Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/config.h>
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>

#include <asm/tlbflush.h>

DECLARE_BITMAP(node_online_map, MAX_NUMNODES);
DECLARE_BITMAP(memblk_online_map, MAX_NR_MEMBLKS);
struct pglist_data *pgdat_list;
unsigned long totalram_pages;
unsigned long totalhigh_pages;
int nr_swap_pages;
int numnodes = 1;
int sysctl_lower_zone_protection = 0;

EXPORT_SYMBOL(totalram_pages);
EXPORT_SYMBOL(nr_swap_pages);

/*
 * Used by page_zone() to look up the address of the struct zone whose
 * id is encoded in the upper bits of page->flags
 */
struct zone *zone_table[MAX_NR_ZONES*MAX_NUMNODES];
EXPORT_SYMBOL(zone_table);

static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
int min_free_kbytes = 1024;

/*
 * Temporary debugging check for pages not lying within a given zone.
 */
static int bad_range(struct zone *zone, struct page *page)
{
	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
		return 1;
	if (page_to_pfn(page) < zone->zone_start_pfn)
		return 1;
	if (zone != page_zone(page))
		return 1;
	return 0;
}

static void bad_page(const char *function, struct page *page)
{
	printk("Bad page state at %s\n", function);
	printk("flags:0x%08lx mapping:%p mapped:%d count:%d\n",
		page->flags, page->mapping,
		page_mapped(page), page_count(page));
	printk("Backtrace:\n");
	dump_stack();
	printk("Trying to fix it up, but a reboot is needed\n");
	page->flags &= ~(1 << PG_private	|
			1 << PG_locked	|
			1 << PG_lru	|
			1 << PG_active	|
			1 << PG_dirty	|
			1 << PG_writeback);
	set_page_count(page, 0);
	page->mapping = NULL;
}

#ifndef CONFIG_HUGETLB_PAGE
#define prep_compound_page(page, order) do { } while (0)
#define destroy_compound_page(page, order) do { } while (0)
#else
/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
 * The first PAGE_SIZE page is called the "head page".
 *
 * The remaining PAGE_SIZE pages are called "tail pages".
 *
 * All pages have PG_compound set.  All pages have their lru.next pointing at
 * the head page (even the head page has this).
 *
 * The head page's lru.prev, if non-zero, holds the address of the compound
 * page's put_page() function.
 *
 * The order of the allocation is stored in the first tail page's lru.prev.
 * This is only for debug at present.  This usage means that zero-order pages
 * may not be compound.
 */
static void prep_compound_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;

	page->lru.prev = NULL;
	page[1].lru.prev = (void *)order;
	for (i = 0; i < nr_pages; i++) {
		struct page *p = page + i;

		SetPageCompound(p);
		p->lru.next = (void *)page;
	}
}

static void destroy_compound_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;

	if (page[1].lru.prev != (void *)order)
		bad_page(__FUNCTION__, page);

	for (i = 0; i < nr_pages; i++) {
		struct page *p = page + i;

		if (!PageCompound(p))
			bad_page(__FUNCTION__, page);
		if (p->lru.next != (void *)page)
			bad_page(__FUNCTION__, page);
		ClearPageCompound(p);
	}
}
#endif		/* CONFIG_HUGETLB_PAGE */

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep one bit for each pair of blocks, which
 * is set to 1 iff only one of the pair is allocated.  So when we
 * are allocating or freeing one, we can derive the state of the
 * other.  That is, if we allocate a small block, and both were   
 * free, the remainder of the region must be split into blocks.   
 * If a block is freed, and its buddy is also free, then this
 * triggers coalescing into a block of larger size.            
 *
 * -- wli
 */

static inline void __free_pages_bulk (struct page *page, struct page *base,
		struct zone *zone, struct free_area *area, unsigned long mask,
		unsigned int order)
{
	unsigned long page_idx, index;

	if (order)
		destroy_compound_page(page, order);
	page_idx = page - base;
	if (page_idx & ~mask)
		BUG();
	index = page_idx >> (1 + order);

	zone->free_pages -= mask;
	while (mask + (1 << (MAX_ORDER-1))) {
		struct page *buddy1, *buddy2;

		BUG_ON(area >= zone->free_area + MAX_ORDER);
		if (!__test_and_change_bit(index, area->map))
			/*
			 * the buddy page is still allocated.
			 */
			break;
		/*
		 * Move the buddy up one level.
		 * This code is taking advantage of the identity:
		 * 	-mask = 1+~mask
		 */
		buddy1 = base + (page_idx ^ -mask);
		buddy2 = base + page_idx;
		BUG_ON(bad_range(zone, buddy1));
		BUG_ON(bad_range(zone, buddy2));
		list_del(&buddy1->list);
		mask <<= 1;
		area++;
		index >>= 1;
		page_idx &= mask;
	}
	list_add(&(base + page_idx)->list, &area->free_list);
}

static inline void free_pages_check(const char *function, struct page *page)
{
	if (	page_mapped(page) ||
		page->mapping != NULL ||
		page_count(page) != 0 ||
		(page->flags & (
			1 << PG_lru	|
			1 << PG_private |
			1 << PG_locked	|
			1 << PG_active	|
			1 << PG_reclaim	|
			1 << PG_slab	|
			1 << PG_writeback )))
		bad_page(function, page);
	if (PageDirty(page))
		ClearPageDirty(page);
}

/*
 * Frees a list of pages. 
 * Assumes all pages on list are in same zone, and of same order.
 * count is the number of pages to free, or 0 for all on the list.
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
static int
free_pages_bulk(struct zone *zone, int count,
		struct list_head *list, unsigned int order)
{
	unsigned long mask, flags;
	struct free_area *area;
	struct page *base, *page = NULL;
	int ret = 0;

	mask = (~0UL) << order;
	base = zone->zone_mem_map;
	area = zone->free_area + order;
	spin_lock_irqsave(&zone->lock, flags);
	zone->all_unreclaimable = 0;
	zone->pages_scanned = 0;
	while (!list_empty(list) && count--) {
		page = list_entry(list->prev, struct page, list);
		/* have to delete it as __free_pages_bulk list manipulates */
		list_del(&page->list);
		__free_pages_bulk(page, base, zone, area, mask, order);
		ret++;
	}
	spin_unlock_irqrestore(&zone->lock, flags);
	return ret;
}

void __free_pages_ok(struct page *page, unsigned int order)
{
	LIST_HEAD(list);
	int i;

	mod_page_state(pgfree, 1 << order);
	for (i = 0 ; i < (1 << order) ; ++i)
		free_pages_check(__FUNCTION__, page + i);
	list_add(&page->list, &list);
	kernel_map_pages(page, 1<<order, 0);
	free_pages_bulk(page_zone(page), 1, &list, order);
}

#define MARK_USED(index, order, area) \
	__change_bit((index) >> (1+(order)), (area)->map)

static inline struct page *
expand(struct zone *zone, struct page *page,
	 unsigned long index, int low, int high, struct free_area *area)
{
	unsigned long size = 1 << high;

	while (high > low) {
		BUG_ON(bad_range(zone, page));
		area--;
		high--;
		size >>= 1;
		list_add(&page->list, &area->free_list);
		MARK_USED(index, high, area);
		index += size;
		page += size;
	}
	return page;
}

static inline void set_page_refs(struct page *page, int order)
{
#ifdef CONFIG_MMU
	set_page_count(page, 1);
#else
	int i;

	/*
	 * We need to reference all the pages for this order, otherwise if
	 * anyone accesses one of the pages with (get/put) it will be freed.
	 */
	for (i = 0; i < (1 << order); i++)
		set_page_count(page+i, 1);
#endif /* CONFIG_MMU */
}

/*
 * This page is about to be returned from the page allocator
 */
static void prep_new_page(struct page *page, int order)
{
	if (page->mapping || page_mapped(page) ||
	    (page->flags & (
			1 << PG_private	|
			1 << PG_locked	|
			1 << PG_lru	|
			1 << PG_active	|
			1 << PG_dirty	|
			1 << PG_reclaim	|
			1 << PG_writeback )))
		bad_page(__FUNCTION__, page);

	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
			1 << PG_referenced | 1 << PG_arch_1 |
			1 << PG_checked | 1 << PG_mappedtodisk);
	page->private = 0;
	set_page_refs(page, order);
}

/* 
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
static struct page *__rmqueue(struct zone *zone, unsigned int order)
{
	struct free_area * area;
	unsigned int current_order;
	struct page *page;
	unsigned int index;

	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = zone->free_area + current_order;
		if (list_empty(&area->free_list))
			continue;

		page = list_entry(area->free_list.next, struct page, list);
		list_del(&page->list);
		index = page - zone->zone_mem_map;
		if (current_order != MAX_ORDER-1)
			MARK_USED(index, current_order, area);
		zone->free_pages -= 1UL << order;
		return expand(zone, page, index, order, current_order, area);
	}

	return NULL;
}

/* 
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
static int rmqueue_bulk(struct zone *zone, unsigned int order, 
			unsigned long count, struct list_head *list)
{
	unsigned long flags;
	int i;
	int allocated = 0;
	struct page *page;
	
	spin_lock_irqsave(&zone->lock, flags);
	for (i = 0; i < count; ++i) {
		page = __rmqueue(zone, order);
		if (page == NULL)
			break;
		allocated++;
		list_add_tail(&page->list, list);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
	return allocated;
}

#ifdef CONFIG_PM
int is_head_of_free_region(struct page *page)
{
        struct zone *zone = page_zone(page);
        unsigned long flags;
	int order;
	struct list_head *curr;

	/*
	 * Should not matter as we need quiescent system for
	 * suspend anyway, but...
	 */
	spin_lock_irqsave(&zone->lock, flags);
	for (order = MAX_ORDER - 1; order >= 0; --order)
		list_for_each(curr, &zone->free_area[order].free_list)
			if (page == list_entry(curr, struct page, list)) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return 1 << order;
			}
	spin_unlock_irqrestore(&zone->lock, flags);
        return 0;
}

/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 */
void drain_local_pages(void)
{
	unsigned long flags;
	struct zone *zone;
	int i;

	local_irq_save(flags);	
	for_each_zone(zone) {
		struct per_cpu_pageset *pset;

		pset = &zone->pageset[smp_processor_id()];
		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
			struct per_cpu_pages *pcp;

			pcp = &pset->pcp[i];
			pcp->count -= free_pages_bulk(zone, pcp->count,
						&pcp->list, 0);
		}
	}
	local_irq_restore(flags);	
}
#endif /* CONFIG_PM */

/*
 * Free a 0-order page
 */
static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
static void free_hot_cold_page(struct page *page, int cold)
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	unsigned long flags;

	kernel_map_pages(page, 1, 0);
	inc_page_state(pgfree);
	free_pages_check(__FUNCTION__, page);
	pcp = &zone->pageset[get_cpu()].pcp[cold];
	local_irq_save(flags);
	if (pcp->count >= pcp->high)
		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
	list_add(&page->list, &pcp->list);
	pcp->count++;
	local_irq_restore(flags);
	put_cpu();
}

void free_hot_page(struct page *page)
{
	free_hot_cold_page(page, 0);
}
	
void free_cold_page(struct page *page)
{
	free_hot_cold_page(page, 1);
}

/*
 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
 * or two.
 */

static struct page *buffered_rmqueue(struct zone *zone, int order, int cold)
{
	unsigned long flags;
	struct page *page = NULL;

	if (order == 0) {
		struct per_cpu_pages *pcp;

		pcp = &zone->pageset[get_cpu()].pcp[cold];
		local_irq_save(flags);
		if (pcp->count <= pcp->low)
			pcp->count += rmqueue_bulk(zone, 0,
						pcp->batch, &pcp->list);
		if (pcp->count) {
			page = list_entry(pcp->list.next, struct page, list);
			list_del(&page->list);
			pcp->count--;
		}
		local_irq_restore(flags);
		put_cpu();
	}

	if (page == NULL) {
		spin_lock_irqsave(&zone->lock, flags);
		page = __rmqueue(zone, order);
		spin_unlock_irqrestore(&zone->lock, flags);
		if (order && page)
			prep_compound_page(page, order);
	}

	if (page != NULL) {
		BUG_ON(bad_range(zone, page));
		mod_page_state(pgalloc, 1 << order);
		prep_new_page(page, order);
	}
	return page;
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 *
 * Herein lies the mysterious "incremental min".  That's the
 *
 *	local_low = z->pages_low;
 *	min += local_low;
 *
 * thing.  The intent here is to provide additional protection to low zones for
 * allocation requests which _could_ use higher zones.  So a GFP_HIGHMEM
 * request is not allowed to dip as deeply into the normal zone as a GFP_KERNEL
 * request.  This preserves additional space in those lower zones for requests
 * which really do need memory from those zones.  It means that on a decent
 * sized machine, GFP_HIGHMEM and GFP_KERNEL requests basically leave the DMA
 * zone untouched.
 */
struct page *
__alloc_pages(unsigned int gfp_mask, unsigned int order,
		struct zonelist *zonelist)
{
	const int wait = gfp_mask & __GFP_WAIT;
	unsigned long min;
	struct zone **zones, *classzone;
	struct page *page;
	struct reclaim_state reclaim_state;
	struct task_struct *p = current;
	int i;
	int cold;
	int do_retry;

	might_sleep_if(wait);

	cold = 0;
	if (gfp_mask & __GFP_COLD)
		cold = 1;

	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
	classzone = zones[0]; 
	if (classzone == NULL)    /* no zones in the zonelist */
		return NULL;

	/* Go through the zonelist once, looking for a zone with enough free */
	min = 1UL << order;
	for (i = 0; zones[i] != NULL; i++) {
		struct zone *z = zones[i];
		unsigned long local_low;

		/*
		 * This is the fabled 'incremental min'. We let real-time tasks
		 * dip their real-time paws a little deeper into reserves.
		 */
		local_low = z->pages_low;
		if (rt_task(p))
			local_low >>= 1;
		min += local_low;

		if (z->free_pages >= min ||
				(!wait && z->free_pages >= z->pages_high)) {
			page = buffered_rmqueue(z, order, cold);
			if (page)
		       		goto got_pg;
		}
		min += z->pages_low * sysctl_lower_zone_protection;
	}

	/* we're somewhat low on memory, failed to find what we needed */
	for (i = 0; zones[i] != NULL; i++)
		wakeup_kswapd(zones[i]);

	/* Go through the zonelist again, taking __GFP_HIGH into account */
	min = 1UL << order;
	for (i = 0; zones[i] != NULL; i++) {
		unsigned long local_min;
		struct zone *z = zones[i];

		local_min = z->pages_min;
		if (gfp_mask & __GFP_HIGH)
			local_min >>= 2;
		if (rt_task(p))
			local_min >>= 1;
		min += local_min;
		if (z->free_pages >= min ||
				(!wait && z->free_pages >= z->pages_high)) {
			page = buffered_rmqueue(z, order, cold);
			if (page)
				goto got_pg;
		}
		min += local_min * sysctl_lower_zone_protection;
	}

	/* here we're in the low on memory slow path */

rebalance:
	if ((p->flags & (PF_MEMALLOC | PF_MEMDIE)) && !in_interrupt()) {
		/* go through the zonelist yet again, ignoring mins */
		for (i = 0; zones[i] != NULL; i++) {
			struct zone *z = zones[i];

			page = buffered_rmqueue(z, order, cold);
			if (page)
				goto got_pg;
		}
		goto nopage;
	}

	/* Atomic allocations - we can't balance anything */
	if (!wait)
		goto nopage;

	p->flags |= PF_MEMALLOC;
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;

	try_to_free_pages(classzone, gfp_mask, order);

	p->reclaim_state = NULL;
	p->flags &= ~PF_MEMALLOC;

	/* go through the zonelist yet one more time */
	min = 1UL << order;
	for (i = 0; zones[i] != NULL; i++) {
		struct zone *z = zones[i];

		min += z->pages_min;
		if (z->free_pages >= min ||
				(!wait && z->free_pages >= z->pages_high)) {
			page = buffered_rmqueue(z, order, cold);
			if (page)
				goto got_pg;
		}
		min += z->pages_low * sysctl_lower_zone_protection;
	}

	/*
	 * Don't let big-order allocations loop unless the caller explicitly
	 * requests that.  Wait for some write requests to complete then retry.
	 *
	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL, but that
	 * may not be true in other implementations.
	 */
	do_retry = 0;
	if (!(gfp_mask & __GFP_NORETRY)) {
		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
			do_retry = 1;
		if (gfp_mask & __GFP_NOFAIL)
			do_retry = 1;
	}
	if (do_retry) {
		blk_congestion_wait(WRITE, HZ/50);
		goto rebalance;
	}

nopage:
	if (!(gfp_mask & __GFP_NOWARN)) {
		printk("%s: page allocation failure."
			" order:%d, mode:0x%x\n",
			p->comm, order, gfp_mask);
	}
	return NULL;
got_pg:
	kernel_map_pages(page, 1 << order, 1);
	return page;
}

EXPORT_SYMBOL(__alloc_pages);

/*
 * Common helper functions.
 */
unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
{
	struct page * page;

	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}

EXPORT_SYMBOL(__get_free_pages);

unsigned long get_zeroed_page(unsigned int gfp_mask)
{
	struct page * page;

	/*
	 * get_zeroed_page() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	BUG_ON(gfp_mask & __GFP_HIGHMEM);

	page = alloc_pages(gfp_mask, 0);
	if (page) {
		void *address = page_address(page);
		clear_page(address);
		return (unsigned long) address;
	}
	return 0;
}

EXPORT_SYMBOL(get_zeroed_page);

void __pagevec_free(struct pagevec *pvec)
{
	int i = pagevec_count(pvec);

	while (--i >= 0)
		free_hot_cold_page(pvec->pages[i], pvec->cold);
}

void __free_pages(struct page *page, unsigned int order)
{
	if (!PageReserved(page) && put_page_testzero(page)) {
		if (order == 0)
			free_hot_page(page);
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

void free_pages(unsigned long addr, unsigned int order)
{
	if (addr != 0) {
		BUG_ON(!virt_addr_valid(addr));
		__free_pages(virt_to_page(addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

/*
 * Total amount of free (allocatable) RAM:
 */
unsigned int nr_free_pages(void)
{
	unsigned int sum = 0;
	struct zone *zone;

	for_each_zone(zone)
		sum += zone->free_pages;

	return sum;
}

EXPORT_SYMBOL(nr_free_pages);

unsigned int nr_used_zone_pages(void)
{
	unsigned int pages = 0;
	struct zone *zone;

	for_each_zone(zone)
		pages += zone->nr_active + zone->nr_inactive;

	return pages;
}

#ifdef CONFIG_NUMA
unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
{
	unsigned int i, sum = 0;

	for (i = 0; i < MAX_NR_ZONES; i++)
		sum += pgdat->node_zones[i].free_pages;

	return sum;
}
#endif

static unsigned int nr_free_zone_pages(int offset)
{
	pg_data_t *pgdat;
	unsigned int sum = 0;

	for_each_pgdat(pgdat) {
		struct zonelist *zonelist = pgdat->node_zonelists + offset;
		struct zone **zonep = zonelist->zones;
		struct zone *zone;

		for (zone = *zonep++; zone; zone = *zonep++) {
			unsigned long size = zone->present_pages;
			unsigned long high = zone->pages_high;
			if (size > high)
				sum += size - high;
		}
	}

	return sum;
}

/*
 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
 */
unsigned int nr_free_buffer_pages(void)
{
	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
}

/*
 * Amount of free RAM allocatable within all zones
 */
unsigned int nr_free_pagecache_pages(void)
{
	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
}

#ifdef CONFIG_HIGHMEM
unsigned int nr_free_highpages (void)
{
	pg_data_t *pgdat;
	unsigned int pages = 0;

	for_each_pgdat(pgdat)
		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;

	return pages;
}
#endif

#ifdef CONFIG_NUMA
static void show_node(struct zone *zone)
{
	printk("Node %d ", zone->zone_pgdat->node_id);
}
#else
#define show_node(zone)	do { } while (0)
#endif

/*
 * Accumulate the page_state information across all CPUs.
 * The result is unavoidably approximate - it can change
 * during and after execution of this function.
 */
DEFINE_PER_CPU(struct page_state, page_states) = {0};
EXPORT_PER_CPU_SYMBOL(page_states);

atomic_t nr_pagecache = ATOMIC_INIT(0);
EXPORT_SYMBOL(nr_pagecache);
#ifdef CONFIG_SMP
DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
#endif

void __get_page_state(struct page_state *ret, int nr)
{
	int cpu = 0;

	memset(ret, 0, sizeof(*ret));
	while (cpu < NR_CPUS) {
		unsigned long *in, *out, off;

		if (!cpu_online(cpu)) {
			cpu++;
			continue;
		}

		in = (unsigned long *)&per_cpu(page_states, cpu);
		cpu++;
		if (cpu < NR_CPUS && cpu_online(cpu))
			prefetch(&per_cpu(page_states, cpu));
		out = (unsigned long *)ret;
		for (off = 0; off < nr; off++)
			*out++ += *in++;
	}
}

void get_page_state(struct page_state *ret)
{
	int nr;

	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
	nr /= sizeof(unsigned long);

	__get_page_state(ret, nr + 1);
}

void get_full_page_state(struct page_state *ret)
{
	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
}

void get_zone_counts(unsigned long *active,
		unsigned long *inactive, unsigned long *free)
{
	struct zone *zone;

	*active = 0;
	*inactive = 0;
	*free = 0;
	for_each_zone(zone) {
		*active += zone->nr_active;
		*inactive += zone->nr_inactive;
		*free += zone->free_pages;
	}
}

void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
	val->sharedram = 0;
	val->freeram = nr_free_pages();
	val->bufferram = nr_blockdev_pages();
#ifdef CONFIG_HIGHMEM
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
#else
	val->totalhigh = 0;
	val->freehigh = 0;
#endif
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);

	val->totalram = pgdat->node_present_pages;
	val->freeram = nr_free_pages_pgdat(pgdat);
	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
	val->mem_unit = PAGE_SIZE;
}
#endif

#define K(x) ((x) << (PAGE_SHIFT-10))

/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
 */
void show_free_areas(void)
{
	struct page_state ps;
	int cpu, temperature;
	unsigned long active;
	unsigned long inactive;
	unsigned long free;
	struct zone *zone;

	for_each_zone(zone) {
		show_node(zone);
		printk("%s per-cpu:", zone->name);

		if (!zone->present_pages) {
			printk(" empty\n");
			continue;
		} else
			printk("\n");

		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
			struct per_cpu_pageset *pageset = zone->pageset + cpu;
			for (temperature = 0; temperature < 2; temperature++)
				printk("cpu %d %s: low %d, high %d, batch %d\n",
					cpu,
					temperature ? "cold" : "hot",
					pageset->pcp[temperature].low,
					pageset->pcp[temperature].high,
					pageset->pcp[temperature].batch);
		}
	}

	get_page_state(&ps);
	get_zone_counts(&active, &inactive, &free);

	printk("\nFree pages: %11ukB (%ukB HighMem)\n",
		K(nr_free_pages()),
		K(nr_free_highpages()));

	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
		"unstable:%lu free:%u\n",
		active,
		inactive,
		ps.nr_dirty,
		ps.nr_writeback,
		ps.nr_unstable,
		nr_free_pages());

	for_each_zone(zone) {
		show_node(zone);
		printk("%s"
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
			" active:%lukB"
			" inactive:%lukB"
			"\n",
			zone->name,
			K(zone->free_pages),
			K(zone->pages_min),
			K(zone->pages_low),
			K(zone->pages_high),
			K(zone->nr_active),
			K(zone->nr_inactive)
			);
	}

	for_each_zone(zone) {
		struct list_head *elem;
 		unsigned long nr, flags, order, total = 0;

		show_node(zone);
		printk("%s: ", zone->name);
		if (!zone->present_pages) {
			printk("empty\n");
			continue;
		}

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			nr = 0;
			list_for_each(elem, &zone->free_area[order].free_list)
				++nr;
			total += nr << order;
			printk("%lu*%lukB ", nr, K(1UL) << order);
		}
		spin_unlock_irqrestore(&zone->lock, flags);
		printk("= %lukB\n", K(total));
	}

	show_swap_cache_info();
}

/*
 * Builds allocation fallback zone lists.
 */
static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
{
	switch (k) {
		struct zone *zone;
	default:
		BUG();
	case ZONE_HIGHMEM:
		zone = pgdat->node_zones + ZONE_HIGHMEM;
		if (zone->present_pages) {
#ifndef CONFIG_HIGHMEM
			BUG();
#endif
			zonelist->zones[j++] = zone;
		}
	case ZONE_NORMAL:
		zone = pgdat->node_zones + ZONE_NORMAL;
		if (zone->present_pages)
			zonelist->zones[j++] = zone;
	case ZONE_DMA:
		zone = pgdat->node_zones + ZONE_DMA;
		if (zone->present_pages)
			zonelist->zones[j++] = zone;
	}

	return j;
}

static void __init build_zonelists(pg_data_t *pgdat)
{
	int i, j, k, node, local_node;

	local_node = pgdat->node_id;
	printk("Building zonelist for node : %d\n", local_node);
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zonelist *zonelist;

		zonelist = pgdat->node_zonelists + i;
		memset(zonelist, 0, sizeof(*zonelist));

		j = 0;
		k = ZONE_NORMAL;
		if (i & __GFP_HIGHMEM)
			k = ZONE_HIGHMEM;
		if (i & __GFP_DMA)
			k = ZONE_DMA;

 		j = build_zonelists_node(pgdat, zonelist, j, k);
 		/*
 		 * Now we build the zonelist so that it contains the zones
 		 * of all the other nodes.
 		 * We don't want to pressure a particular node, so when
 		 * building the zones for node N, we make sure that the
 		 * zones coming right after the local ones are those from
 		 * node N+1 (modulo N)
 		 */
 		for (node = local_node + 1; node < numnodes; node++)
 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
 		for (node = 0; node < local_node; node++)
 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
 
		zonelist->zones[j++] = NULL;
	} 
}

void __init build_all_zonelists(void)
{
	int i;

	for(i = 0 ; i < numnodes ; i++)
		build_zonelists(NODE_DATA(i));
}

/*
 * Helper functions to size the waitqueue hash table.
 * Essentially these want to choose hash table sizes sufficiently
 * large so that collisions trying to wait on pages are rare.
 * But in fact, the number of active page waitqueues on typical
 * systems is ridiculously low, less than 200. So this is even
 * conservative, even though it seems large.
 *
 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
 * waitqueues, i.e. the size of the waitq table given the number of pages.
 */
#define PAGES_PER_WAITQUEUE	256

static inline unsigned long wait_table_size(unsigned long pages)
{
	unsigned long size = 1;

	pages /= PAGES_PER_WAITQUEUE;

	while (size < pages)
		size <<= 1;

	/*
	 * Once we have dozens or even hundreds of threads sleeping
	 * on IO we've got bigger problems than wait queue collision.
	 * Limit the size of the wait table to a reasonable size.
	 */
	size = min(size, 4096UL);

	return max(size, 4UL);
}

/*
 * This is an integer logarithm so that shifts can be used later
 * to extract the more random high bits from the multiplicative
 * hash function before the remainder is taken.
 */
static inline unsigned long wait_table_bits(unsigned long size)
{
	return ffz(~size);
}

#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))

static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
		unsigned long *zones_size, unsigned long *zholes_size)
{
	unsigned long realtotalpages, totalpages = 0;
	int i;

	for (i = 0; i < MAX_NR_ZONES; i++)
		totalpages += zones_size[i];
	pgdat->node_spanned_pages = totalpages;

	realtotalpages = totalpages;
	if (zholes_size)
		for (i = 0; i < MAX_NR_ZONES; i++)
			realtotalpages -= zholes_size[i];
	pgdat->node_present_pages = realtotalpages;
	printk("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
}

/*
 * Get space for the valid bitmap.
 */
static void __init calculate_zone_bitmap(struct pglist_data *pgdat,
		unsigned long *zones_size)
{
	unsigned long size = 0;
	int i;

	for (i = 0; i < MAX_NR_ZONES; i++)
		size += zones_size[i];
	size = LONG_ALIGN((size + 7) >> 3);
	if (size) {
		pgdat->valid_addr_bitmap = 
			(unsigned long *)alloc_bootmem_node(pgdat, size);
		memset(pgdat->valid_addr_bitmap, 0, size);
	}
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
void __init memmap_init_zone(struct page *start, unsigned long size, int nid,
		unsigned long zone, unsigned long start_pfn)
{
	struct page *page;

	for (page = start; page < (start + size); page++) {
		set_page_zone(page, nid * MAX_NR_ZONES + zone);
		set_page_count(page, 0);
		SetPageReserved(page);
		INIT_LIST_HEAD(&page->list);
#ifdef WANT_PAGE_VIRTUAL
		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
		if (zone != ZONE_HIGHMEM)
			set_page_address(page, __va(start_pfn << PAGE_SHIFT));
#endif
		start_pfn++;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(start, size, nid, zone, start_pfn) \
	memmap_init_zone((start), (size), (nid), (zone), (start_pfn))
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 */
static void __init free_area_init_core(struct pglist_data *pgdat,
		unsigned long *zones_size, unsigned long *zholes_size)
{
	unsigned long i, j;
	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
	int cpu, nid = pgdat->node_id;
	struct page *lmem_map = pgdat->node_mem_map;
	unsigned long zone_start_pfn = pgdat->node_start_pfn;

	pgdat->nr_zones = 0;
	init_waitqueue_head(&pgdat->kswapd_wait);
	
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
		unsigned long size, realsize;
		unsigned long batch;

		zone_table[nid * MAX_NR_ZONES + j] = zone;
		realsize = size = zones_size[j];
		if (zholes_size)
			realsize -= zholes_size[j];

		zone->spanned_pages = size;
		zone->present_pages = realsize;
		zone->name = zone_names[j];
		spin_lock_init(&zone->lock);
		spin_lock_init(&zone->lru_lock);
		zone->zone_pgdat = pgdat;
		zone->free_pages = 0;

		/*
		 * The per-cpu-pages pools are set to around 1000th of the
		 * size of the zone.  But no more than 1/4 of a meg - there's
		 * no point in going beyond the size of L2 cache.
		 *
		 * OK, so we don't know how big the cache is.  So guess.
		 */
		batch = zone->present_pages / 1024;
		if (batch * PAGE_SIZE > 256 * 1024)
			batch = (256 * 1024) / PAGE_SIZE;
		batch /= 4;		/* We effectively *= 4 below */
		if (batch < 1)
			batch = 1;

		for (cpu = 0; cpu < NR_CPUS; cpu++) {
			struct per_cpu_pages *pcp;

			pcp = &zone->pageset[cpu].pcp[0];	/* hot */
			pcp->count = 0;
			pcp->low = 2 * batch;
			pcp->high = 6 * batch;
			pcp->batch = 1 * batch;
			INIT_LIST_HEAD(&pcp->list);

			pcp = &zone->pageset[cpu].pcp[1];	/* cold */
			pcp->count = 0;
			pcp->low = 0;
			pcp->high = 2 * batch;
			pcp->batch = 1 * batch;
			INIT_LIST_HEAD(&pcp->list);
		}
		printk("  %s zone: %lu pages, LIFO batch:%lu\n",
				zone_names[j], realsize, batch);
		INIT_LIST_HEAD(&zone->active_list);
		INIT_LIST_HEAD(&zone->inactive_list);
		atomic_set(&zone->refill_counter, 0);
		zone->nr_active = 0;
		zone->nr_inactive = 0;
		if (!size)
			continue;

		/*
		 * The per-page waitqueue mechanism uses hashed waitqueues
		 * per zone.
		 */
		zone->wait_table_size = wait_table_size(size);
		zone->wait_table_bits =
			wait_table_bits(zone->wait_table_size);
		zone->wait_table = (wait_queue_head_t *)
			alloc_bootmem_node(pgdat, zone->wait_table_size
						* sizeof(wait_queue_head_t));

		for(i = 0; i < zone->wait_table_size; ++i)
			init_waitqueue_head(zone->wait_table + i);

		pgdat->nr_zones = j+1;

		zone->zone_mem_map = lmem_map;
		zone->zone_start_pfn = zone_start_pfn;

		if ((zone_start_pfn) & (zone_required_alignment-1))
			printk("BUG: wrong zone alignment, it will crash\n");

		memmap_init(lmem_map, size, nid, j, zone_start_pfn);

		zone_start_pfn += size;
		lmem_map += size;

		for (i = 0; ; i++) {
			unsigned long bitmap_size;

			INIT_LIST_HEAD(&zone->free_area[i].free_list);
			if (i == MAX_ORDER-1) {
				zone->free_area[i].map = NULL;
				break;
			}

			/*
			 * Page buddy system uses "index >> (i+1)",
			 * where "index" is at most "size-1".
			 *
			 * The extra "+3" is to round down to byte
			 * size (8 bits per byte assumption). Thus
			 * we get "(size-1) >> (i+4)" as the last byte
			 * we can access.
			 *
			 * The "+1" is because we want to round the
			 * byte allocation up rather than down. So
			 * we should have had a "+7" before we shifted
			 * down by three. Also, we have to add one as
			 * we actually _use_ the last bit (it's [0,n]
			 * inclusive, not [0,n[).
			 *
			 * So we actually had +7+1 before we shift
			 * down by 3. But (n+8) >> 3 == (n >> 3) + 1
			 * (modulo overflows, which we do not have).
			 *
			 * Finally, we LONG_ALIGN because all bitmap
			 * operations are on longs.
			 */
			bitmap_size = (size-1) >> (i+4);
			bitmap_size = LONG_ALIGN(bitmap_size+1);
			zone->free_area[i].map = 
			  (unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);
		}
	}
}

void __init free_area_init_node(int nid, struct pglist_data *pgdat,
		struct page *node_mem_map, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
{
	unsigned long size;

	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
	if (!node_mem_map) {
		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
		node_mem_map = alloc_bootmem_node(pgdat, size);
	}
	pgdat->node_mem_map = node_mem_map;

	free_area_init_core(pgdat, zones_size, zholes_size);
	memblk_set_online(node_to_memblk(nid));

	calculate_zone_bitmap(pgdat, zones_size);
}

#ifndef CONFIG_DISCONTIGMEM
static bootmem_data_t contig_bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };

EXPORT_SYMBOL(contig_page_data);

void __init free_area_init(unsigned long *zones_size)
{
	free_area_init_node(0, &contig_page_data, NULL, zones_size,
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
	mem_map = contig_page_data.node_mem_map;
}
#endif

#ifdef CONFIG_PROC_FS

#include <linux/seq_file.h>

static void *frag_start(struct seq_file *m, loff_t *pos)
{
	pg_data_t *pgdat;
	loff_t node = *pos;

	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
		--node;

	return pgdat;
}

static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
	pg_data_t *pgdat = (pg_data_t *)arg;

	(*pos)++;
	return pgdat->pgdat_next;
}

static void frag_stop(struct seq_file *m, void *arg)
{
}

/* 
 * This walks the freelist for each zone. Whilst this is slow, I'd rather 
 * be slow here than slow down the fast path by keeping stats - mjbligh
 */
static int frag_show(struct seq_file *m, void *arg)
{
	pg_data_t *pgdat = (pg_data_t *)arg;
	struct zone *zone;
	struct zone *node_zones = pgdat->node_zones;
	unsigned long flags;
	int order;

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!zone->present_pages)
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
		for (order = 0; order < MAX_ORDER; ++order) {
			unsigned long nr_bufs = 0;
			struct list_head *elem;

			list_for_each(elem, &(zone->free_area[order].free_list))
				++nr_bufs;
			seq_printf(m, "%6lu ", nr_bufs);
		}
		spin_unlock_irqrestore(&zone->lock, flags);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations fragmentation_op = {
	.start	= frag_start,
	.next	= frag_next,
	.stop	= frag_stop,
	.show	= frag_show,
};

static char *vmstat_text[] = {
	"nr_dirty",
	"nr_writeback",
	"nr_unstable",
	"nr_page_table_pages",
	"nr_mapped",
	"nr_slab",

	"pgpgin",
	"pgpgout",
	"pswpin",
	"pswpout",
	"pgalloc",

	"pgfree",
	"pgactivate",
	"pgdeactivate",
	"pgfault",
	"pgmajfault",

	"pgscan",
	"pgrefill",
	"pgsteal",
	"pginodesteal",
	"kswapd_steal",

	"kswapd_inodesteal",
	"pageoutrun",
	"allocstall",
	"pgrotated",
};

static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
	struct page_state *ps;

	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;

	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
	m->private = ps;
	if (!ps)
		return ERR_PTR(-ENOMEM);
	get_full_page_state(ps);
	ps->pgpgin /= 2;		/* sectors -> kbytes */
	ps->pgpgout /= 2;
	return (unsigned long *)ps + *pos;
}

static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
	(*pos)++;
	if (*pos >= ARRAY_SIZE(vmstat_text))
		return NULL;
	return (unsigned long *)m->private + *pos;
}

static int vmstat_show(struct seq_file *m, void *arg)
{
	unsigned long *l = arg;
	unsigned long off = l - (unsigned long *)m->private;

	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
	return 0;
}

static void vmstat_stop(struct seq_file *m, void *arg)
{
	kfree(m->private);
	m->private = NULL;
}

struct seq_operations vmstat_op = {
	.start	= vmstat_start,
	.next	= vmstat_next,
	.stop	= vmstat_stop,
	.show	= vmstat_show,
};

#endif /* CONFIG_PROC_FS */

static void __devinit init_page_alloc_cpu(int cpu)
{
	struct page_state *ps = &per_cpu(page_states, cpu);
	memset(ps, 0, sizeof(*ps));
}
	
static int __devinit page_alloc_cpu_notify(struct notifier_block *self, 
				unsigned long action, void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
		init_page_alloc_cpu(cpu);
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __devinitdata page_alloc_nb = {
	.notifier_call	= page_alloc_cpu_notify,
};

void __init page_alloc_init(void)
{
	init_page_alloc_cpu(smp_processor_id());
	register_cpu_notifier(&page_alloc_nb);
}

/*
 * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures 
 *	that the pages_{min,low,high} values for each zone are set correctly 
 *	with respect to min_free_kbytes.
 */
static void setup_per_zone_pages_min(void)
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone)
		if (!is_highmem(zone))
			lowmem_pages += zone->present_pages;

	for_each_zone(zone) {
		spin_lock_irqsave(&zone->lru_lock, flags);
		if (is_highmem(zone)) {
			/*
			 * Often, highmem doesn't need to reserve any pages.
			 * But the pages_min/low/high values are also used for
			 * batching up page reclaim activity so we need a
			 * decent value here.
			 */
			int min_pages;

			min_pages = zone->present_pages / 1024;
			if (min_pages < SWAP_CLUSTER_MAX)
				min_pages = SWAP_CLUSTER_MAX;
			if (min_pages > 128)
				min_pages = 128;
			zone->pages_min = min_pages;
		} else {
			/* if it's a lowmem zone, reserve a number of pages 
			 * proportionate to the zone's size.
			 */
			zone->pages_min = (pages_min * zone->present_pages) / 
			                   lowmem_pages;
		}

		zone->pages_low = zone->pages_min * 2;
		zone->pages_high = zone->pages_min * 3;
		spin_unlock_irqrestore(&zone->lru_lock, flags);
	}
}

/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (16MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
 *	min_free_kbytes = sqrt(lowmem_kbytes)
 *
 * which yields
 *
 * 16MB:	128k
 * 32MB:	181k
 * 64MB:	256k
 * 128MB:	362k
 * 256MB:	512k
 * 512MB:	724k
 * 1024MB:	1024k
 * 2048MB:	1448k
 * 4096MB:	2048k
 * 8192MB:	2896k
 * 16384MB:	4096k
 */
static int __init init_per_zone_pages_min(void)
{
	unsigned long lowmem_kbytes;

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);

	min_free_kbytes = int_sqrt(lowmem_kbytes);
	if (min_free_kbytes < 128)
		min_free_kbytes = 128;
	if (min_free_kbytes > 16384)
		min_free_kbytes = 16384;
	setup_per_zone_pages_min();
	return 0;
}
module_init(init_per_zone_pages_min)

/*
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 
 *	that we can call setup_per_zone_pages_min() whenever min_free_kbytes 
 *	changes.
 */
int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 
		struct file *file, void __user *buffer, size_t *length)
{
	proc_dointvec(table, write, file, buffer, length);
	setup_per_zone_pages_min();
	return 0;
}