
	tmp = cpumask_of_cpu(smp_processor_id());
	if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
		local = 1;

	for (addr = start; addr < end; addr += HPAGE_SIZE) {
		hugepte_t pte;

		BUG_ON(!in_hugepage_area(mm->context, addr));

		ptep = hugepte_offset(mm, addr);
		if (!ptep || hugepte_none(*ptep))
			continue;

		pte = *ptep;
		page = hugepte_page(pte);
		teardown_huge_pte(ptep);
		
		if (hugepte_val(pte) & _HUGEPAGE_HASHPTE)
			flush_hash_hugepage(mm->context, addr,
					    pte, local);

		huge_page_release(page);
	}

	mm->rss -= (end - start) >> PAGE_SHIFT;
}

void zap_hugepage_range(struct vm_area_struct *vma,
			unsigned long start, unsigned long length)
{
	struct mm_struct *mm = vma->vm_mm;

	spin_lock(&mm->page_table_lock);
	unmap_hugepage_range(vma, start, start + length);
	spin_unlock(&mm->page_table_lock);
}

int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
{
	struct mm_struct *mm = current->mm;
	unsigned long addr;
	int ret = 0;

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON((vma->vm_start % HPAGE_SIZE) != 0);
	BUG_ON((vma->vm_end % HPAGE_SIZE) != 0);

	spin_lock(&mm->page_table_lock);
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
		unsigned long idx;
		hugepte_t *pte = hugepte_alloc(mm, addr);
		struct page *page;

		BUG_ON(!in_hugepage_area(mm->context, addr));

		if (!pte) {
			ret = -ENOMEM;
			goto out;
		}
		if (!hugepte_none(*pte))
			continue;

		idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
			+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
		page = find_get_page(mapping, idx);
		if (!page) {
			/* charge the fs quota first */
			if (hugetlb_get_quota(mapping)) {
				ret = -ENOMEM;
				goto out;
			}
			page = alloc_hugetlb_page();
			if (!page) {
				hugetlb_put_quota(mapping);
				ret = -ENOMEM;
				goto out;
			}
			ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
			unlock_page(page);
			if (ret) {
				hugetlb_put_quota(mapping);
				free_huge_page(page);
				goto out;
			}
		}
		setup_huge_pte(mm, page, pte, vma->vm_flags & VM_WRITE);
	}
out:
	spin_unlock(&mm->page_table_lock);
	return ret;
}

/* Because we have an exclusive hugepage region which lies within the
 * normal user address space, we have to take special measures to make
 * non-huge mmap()s evade the hugepage reserved region. */
unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr,
				     unsigned long len, unsigned long pgoff,
				     unsigned long flags)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	unsigned long start_addr;

	if (len > TASK_SIZE)
		return -ENOMEM;

	if (addr) {
		addr = PAGE_ALIGN(addr);
		vma = find_vma(mm, addr);
		if (TASK_SIZE - len >= addr &&
		    (!vma || addr + len <= vma->vm_start) &&
		    !is_hugepage_only_range(addr,len))
			return addr;
	}
	start_addr = addr = mm->free_area_cache;

full_search:
	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
		/* At this point:  (!vma || addr < vma->vm_end). */
		if (TASK_SIZE - len < addr) {
			/*
			 * Start a new search - just in case we missed
			 * some holes.
			 */
			if (start_addr != TASK_UNMAPPED_BASE) {
				start_addr = addr = TASK_UNMAPPED_BASE;
				goto full_search;
			}
			return -ENOMEM;
		}
		if (!vma || addr + len <= vma->vm_start) {
			if (is_hugepage_only_range(addr, len)) {
				if (addr < TASK_HPAGE_END_32)
					addr = TASK_HPAGE_END_32;
				else
					addr = TASK_HPAGE_END;

				continue;
			}
			/*
			 * Remember the place where we stopped the search:
			 */
			mm->free_area_cache = addr + len;
			return addr;
		}
		addr = vma->vm_end;
	}
}


unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
	struct vm_area_struct *vma;
	unsigned long base, end;

	if (len & ~HPAGE_MASK)
		return -EINVAL;

	if (!(cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE))
		return -EINVAL;

	if (test_thread_flag(TIF_32BIT)) {
		int err;

		err = open_32bit_htlbpage_range(current->mm);
		if (err)
			return err; /* Should this just be EINVAL? */

		base = TASK_HPAGE_BASE_32;
		end = TASK_HPAGE_END_32;
	} else {
		base = TASK_HPAGE_BASE;
		end = TASK_HPAGE_END;
	}
	
	if (!in_hugepage_area(current->mm->context, addr) 
	    || (addr & (HPAGE_SIZE - 1)))
		addr = base;

	for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {
		/* At this point:  (!vma || addr < vma->vm_end). */
		if (addr + len > end)
			return -ENOMEM;
		if (!vma || (addr + len) <= vma->vm_start)
			return addr;
		addr = ALIGN(vma->vm_end, HPAGE_SIZE);

		/* Because we're in an exclusively hugepage region,
		 * this alignment shouldn't have skipped over any
		 * other vmas */
	}
}

static inline unsigned long computeHugeHptePP(unsigned int hugepte)
{
	unsigned long flags = 0x2;

	if (! (hugepte & _HUGEPAGE_RW))
		flags |= 0x1;
	return flags;
}

int hash_huge_page(struct mm_struct *mm, unsigned long access,
		   unsigned long ea, unsigned long vsid, int local)
{
	hugepte_t *ptep;
	unsigned long va, vpn;
	int is_write;
	hugepte_t old_pte, new_pte;
	unsigned long hpteflags, prpn, flags;
	long slot;

	/* We have to find the first hugepte in the batch, since
	 * that's the one that will store the HPTE flags */
	ea &= HPAGE_MASK;
	ptep = hugepte_offset(mm, ea);

	/* Search the Linux page table for a match with va */
	va = (vsid << 28) | (ea & 0x0fffffff);
	vpn = va >> HPAGE_SHIFT;

	/*
	 * If no pte found or not present, send the problem up to
	 * do_page_fault
	 */
	if (unlikely(!ptep || hugepte_none(*ptep)))
		return 1;

	BUG_ON(hugepte_bad(*ptep));

	/* 
	 * Check the user's access rights to the page.  If access should be
	 * prevented then send the problem up to do_page_fault.
	 */
	is_write = access & _PAGE_RW;
	if (unlikely(is_write && !(hugepte_val(*ptep) & _HUGEPAGE_RW)))
		return 1;

	/*
	 * At this point, we have a pte (old_pte) which can be used to build
	 * or update an HPTE. There are 2 cases:
	 *
	 * 1. There is a valid (present) pte with no associated HPTE (this is 
	 *	the most common case)
	 * 2. There is a valid (present) pte with an associated HPTE. The
	 *	current values of the pp bits in the HPTE prevent access
	 *	because we are doing software DIRTY bit management and the
	 *	page is currently not DIRTY. 
	 */

	spin_lock_irqsave(&mm->page_table_lock, flags);

	old_pte = *ptep;
	new_pte = old_pte;

	hpteflags = computeHugeHptePP(hugepte_val(new_pte));

	/* Check if pte already has an hpte (case 2) */
	if (unlikely(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE)) {
		/* There MIGHT be an HPTE for this pte */
		unsigned long hash, slot;

		hash = hpt_hash(vpn, 1);
		if (hugepte_val(old_pte) & _HUGEPAGE_SECONDARY)
			hash = ~hash;
		slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP;
		slot += (hugepte_val(old_pte) & _HUGEPAGE_GROUP_IX) >> 5;

		if (ppc_md.hpte_updatepp(slot, hpteflags, va, 1, local) == -1)
			hugepte_val(old_pte) &= ~_HUGEPAGE_HPTEFLAGS;
	}

	if (likely(!(hugepte_val(old_pte) & _HUGEPAGE_HASHPTE))) {
		unsigned long hash = hpt_hash(vpn, 1);
		unsigned long hpte_group;

		prpn = hugepte_pfn(old_pte);

repeat:
		hpte_group = ((hash & htab_data.htab_hash_mask) *
			      HPTES_PER_GROUP) & ~0x7UL;

		/* Update the linux pte with the HPTE slot */
		hugepte_val(new_pte) &= ~_HUGEPAGE_HPTEFLAGS;
		hugepte_val(new_pte) |= _HUGEPAGE_HASHPTE;

		/* Add in WIMG bits */
		/* XXX We should store these in the pte */
		hpteflags |= _PAGE_COHERENT;

		slot = ppc_md.hpte_insert(hpte_group, va, prpn, 0,
					  hpteflags, 0, 1);

		/* Primary is full, try the secondary */
		if (unlikely(slot == -1)) {
			hugepte_val(new_pte) |= _HUGEPAGE_SECONDARY;
			hpte_group = ((~hash & htab_data.htab_hash_mask) *
				      HPTES_PER_GROUP) & ~0x7UL; 
			slot = ppc_md.hpte_insert(hpte_group, va, prpn,
						  1, hpteflags, 0, 1);
			if (slot == -1) {
				if (mftb() & 0x1)
					hpte_group = ((hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP) & ~0x7UL;

				ppc_md.hpte_remove(hpte_group);
				goto repeat;
                        }
		}

		if (unlikely(slot == -2))
			panic("hash_huge_page: pte_insert failed\n");

		hugepte_val(new_pte) |= (slot<<5) & _HUGEPAGE_GROUP_IX;

		/* 
		 * No need to use ldarx/stdcx here because all who
		 * might be updating the pte will hold the
		 * page_table_lock or the hash_table_lock
		 * (we hold both)
		 */
		*ptep = new_pte;
	}

	spin_unlock_irqrestore(&mm->page_table_lock, flags);

	return 0;
}

static void flush_hash_hugepage(mm_context_t context, unsigned long ea,
				hugepte_t pte, int local)
{
	unsigned long vsid, vpn, va, hash, secondary, slot;

	BUG_ON(hugepte_bad(pte));
	BUG_ON(!in_hugepage_area(context, ea));

	vsid = get_vsid(context, ea);

	va = (vsid << 28) | (ea & 0x0fffffff);
	vpn = va >> LARGE_PAGE_SHIFT;
	hash = hpt_hash(vpn, 1);
	secondary = !!(hugepte_val(pte) & _HUGEPAGE_SECONDARY);
	if (secondary)
		hash = ~hash;
	slot = (hash & htab_data.htab_hash_mask) * HPTES_PER_GROUP;
	slot += (hugepte_val(pte) & _HUGEPAGE_GROUP_IX) >> 5;

	ppc_md.hpte_invalidate(slot, va, 1, local);
}

static void split_and_free_hugepage(struct page *page)
{
	int j;
	struct page *map;

	map = page;
	htlbpage_total--;
	for (j = 0; j < (HPAGE_SIZE / PAGE_SIZE); j++) {
		map->flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
		set_page_count(map, 0);
		map++;
	}
	set_page_count(page, 1);
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

int set_hugetlb_mem_size(int count)
{
	int lcount;
	struct page *page;

	if (!(cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE))
		return 0;
	
	if (count < 0)
		lcount = count;
	else
		lcount = count - htlbpage_total;

	if (lcount == 0)
		return htlbpage_total;
	if (lcount > 0) {	/* Increase the mem size. */
		while (lcount--) {
			page = alloc_fresh_huge_page();
			if (page == NULL)
				break;
			spin_lock(&htlbpage_lock);
			enqueue_huge_page(page);
			htlbpage_free++;
			htlbpage_total++;
			spin_unlock(&htlbpage_lock);
		}
		return htlbpage_total;
	}
	/* Shrink the memory size. */
	while (lcount++) {
		page = alloc_hugetlb_page();
		if (page == NULL)
			break;
		spin_lock(&htlbpage_lock);
		split_and_free_hugepage(page);
		spin_unlock(&htlbpage_lock);
	}
	return htlbpage_total;
}

int hugetlb_sysctl_handler(ctl_table *table, int write,
		struct file *file, void *buffer, size_t *length)
{
	proc_dointvec(table, write, file, buffer, length);
	htlbpage_max = set_hugetlb_mem_size(htlbpage_max);
	return 0;
}

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%d", &htlbpage_max) <= 0)
		htlbpage_max = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

static int __init hugetlb_init(void)
{
	int i;
	struct page *page;

	if (cur_cpu_spec->cpu_features & CPU_FTR_16M_PAGE) {
		for (i = 0; i < MAX_NUMNODES; ++i)
			INIT_LIST_HEAD(&hugepage_freelists[i]);

		for (i = 0; i < htlbpage_max; ++i) {
			page = alloc_fresh_huge_page();
			if (!page)
				break;
			spin_lock(&htlbpage_lock);
			enqueue_huge_page(page);
			spin_unlock(&htlbpage_lock);
		}
		htlbpage_max = htlbpage_free = htlbpage_total = i;
		printk(KERN_INFO "Total HugeTLB memory allocated, %d\n",
		       htlbpage_free);
	} else {
		htlbpage_max = 0;
		printk(KERN_INFO "CPU does not support HugeTLB\n");
	}

	return 0;
}
module_init(hugetlb_init);

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5d\n"
			"HugePages_Free:  %5d\n"
			"Hugepagesize:    %5lu kB\n",
			htlbpage_total,
			htlbpage_free,
			HPAGE_SIZE/1024);
}

/* This is advisory only, so we can get away with accesing
 * htlbpage_free without taking the lock. */
int is_hugepage_mem_enough(size_t size)
{
	return (size + ~HPAGE_MASK)/HPAGE_SIZE <= htlbpage_free;
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
static struct page *hugetlb_nopage(struct vm_area_struct *vma,
				unsigned long address, int *unused)
{
	BUG();
	return NULL;
}

struct vm_operations_struct hugetlb_vm_ops = {
	.nopage = hugetlb_nopage,
};