Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
/*******************************************************************************

This software program is available to you under a choice of one of two 
licenses. You may choose to be licensed under either the GNU General Public 
License 2.0, June 1991, available at http://www.fsf.org/copyleft/gpl.html, 
or the Intel BSD + Patent License, the text of which follows:

Recipient has requested a license and Intel Corporation ("Intel") is willing
to grant a license for the software entitled Linux Base Driver for the 
Intel(R) PRO/100 Family of Adapters (e100) (the "Software") being provided 
by Intel Corporation. The following definitions apply to this license:

"Licensed Patents" means patent claims licensable by Intel Corporation which 
are necessarily infringed by the use of sale of the Software alone or when 
combined with the operating system referred to below.

"Recipient" means the party to whom Intel delivers this Software.

"Licensee" means Recipient and those third parties that receive a license to 
any operating system available under the GNU General Public License 2.0 or 
later.

Copyright (c) 1999 - 2002 Intel Corporation.
All rights reserved.

The license is provided to Recipient and Recipient's Licensees under the 
following terms.

Redistribution and use in source and binary forms of the Software, with or 
without modification, are permitted provided that the following conditions 
are met:

Redistributions of source code of the Software may retain the above 
copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form of the Software may reproduce the above 
copyright notice, this list of conditions and the following disclaimer in 
the documentation and/or materials provided with the distribution.

Neither the name of Intel Corporation nor the names of its contributors 
shall be used to endorse or promote products derived from this Software 
without specific prior written permission.

Intel hereby grants Recipient and Licensees a non-exclusive, worldwide, 
royalty-free patent license under Licensed Patents to make, use, sell, offer 
to sell, import and otherwise transfer the Software, if any, in source code 
and object code form. This license shall include changes to the Software 
that are error corrections or other minor changes to the Software that do 
not add functionality or features when the Software is incorporated in any 
version of an operating system that has been distributed under the GNU 
General Public License 2.0 or later. This patent license shall apply to the 
combination of the Software and any operating system licensed under the GNU 
General Public License 2.0 or later if, at the time Intel provides the 
Software to Recipient, such addition of the Software to the then publicly 
available versions of such operating systems available under the GNU General 
Public License 2.0 or later (whether in gold, beta or alpha form) causes 
such combination to be covered by the Licensed Patents. The patent license 
shall not apply to any other combinations which include the Software. NO 
hardware per se is licensed hereunder.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY 
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
(INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED 
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR 
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************

Portions (C) 2002 Red Hat, Inc. under the terms of the GNU GPL v2.

*******************************************************************************/

/**********************************************************************
*                                                                     *
* INTEL CORPORATION                                                   *
*                                                                     *
* This software is supplied under the terms of the license included   *
* above.  All use of this driver must be in accordance with the terms *
* of that license.                                                    *
*                                                                     *
* Module Name:  e100_main.c                                           *
*                                                                     *
* Abstract:     Functions for the driver entry points like load,      *
*               unload, open and close. All board specific calls made *
*               by the network interface section of the driver.       *
*                                                                     *
* Environment:  This file is intended to be specific to the Linux     *
*               operating system.                                     *
*                                                                     *
**********************************************************************/

#undef __NO_VERSION__

#include <linux/config.h>
#include <net/checksum.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include "e100.h"
#include "e100_ucode.h"
#include "e100_config.h"
#include "e100_phy.h"
#include "e100_vendor.h"

#ifndef CONFIG_PROC_FS
#undef E100_CONFIG_PROC_FS
#endif

#ifdef E100_CONFIG_PROC_FS
extern int e100_create_proc_subdir(struct e100_private *);
extern void e100_remove_proc_subdir(struct e100_private *);
#else
#define e100_create_proc_subdir(X) 0
#define e100_remove_proc_subdir(X) do {} while(0)
#endif

#ifdef SIOCETHTOOL
#define E100_ETHTOOL_IOCTL
#endif
#ifdef E100_ETHTOOL_IOCTL
static int e100_do_ethtool_ioctl(struct net_device *, struct ifreq *);
static void e100_get_speed_duplex_caps(struct e100_private *);
static int e100_ethtool_get_settings(struct net_device *, struct ifreq *);
static int e100_ethtool_set_settings(struct net_device *, struct ifreq *);

#ifdef ETHTOOL_GDRVINFO
static int e100_ethtool_get_drvinfo(struct net_device *, struct ifreq *);
#endif
#ifdef ETHTOOL_GEEPROM
static int e100_ethtool_eeprom(struct net_device *, struct ifreq *);

#define E100_EEPROM_MAGIC 0x1234
#endif
#ifdef ETHTOOL_GLINK
static int e100_ethtool_glink(struct net_device *, struct ifreq *);
#endif
#ifdef ETHTOOL_NWAY_RST
static int e100_ethtool_nway_rst(struct net_device *, struct ifreq *);
#endif
#ifdef ETHTOOL_GWOL
static int e100_ethtool_wol(struct net_device *, struct ifreq *);
static unsigned char e100_setup_filter(struct e100_private *bdp);
static void e100_do_wol(struct pci_dev *pcid, struct e100_private *bdp);
static u16 e100_get_ip_lbytes(struct net_device *dev);
extern void e100_config_wol(struct e100_private *bdp);
#endif
#ifdef ETHTOOL_TEST
extern u32 e100_run_diag(struct net_device *dev, u64 *test_info, u32 flags);
static int e100_ethtool_test(struct net_device *, struct ifreq *);
#endif
#ifdef ETHTOOL_GSTRINGS
static int e100_ethtool_gstrings(struct net_device *, struct ifreq *);
static char *test_strings[] = {
	"E100_EEPROM_TEST_FAIL",
	"E100_CHIP_TIMEOUT",
	"E100_ROM_TEST_FAIL",
	"E100_REG_TEST_FAIL",
	"E100_MAC_TEST_FAIL",
	"E100_LPBK_MAC_FAIL",
	"E100_LPBK_PHY_FAIL"
};

#endif
#ifdef	ETHTOOL_PHYS_ID
static int e100_ethtool_led_blink(struct net_device *, struct ifreq *);
#endif
#endif /*E100_ETHTOOL_IOCTL */

#ifdef SIOCGMIIPHY
#define E100_MII_IOCTL
#endif
#ifdef E100_MII_IOCTL
#include <linux/mii.h>
static int e100_mii_ioctl(struct net_device *, struct ifreq *, int);
#endif /*E100_MII_IOCTL */

static unsigned char e100_delayed_exec_non_cu_cmd(struct e100_private *,
						  nxmit_cb_entry_t *);
static void e100_free_nontx_list(struct e100_private *);
static void e100_non_tx_background(unsigned long);

/* Global Data structures and variables */
char e100_copyright[] __devinitdata = "Copyright (c) 2002 Intel Corporation";

#define E100_VERSION  "2.0.30-k1"

#define E100_FULL_DRIVER_NAME 	"Intel(R) PRO/100 Fast Ethernet Adapter - Loadable driver, ver "

const char *e100_version = E100_VERSION;
const char *e100_full_driver_name = E100_FULL_DRIVER_NAME E100_VERSION;
char *e100_short_driver_name = "e100";
static int e100nics = 0;

#ifdef CONFIG_PM
static int e100_save_state(struct pci_dev *pcid, u32 state);
static int e100_suspend(struct pci_dev *pcid, u32 state);
static int e100_enable_wake(struct pci_dev *pcid, u32 state, int enable);
static int e100_resume(struct pci_dev *pcid);
#endif

/*********************************************************************/
/*! This is a GCC extension to ANSI C.
 *  See the item "Labeled Elements in Initializers" in the section
 *  "Extensions to the C Language Family" of the GCC documentation.
 *********************************************************************/
#define E100_PARAM_INIT { [0 ... E100_MAX_NIC] = -1 }

/* All parameters are treated the same, as an integer array of values.
 * This macro just reduces the need to repeat the same declaration code
 * over and over (plus this helps to avoid typo bugs).
 */
#define E100_PARAM(X, S)                                        \
        static const int X[E100_MAX_NIC + 1] = E100_PARAM_INIT; \
        MODULE_PARM(X, "1-" __MODULE_STRING(E100_MAX_NIC) "i"); \
        MODULE_PARM_DESC(X, S);

/* ====================================================================== */
static u8 e100_D101M_checksum(struct e100_private *, struct sk_buff *);
static u8 e100_D102_check_checksum(rfd_t *);
static int e100_ioctl(struct net_device *, struct ifreq *, int);
static int e100_open(struct net_device *);
static int e100_close(struct net_device *);
static int e100_change_mtu(struct net_device *, int);
static int e100_xmit_frame(struct sk_buff *, struct net_device *);
static unsigned char e100_init(struct e100_private *);
static int e100_set_mac(struct net_device *, void *);
struct net_device_stats *e100_get_stats(struct net_device *);

static void e100intr(int, void *, struct pt_regs *);
static void e100_print_brd_conf(struct e100_private *);
static void e100_set_multi(struct net_device *);
void e100_set_speed_duplex(struct e100_private *);

char *e100_get_brand_msg(struct e100_private *);
static u8 e100_pci_setup(struct pci_dev *, struct e100_private *);
static u8 e100_sw_init(struct e100_private *);
static unsigned char e100_alloc_space(struct e100_private *);
static void e100_dealloc_space(struct e100_private *);
static int e100_alloc_tcb_pool(struct e100_private *);
static void e100_setup_tcb_pool(tcb_t *, unsigned int, struct e100_private *);
static void e100_free_tcb_pool(struct e100_private *);
static int e100_alloc_rfd_pool(struct e100_private *);
static void e100_free_rfd_pool(struct e100_private *);

static void e100_rd_eaddr(struct e100_private *);
static void e100_rd_pwa_no(struct e100_private *);
extern u16 e100_eeprom_read(struct e100_private *, u16);
extern void e100_eeprom_write_block(struct e100_private *, u16, u16 *, u16);
extern u16 e100_eeprom_size(struct e100_private *);

static unsigned char e100_clr_cntrs(struct e100_private *);
static unsigned char e100_load_microcode(struct e100_private *);
static unsigned char e100_hw_init(struct e100_private *, u32);
static unsigned char e100_setup_iaaddr(struct e100_private *, u8 *);
static unsigned char e100_update_stats(struct e100_private *bdp);

static void e100_start_ru(struct e100_private *);
static void e100_dump_stats_cntrs(struct e100_private *);

static void e100_check_options(int board, struct e100_private *bdp);
static void e100_set_int_option(int *, int, int, int, int, char *);
static void e100_set_bool_option(struct e100_private *bdp, int, u32, int,
				 char *);
unsigned char e100_wait_exec_cmplx(struct e100_private *, u32, u8);
void e100_exec_cmplx(struct e100_private *, u32, u8);

/**
 * e100_get_rx_struct - retrieve cell to hold skb buff from the pool
 * @bdp: atapter's private data struct
 *
 * Returns the new cell to hold sk_buff or %NULL.
 */
static inline struct rx_list_elem *
e100_get_rx_struct(struct e100_private *bdp)
{
	struct rx_list_elem *rx_struct = NULL;

	if (!list_empty(&(bdp->rx_struct_pool))) {
		rx_struct = list_entry(bdp->rx_struct_pool.next,
				       struct rx_list_elem, list_elem);
		list_del(&(rx_struct->list_elem));
	}

	return rx_struct;
}

/**
 * e100_alloc_skb - allocate an skb for the adapter
 * @bdp: atapter's private data struct
 *
 * Allocates skb with enough room for rfd, and data, and reserve non-data space.
 * Returns the new cell with sk_buff or %NULL.
 */
static inline struct rx_list_elem *
e100_alloc_skb(struct e100_private *bdp)
{
	struct sk_buff *new_skb;
	u32 skb_size = sizeof (rfd_t);
	struct rx_list_elem *rx_struct;

	new_skb = (struct sk_buff *) dev_alloc_skb(skb_size);
	if (new_skb) {
		/* The IP data should be 
		   DWORD aligned. since the ethernet header is 14 bytes long, 
		   we need to reserve 2 extra bytes so that the TCP/IP headers
		   will be DWORD aligned. */
		skb_reserve(new_skb, 2);
		if ((rx_struct = e100_get_rx_struct(bdp)) == NULL)
			goto err;
		rx_struct->skb = new_skb;
		rx_struct->dma_addr = pci_map_single(bdp->pdev, new_skb->data,
						     sizeof (rfd_t),
						     PCI_DMA_FROMDEVICE);
		if (!rx_struct->dma_addr)
			goto err;
		skb_reserve(new_skb, bdp->rfd_size);
		return rx_struct;
	} else {
		return NULL;
	}

err:
	dev_kfree_skb_irq(new_skb);
	return NULL;
}

/**
 * e100_add_skb_to_end - add an skb to the end of our rfd list
 * @bdp: atapter's private data struct
 * @rx_struct: rx_list_elem with the new skb
 *
 * Adds a newly allocated skb to the end of our rfd list.
 */
inline void
e100_add_skb_to_end(struct e100_private *bdp, struct rx_list_elem *rx_struct)
{
	rfd_t *rfdn;		/* The new rfd */
	rfd_t *rfd;		/* The old rfd */
	struct rx_list_elem *rx_struct_last;

	(rx_struct->skb)->dev = bdp->device;
	rfdn = RFD_POINTER(rx_struct->skb, bdp);
	rfdn->rfd_header.cb_status = 0;
	rfdn->rfd_header.cb_cmd = __constant_cpu_to_le16(RFD_EL_BIT);
	rfdn->rfd_act_cnt = 0;
	rfdn->rfd_sz = __constant_cpu_to_le16(RFD_DATA_SIZE);

	pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr, bdp->rfd_size,
			    PCI_DMA_TODEVICE);

	if (!list_empty(&(bdp->active_rx_list))) {
		rx_struct_last = list_entry(bdp->active_rx_list.prev,
					    struct rx_list_elem, list_elem);
		rfd = RFD_POINTER(rx_struct_last->skb, bdp);
		pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
				    4, PCI_DMA_FROMDEVICE);
		put_unaligned(cpu_to_le32(rx_struct->dma_addr),
			      ((u32 *) (&(rfd->rfd_header.cb_lnk_ptr))));

		pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
				    8, PCI_DMA_TODEVICE);
		rfd->rfd_header.cb_cmd &=
			__constant_cpu_to_le16((u16) ~RFD_EL_BIT);

		pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
				    4, PCI_DMA_TODEVICE);
	}

	list_add_tail(&(rx_struct->list_elem), &(bdp->active_rx_list));
}

static inline void
e100_alloc_skbs(struct e100_private *bdp)
{
	for (; bdp->skb_req > 0; bdp->skb_req--) {
		struct rx_list_elem *rx_struct;

		if ((rx_struct = e100_alloc_skb(bdp)) == NULL)
			return;

		e100_add_skb_to_end(bdp, rx_struct);
	}
}

void e100_tx_srv(struct e100_private *);
u32 e100_rx_srv(struct e100_private *, u32, int *);

void e100_polling_tasklet(unsigned long);

void e100_watchdog(struct net_device *);
void e100_refresh_txthld(struct e100_private *);
void e100_manage_adaptive_ifs(struct e100_private *);
void e100_clear_pools(struct e100_private *);
static void e100_clear_structs(struct net_device *);
static inline tcb_t *e100_prepare_xmit_buff(struct e100_private *,
					    struct sk_buff *);
static void e100_set_multi_exec(struct net_device *dev);

MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION(E100_FULL_DRIVER_NAME E100_VERSION);
MODULE_LICENSE("Dual BSD/GPL");

E100_PARAM(TxDescriptors, "Number of transmit descriptors");
E100_PARAM(RxDescriptors, "Number of receive descriptors");
E100_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
E100_PARAM(e100_speed_duplex, "Speed and Duplex settings");
E100_PARAM(ucode, "Disable or enable microcode loading");
E100_PARAM(ber, "Value for the BER correction algorithm");
E100_PARAM(flow_control, "Disable or enable Ethernet PAUSE frames processing");
E100_PARAM(IntDelay, "Value for CPU saver's interrupt delay");
E100_PARAM(BundleSmallFr, "Disable or enable interrupt bundling of small frames");
E100_PARAM(BundleMax, "Maximum number for CPU saver's packet bundling");
E100_PARAM(IFS, "Disable or enable the adaptive IFS algorithm");
E100_PARAM(RxCongestionControl, "Disable or enable switch to polling mode");
E100_PARAM(PollingMaxWork, "Max number of receive packets processed on single "
	   "polling call");

/**
 * e100_exec_cmd - issue a comand
 * @bdp: atapter's private data struct
 * @scb_cmd_low: the command that is to be issued
 *
 * This general routine will issue a command to the e100.
 */
static inline void
e100_exec_cmd(struct e100_private *bdp, u8 cmd_low)
{
	writeb(cmd_low, &(bdp->scb->scb_cmd_low));
	readw(&(bdp->scb->scb_status));	/* flashes last write, read-safe */
}

/**
 * e100_wait_scb - wait for SCB to clear
 * @bdp: atapter's private data struct
 *
 * This routine checks to see if the e100 has accepted a command.
 * It does so by checking the command field in the SCB, which will
 * be zeroed by the e100 upon accepting a command.  The loop waits
 * for up to 1 millisecond for command acceptance.
 *
 * Returns:
 *      true if the SCB cleared within 1 millisecond.
 *      false if it didn't clear within 1 millisecond
 */
unsigned char
e100_wait_scb(struct e100_private *bdp)
{
	int i;

	/* loop on the scb for a few times */
	for (i = 0; i < 100; i++) {
		if (!readb(&bdp->scb->scb_cmd_low))
			return true;
		cpu_relax();
	}

	/* it didn't work. do it the slow way using udelay()s */
	for (i = 0; i < E100_MAX_SCB_WAIT; i++) {
		if (!readb(&bdp->scb->scb_cmd_low))
			return true;
		cpu_relax();
		udelay(1);
	}

	return false;
}

/**
 * e100_wait_exec_simple - issue a command
 * @bdp: atapter's private data struct
 * @scb_cmd_low: the command that is to be issued
 *
 * This general routine will issue a command to the e100 after waiting for
 * the previous command to finish.
 *
 * Returns:
 *      true if the command was issued to the chip successfully
 *      false if the command was not issued to the chip
 */
inline unsigned char
e100_wait_exec_simple(struct e100_private *bdp, u8 scb_cmd_low)
{
	if (!e100_wait_scb(bdp)) {
		printk(KERN_DEBUG "%s e100_wait_exec_simple: Wait failed\n",
		       bdp->device->name);
		return false;
	}
	e100_exec_cmd(bdp, scb_cmd_low);
	return true;
}

void
e100_exec_cmplx(struct e100_private *bdp, u32 phys_addr, u8 cmd)
{
	writel(phys_addr, &(bdp->scb->scb_gen_ptr));
	readw(&(bdp->scb->scb_status));	/* flashes last write, read-safe */
	e100_exec_cmd(bdp, cmd);
}

unsigned char
e100_wait_exec_cmplx(struct e100_private *bdp, u32 phys_addr, u8 cmd)
{
	if (!e100_wait_scb(bdp)) {
		return false;
	}
	e100_exec_cmplx(bdp, phys_addr, cmd);
	return true;
}

inline u8
e100_wait_cus_idle(struct e100_private *bdp)
{
	int i;

	/* loop on the scb for a few times */
	for (i = 0; i < 100; i++) {
		if (((readw(&(bdp->scb->scb_status)) & SCB_CUS_MASK) !=
		     SCB_CUS_ACTIVE)) {
			return true;
		}
		cpu_relax();
	}

	for (i = 0; i < E100_MAX_CU_IDLE_WAIT; i++) {
		if (((readw(&(bdp->scb->scb_status)) & SCB_CUS_MASK) !=
		     SCB_CUS_ACTIVE)) {
			return true;
		}
		cpu_relax();
		udelay(1);
	}

	return false;
}

/**
 * e100_dis_intr - disable interrupts
 * @bdp: atapter's private data struct
 *
 * This routine disables interrupts at the hardware, by setting
 * the M (mask) bit in the adapter's CSR SCB command word.
 */
static inline void
e100_dis_intr(struct e100_private *bdp)
{
	/* Disable interrupts on our PCI board by setting the mask bit */
	writeb(SCB_INT_MASK, &bdp->scb->scb_cmd_hi);
	readw(&(bdp->scb->scb_status));	/* flushes last write, read-safe */
}

/**
 * e100_set_intr_mask - set interrupts
 * @bdp: atapter's private data struct
 *
 * This routine sets interrupts at the hardware, by resetting
 * the M (mask) bit in the adapter's CSR SCB command word
 */
static inline void
e100_set_intr_mask(struct e100_private *bdp)
{
	writeb(bdp->intr_mask, &bdp->scb->scb_cmd_hi);
	readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
}

static inline void
e100_trigger_SWI(struct e100_private *bdp)
{
	/* Trigger interrupt on our PCI board by asserting SWI bit */
	writeb(SCB_SOFT_INT, &bdp->scb->scb_cmd_hi);
	readw(&(bdp->scb->scb_status));	/* flushes last write, read-safe */
}

static int __devinit
e100_found1(struct pci_dev *pcid, const struct pci_device_id *ent)
{
	static int first_time = true;
	struct net_device *dev = NULL;
	struct e100_private *bdp = NULL;
	int rc = 0;

	dev = alloc_etherdev(sizeof (struct e100_private));
	if (dev == NULL) {
		printk(KERN_ERR "Not able to alloc etherdev struct\n");
		rc = -ENODEV;
		goto out;
	}

	SET_MODULE_OWNER(dev);

	if (first_time) {
		first_time = false;
		printk(KERN_NOTICE "%s\n", e100_full_driver_name);
		printk(KERN_NOTICE "%s\n", e100_copyright);
		printk(KERN_NOTICE "\n");
	}

	bdp = dev->priv;
	bdp->pdev = pcid;
	bdp->device = dev;

	pci_set_drvdata(pcid, dev);

	if ((rc = e100_alloc_space(bdp)) != 0) {
		goto err_dev;
	}

	bdp->flags = 0;
	bdp->ifs_state = 0;
	bdp->ifs_value = 0;
	bdp->scb = 0;

	init_timer(&bdp->nontx_timer_id);
	bdp->nontx_timer_id.data = (unsigned long) bdp;
	bdp->nontx_timer_id.function = (void *) &e100_non_tx_background;
	INIT_LIST_HEAD(&(bdp->non_tx_cmd_list));
	bdp->non_tx_command_state = E100_NON_TX_IDLE;

	init_timer(&bdp->watchdog_timer);
	bdp->watchdog_timer.data = (unsigned long) dev;
	bdp->watchdog_timer.function = (void *) &e100_watchdog;

	if ((rc = e100_pci_setup(pcid, bdp)) != 0) {
		goto err_dealloc;
	}

	if (((bdp->pdev->device > 0x1030)
	     && (bdp->pdev->device < 0x103F))
	    || (bdp->pdev->device == 0x2449)
	    || (bdp->pdev->device == 0x2459)
	    || (bdp->pdev->device == 0x245D)) {
		bdp->rev_id = D101MA_REV_ID;	/* workaround for ICH3 */
		bdp->flags |= IS_ICH;
	}

	if (bdp->rev_id == 0xff)
		bdp->rev_id = 1;

	if ((u8) bdp->rev_id >= D101A4_REV_ID)
		bdp->flags |= IS_BACHELOR;

	if ((u8) bdp->rev_id >= D102_REV_ID) {
		bdp->flags |= USE_IPCB;
		bdp->rfd_size = 32;
	} else {
		bdp->rfd_size = 16;
	}

	e100_check_options(e100nics, bdp);

	if (!e100_init(bdp)) {
		printk(KERN_ERR "Failed to initialize e100, instance #%d\n",
		       e100nics);
		rc = -ENODEV;
		goto err_pci;
	}

	dev->irq = pcid->irq;
	dev->open = &e100_open;
	dev->hard_start_xmit = &e100_xmit_frame;
	dev->stop = &e100_close;
	dev->change_mtu = &e100_change_mtu;
	dev->get_stats = &e100_get_stats;
	dev->set_multicast_list = &e100_set_multi;
	dev->set_mac_address = &e100_set_mac;
	dev->do_ioctl = &e100_ioctl;
#ifdef E100_ZEROCOPY
	if (bdp->flags & USE_IPCB) {
		dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
	}
#endif
	e100nics++;

#ifdef E100_ETHTOOL_IOCTL
	e100_get_speed_duplex_caps(bdp);
#endif /*E100_ETHTOOL_IOCTL */

	if ((rc = register_netdev(dev)) != 0) {
		goto err_pci;
	}

	bdp->device_type = ent->driver_data;
	printk(KERN_NOTICE
	       "%s: %s\n", bdp->device->name, e100_get_brand_msg(bdp));
	e100_print_brd_conf(bdp);

	if (e100_create_proc_subdir(bdp) < 0) {
		printk(KERN_ERR "Failed to create proc directory for %s\n",
		       bdp->device->name);
	}

#ifdef ETHTOOL_GWOL
	/* Disabling all WOLs as initialization */
	bdp->wolsupported = bdp->wolopts = 0;
	if (bdp->rev_id >= D101A4_REV_ID) {
		bdp->wolsupported = WAKE_PHY | WAKE_MAGIC;
		if (bdp->rev_id >= D101MA_REV_ID)
			bdp->wolsupported |= WAKE_UCAST | WAKE_ARP;
		bdp->wolopts = WAKE_MAGIC;
	}
#endif

	printk(KERN_NOTICE "\n");

	goto out;

err_pci:
	iounmap(bdp->scb);
	pci_release_regions(pcid);
	pci_disable_device(pcid);
err_dealloc:
	e100_dealloc_space(bdp);
err_dev:
	pci_set_drvdata(pcid, NULL);
	kfree(dev);
out:
	return rc;
}

/**
 * e100_clear_structs - free resources
 * @dev: adapter's net_device struct
 *
 * Free all device specific structs, unmap i/o address, etc.
 */
static void __devexit
e100_clear_structs(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;

	iounmap(bdp->scb);
	pci_release_regions(bdp->pdev);
	pci_disable_device(bdp->pdev);

	e100_dealloc_space(bdp);
	pci_set_drvdata(bdp->pdev, NULL);
	kfree(dev);
}

static void __devexit
e100_remove1(struct pci_dev *pcid)
{
	struct net_device *dev;
	struct e100_private *bdp;

	if (!(dev = (struct net_device *) pci_get_drvdata(pcid)))
		return;

	bdp = dev->priv;

	unregister_netdev(dev);

	e100_remove_proc_subdir(bdp);

	e100_sw_reset(bdp, PORT_SELECTIVE_RESET);

	if (bdp->non_tx_command_state != E100_NON_TX_IDLE) {
		del_timer_sync(&bdp->nontx_timer_id);
		e100_free_nontx_list(bdp);
		bdp->non_tx_command_state = E100_NON_TX_IDLE;
	}

#ifdef ETHTOOL_GWOL
	/* Set up wol options and enable PME if wol is enabled */
	if (bdp->wolopts) {
		e100_do_wol(pcid, bdp);
		/* Enable PME for power state D3 */
		pci_enable_wake(pcid, 3, 1);
		/* Set power state to D1 in case driver is RELOADED */
		/* If system powers down, device is switched from D1 to D3 */
		pci_set_power_state(pcid, 1);
	}
#endif

	e100_clear_structs(dev);

	--e100nics;
}

MODULE_DEVICE_TABLE(pci, e100_id_table);

static struct pci_driver e100_driver = {
	name:           "e100",
	id_table:       e100_id_table,
	probe:          e100_found1,
	remove:         __devexit_p(e100_remove1),
#ifdef CONFIG_PM
	suspend:        e100_suspend,
	resume:         e100_resume,
	save_state:     e100_save_state,
	enable_wake:    e100_enable_wake,
#else
	suspend:        NULL,
	resume:         NULL,
#endif
};

static int __init
e100_init_module(void)
{
	return pci_module_init(&e100_driver);

}

static void __exit
e100_cleanup_module(void)
{
	pci_unregister_driver(&e100_driver);
}

module_init(e100_init_module);
module_exit(e100_cleanup_module);

/**
 * e100_check_options - check command line options
 * @board: board number
 * @bdp: atapter's private data struct
 *
 * This routine does range checking on command-line options
 */
void __devinit
e100_check_options(int board, struct e100_private *bdp)
{
	if (board >= E100_MAX_NIC) {
		printk(KERN_NOTICE "No configuration available for board #%d\n",
		       board);
		printk(KERN_NOTICE "Using defaults for all values\n");
		board = E100_MAX_NIC;
	}

	e100_set_int_option(&(bdp->params.TxDescriptors), TxDescriptors[board],
			    E100_MIN_TCB, E100_MAX_TCB, E100_DEFAULT_TCB,
			    "TxDescriptor count");

	e100_set_int_option(&(bdp->params.RxDescriptors), RxDescriptors[board],
			    E100_MIN_RFD, E100_MAX_RFD, E100_DEFAULT_RFD,
			    "RxDescriptor count");

	e100_set_int_option(&(bdp->params.e100_speed_duplex),
			    e100_speed_duplex[board], 0, 4,
			    E100_DEFAULT_SPEED_DUPLEX, "speed/duplex mode");

	e100_set_int_option(&(bdp->params.ber), ber[board], 0, ZLOCK_MAX_ERRORS,
			    E100_DEFAULT_BER, "Bit Error Rate count");

	e100_set_bool_option(bdp, XsumRX[board], PRM_XSUMRX, E100_DEFAULT_XSUM,
			     "XsumRX value");

	/* Default ucode value depended on controller revision */
	if (bdp->rev_id >= D101MA_REV_ID) {
		e100_set_bool_option(bdp, ucode[board], PRM_UCODE,
				     E100_DEFAULT_UCODE, "ucode value");
	} else {
		e100_set_bool_option(bdp, ucode[board], PRM_UCODE, false,
				     "ucode value");
	}

	e100_set_bool_option(bdp, flow_control[board], PRM_FC, E100_DEFAULT_FC,
			     "flow control value");

	e100_set_bool_option(bdp, IFS[board], PRM_IFS, E100_DEFAULT_IFS,
			     "IFS value");

	e100_set_bool_option(bdp, BundleSmallFr[board], PRM_BUNDLE_SMALL,
			     E100_DEFAULT_BUNDLE_SMALL_FR,
			     "CPU saver bundle small frames value");

	e100_set_int_option(&(bdp->params.IntDelay), IntDelay[board], 0x0,
			    0xFFFF, E100_DEFAULT_CPUSAVER_INTERRUPT_DELAY,
			    "CPU saver interrupt delay value");

	e100_set_int_option(&(bdp->params.BundleMax), BundleMax[board], 0x1,
			    0xFFFF, E100_DEFAULT_CPUSAVER_BUNDLE_MAX,
			    "CPU saver bundle max value");

	e100_set_bool_option(bdp, RxCongestionControl[board], PRM_RX_CONG,
			     E100_DEFAULT_RX_CONGESTION_CONTROL,
			     "Rx Congestion Control value");

	e100_set_int_option(&(bdp->params.PollingMaxWork),
			    PollingMaxWork[board], 1, E100_MAX_RFD,
			    bdp->params.RxDescriptors,
			    "Polling Max Work value");
}

/**
 * e100_set_int_option - check and set an integer option
 * @option: a pointer to the relevant option field
 * @val: the value specified
 * @min: the minimum valid value
 * @max: the maximum valid value
 * @default_val: the default value
 * @name: the name of the option
 *
 * This routine does range checking on a command-line option.
 * If the option's value is '-1' use the specified default.
 * Otherwise, if the value is invalid, change it to the default.
 */
void __devinit
e100_set_int_option(int *option, int val, int min, int max, int default_val,
		    char *name)
{
	if (val == -1) {	/* no value specified. use default */
		*option = default_val;

	} else if ((val < min) || (val > max)) {
		printk(KERN_NOTICE
		       "Invalid %s specified (%i). Valid range is %i-%i\n",
		       name, val, min, max);
		printk(KERN_NOTICE "Using default %s of %i\n", name,
		       default_val);
		*option = default_val;
	} else {
		printk(KERN_INFO "Using specified %s of %i\n", name, val);
		*option = val;
	}
}

/**
 * e100_set_bool_option - check and set a boolean option
 * @bdp: atapter's private data struct
 * @val: the value specified
 * @mask: the mask for the relevant option
 * @default_val: the default value
 * @name: the name of the option
 *
 * This routine checks a boolean command-line option.
 * If the option's value is '-1' use the specified default.
 * Otherwise, if the value is invalid (not 0 or 1), 
 * change it to the default.
 */
void __devinit
e100_set_bool_option(struct e100_private *bdp, int val, u32 mask,
		     int default_val, char *name)
{
	if (val == -1) {
		if (default_val)
			bdp->params.b_params |= mask;

	} else if ((val != true) && (val != false)) {
		printk(KERN_NOTICE
		       "Invalid %s specified (%i). Valid values are %i/%i\n",
		       name, val, false, true);
		printk(KERN_NOTICE "Using default %s of %i\n", name,
		       default_val);

		if (default_val)
			bdp->params.b_params |= mask;
	} else {
		printk(KERN_INFO "Using specified %s of %i\n", name, val);
		if (val)
			bdp->params.b_params |= mask;
	}
}

static int
e100_open(struct net_device *dev)
{
	struct e100_private *bdp;
	int rc = 0;

	bdp = dev->priv;

	read_lock(&(bdp->isolate_lock));

	if (bdp->driver_isolated) {
		rc = -EBUSY;
		goto exit;
	}

	/* setup the tcb pool */
	if (!e100_alloc_tcb_pool(bdp)) {
		rc = -ENOMEM;
		goto err_exit;
	}
	bdp->last_tcb = NULL;

	bdp->tcb_pool.head = 0;
	bdp->tcb_pool.tail = 1;	

	e100_setup_tcb_pool((tcb_t *) bdp->tcb_pool.data,
			    bdp->params.TxDescriptors, bdp);

	if (!e100_alloc_rfd_pool(bdp)) {
		rc = -ENOMEM;
		goto err_exit;
	}

	if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE)) {
		rc = -EAGAIN;
		goto err_exit;
	}

	if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE)) {
		rc = -EAGAIN;
		goto err_exit;
	}

	mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));

	netif_start_queue(dev);

	e100_start_ru(bdp);
	if ((rc = request_irq(dev->irq, &e100intr, SA_SHIRQ,
			      e100_short_driver_name, dev)) != 0) {
		del_timer_sync(&bdp->watchdog_timer);
		goto err_exit;
	}
	if (bdp->params.b_params & PRM_RX_CONG) {
		DECLARE_TASKLET(polling_tasklet,
				e100_polling_tasklet, (unsigned long) bdp);
		bdp->polling_tasklet = polling_tasklet;
	}
	bdp->intr_mask = 0;
	e100_set_intr_mask(bdp);

	e100_force_config(bdp);

	goto exit;

err_exit:
	e100_clear_pools(bdp);
exit:
	read_unlock(&(bdp->isolate_lock));
	return rc;
}

static int
e100_close(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;

	bdp->intr_mask = SCB_INT_MASK;
	e100_isolate_driver(bdp);

#ifdef ETHTOOL_GWOL
	bdp->ip_lbytes = e100_get_ip_lbytes(dev);
#endif
	free_irq(dev->irq, dev);
	e100_clear_pools(bdp);

	if (bdp->params.b_params & PRM_RX_CONG) {
		tasklet_kill(&(bdp->polling_tasklet));
	}

	/* set the isolate flag to false, so e100_open can be called */
	bdp->driver_isolated = false;

	return 0;
}

static int
e100_change_mtu(struct net_device *dev, int new_mtu)
{
	if ((new_mtu < 68) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
		return -EINVAL;

	dev->mtu = new_mtu;
	return 0;
}

static int
e100_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
	int rc = 0;
	int notify_stop = false;
	struct e100_private *bdp = dev->priv;

	read_lock(&(bdp->isolate_lock));

	if (bdp->driver_isolated) {
		rc = -EBUSY;
		goto exit2;
	}

	if (!spin_trylock(&bdp->bd_non_tx_lock)) {
		notify_stop = true;
		rc = 1;
		goto exit2;
	}

	if (!TCBS_AVAIL(bdp->tcb_pool) ||
	    (bdp->non_tx_command_state != E100_NON_TX_IDLE)) {
		notify_stop = true;
		rc = 1;
		goto exit1;
	}

	e100_prepare_xmit_buff(bdp, skb);

	bdp->drv_stats.net_stats.tx_bytes += skb->len;

	dev->trans_start = jiffies;

exit1:
	spin_unlock(&bdp->bd_non_tx_lock);
exit2:
	read_unlock(&(bdp->isolate_lock));
	if (notify_stop) {
		netif_stop_queue(dev);
	}

	return rc;
}

/**
 * e100_get_stats - get driver statistics
 * @dev: adapter's net_device struct
 *
 * This routine is called when the OS wants the adapter's stats returned.
 * It returns the address of the net_device_stats stucture for the device.
 * If the statistics are currently being updated, then they might be incorrect
 * for a short while. However, since this cannot actually cause damage, no
 * locking is used.
 */
struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;

	bdp->drv_stats.net_stats.tx_errors =
		bdp->drv_stats.net_stats.tx_carrier_errors +
		bdp->drv_stats.net_stats.tx_aborted_errors;

	bdp->drv_stats.net_stats.rx_errors =
		bdp->drv_stats.net_stats.rx_crc_errors +
		bdp->drv_stats.net_stats.rx_frame_errors +
		bdp->drv_stats.net_stats.rx_length_errors +
		bdp->drv_stats.rcv_cdt_frames;

	return &(bdp->drv_stats.net_stats);
}

/**
 * e100_set_mac - set the MAC address
 * @dev: adapter's net_device struct
 * @addr: the new address
 *
 * This routine sets the ethernet address of the board
 * Returns:
 * 0  - if successful
 * -1 - otherwise
 */
static int
e100_set_mac(struct net_device *dev, void *addr)
{
	struct e100_private *bdp;
	int rc = -1;
	struct sockaddr *p_sockaddr = (struct sockaddr *) addr;

	bdp = dev->priv;

	read_lock(&(bdp->isolate_lock));

	if (bdp->driver_isolated) {
		goto exit;
	}
	if (e100_setup_iaaddr(bdp, (u8 *) (p_sockaddr->sa_data))) {
		memcpy(&(dev->dev_addr[0]), p_sockaddr->sa_data, ETH_ALEN);
		rc = 0;
	}

exit:
	read_unlock(&(bdp->isolate_lock));
	return rc;
}

static void
e100_set_multi_exec(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;
	mltcst_cb_t *mcast_buff;
	cb_header_t *cb_hdr;
	struct dev_mc_list *mc_list;
	unsigned int i;
	nxmit_cb_entry_t *cmd = e100_alloc_non_tx_cmd(bdp);

	if (cmd != NULL) {
		mcast_buff = &((cmd->non_tx_cmd)->ntcb.multicast);
		cb_hdr = &((cmd->non_tx_cmd)->ntcb.multicast.mc_cbhdr);
	} else {
		return;
	}

	/* initialize the multi cast command */
	cb_hdr->cb_cmd = __constant_cpu_to_le16(CB_MULTICAST);

	/* now fill in the rest of the multicast command */
	*(u16 *) (&(mcast_buff->mc_count)) = cpu_to_le16(dev->mc_count * 6);
	for (i = 0, mc_list = dev->mc_list;
	     (i < dev->mc_count) && (i < MAX_MULTICAST_ADDRS);
	     i++, mc_list = mc_list->next) {
		/* copy into the command */
		memcpy(&(mcast_buff->mc_addr[i * ETH_ALEN]),
		       (u8 *) &(mc_list->dmi_addr), ETH_ALEN);
	}

	if (!e100_exec_non_cu_cmd(bdp, cmd)) {
		printk(KERN_WARNING "%s: Multicast setup failed\n", dev->name);
	}
}

/**
 * e100_set_multi - set multicast status
 * @dev: adapter's net_device struct
 *
 * This routine is called to add or remove multicast addresses, and/or to
 * change the adapter's promiscuous state.
 */
static void
e100_set_multi(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;
	unsigned char promisc_enbl;
	unsigned char mulcast_enbl;

	read_lock(&(bdp->isolate_lock));
	if (bdp->driver_isolated) {
		goto exit;
	}
	promisc_enbl = (dev->flags & IFF_PROMISC);
	mulcast_enbl = ((dev->flags & IFF_ALLMULTI) ||
			(dev->mc_count > MAX_MULTICAST_ADDRS));

	e100_config_promisc(bdp, promisc_enbl);
	e100_config_mulcast_enbl(bdp, mulcast_enbl);

	/* reconfigure the chip if something has changed in its config space */
	e100_config(bdp);

	if (promisc_enbl || mulcast_enbl) {
		goto exit;	/* no need for Multicast Cmd */
	}

	/* get the multicast CB */
	e100_set_multi_exec(dev);

exit:
	read_unlock(&(bdp->isolate_lock));
}

static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{

	switch (cmd) {

#ifdef E100_ETHTOOL_IOCTL
	case SIOCETHTOOL:
		return e100_do_ethtool_ioctl(dev, ifr);
		break;
#endif /*E100_ETHTOOL_IOCTL */

#ifdef E100_MII_IOCTL
	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
	case SIOCGMIIREG:	/* Read MII PHY register. */
	case SIOCSMIIREG:	/* Write to MII PHY register. */
		return e100_mii_ioctl(dev, ifr, cmd);
		break;
#endif /*E100_MII_IOCTL */

	default:
		return -EOPNOTSUPP;
	}
	return 0;

}

/**
 * e100init - initialize the adapter
 * @bdp: atapter's private data struct
 *
 * This routine is called when this driver is loaded. This is the initialization
 * routine which allocates memory, configures the adapter and determines the
 * system resources.
 *
 * Returns:
 *      true: if successful
 *      false: otherwise
 */
static unsigned char __devinit
e100_init(struct e100_private *bdp)
{
	e100_sw_init(bdp);

	if (!e100_selftest(bdp, NULL, NULL)) {
		printk(KERN_ERR "selftest failed\n");
		return false;
	}

	/* read the MAC address from the eprom */
	e100_rd_eaddr(bdp);
	/* read NIC's part number */
	e100_rd_pwa_no(bdp);

	if (!e100_hw_init(bdp, PORT_SOFTWARE_RESET)) {
		printk(KERN_ERR "hw init failed\n");
		return false;
	}
	e100_dis_intr(bdp);

	return true;
}

/**
 * e100_sw_init - initialize software structs
 * @bdp: atapter's private data struct
 * 
 * This routine initializes all software structures. Sets up the
 * circular structures for the RFD's & TCB's. Allocates the per board
 * structure for storing adapter information. The CSR is also memory 
 * mapped in this routine.
 *
 * Returns :
 *      true: if S/W was successfully initialized
 *      false: otherwise
 */
static unsigned char __devinit
e100_sw_init(struct e100_private *bdp)
{
	bdp->next_cu_cmd = START_WAIT;	// init the next cu state

	/* 
	 * Set the value for # of good xmits per underrun. the value assigned
	 * here is an intelligent  suggested default. Nothing magical about it.
	 */
	bdp->tx_per_underrun = DEFAULT_TX_PER_UNDERRUN;

	/* get the default transmit threshold value */
	bdp->tx_thld = TX_THRSHLD;

	/* get the EPROM size */
	bdp->eeprom_size = e100_eeprom_size(bdp);

	/* Initialize our spinlocks */
	spin_lock_init(&(bdp->bd_lock));
	spin_lock_init(&(bdp->bd_non_tx_lock));
	spin_lock_init(&(bdp->config_lock));
	spin_lock_init(&(bdp->mdi_access_lock));
	bdp->isolate_lock = RW_LOCK_UNLOCKED;
	bdp->driver_isolated = false;

	return 1;
}

/**
 * e100_hw_init - initialized tthe hardware
 * @bdp: atapter's private data struct
 * @reset_cmd: s/w reset or selective reset
 *
 * This routine performs a reset on the adapter, and configures the adapter.
 * This includes configuring the 82557 LAN controller, validating and setting
 * the node address, detecting and configuring the Phy chip on the adapter,
 * and initializing all of the on chip counters.
 *
 * Returns:
 *      true - If the adapter was initialized
 *      false - If the adapter failed initialization
 */
unsigned char __devinit
e100_hw_init(struct e100_private *bdp, u32 reset_cmd)
{
	if (!e100_phy_init(bdp))
		return false;

	/* Issue a software reset to the e100 */
	e100_sw_reset(bdp, reset_cmd);

	/* Load the CU BASE (set to 0, because we use linear mode) */
	if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE))
		return false;

	if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE))
		return false;

	/* Load interrupt microcode  */
	if (e100_load_microcode(bdp)) {
		bdp->flags |= DF_UCODE_LOADED;
	}

	e100_config_init(bdp);
	if (!e100_config(bdp)) {
		return false;
	}

	if (!e100_setup_iaaddr(bdp, bdp->device->dev_addr))
		return false;

	/* Clear the internal counters */
	if (!e100_clr_cntrs(bdp))
		return false;

	/* Change for 82558 enhancement */
	/* If 82558/9 and if the user has enabled flow control, set up the
	 * Flow Control Reg. in the CSR */
	if ((bdp->flags & IS_BACHELOR)
	    && (bdp->params.b_params & PRM_FC)) {
		writeb(DFLT_FC_THLD, &bdp->scb->scb_ext.d101_scb.scb_fc_thld);
		writeb(DFLT_FC_CMD,
		       &bdp->scb->scb_ext.d101_scb.scb_fc_xon_xoff);
	}

	return true;
}

/**
 * e100_setup_tcb_pool - setup TCB circular list
 * @head: Pointer to head of the allocated TCBs
 * @qlen: Number of elements in the queue
 * @bdp: atapter's private data struct
 * 
 * This routine arranges the contigiously allocated TCB's in a circular list.
 * Also does the one time initialization of the TCBs.
 */
static void
e100_setup_tcb_pool(tcb_t *head, unsigned int qlen, struct e100_private *bdp)
{
	int ele_no;
	tcb_t *pcurr_tcb;	/* point to current tcb */
	u32 next_phys;		/* the next phys addr */
	u16 txcommand = CB_S_BIT | CB_TX_SF_BIT;

	if (bdp->flags & USE_IPCB) {
		txcommand |= CB_IPCB_TRANSMIT | CB_CID_DEFAULT;
	} else if (bdp->flags & IS_BACHELOR) {
		txcommand |= CB_TRANSMIT | CB_CID_DEFAULT;
	} else {
		txcommand |= CB_TRANSMIT;
	}

	for (ele_no = 0, next_phys = bdp->tcb_phys, pcurr_tcb = head;
	     ele_no < qlen; ele_no++, pcurr_tcb++) {

		/* set the phys addr for this TCB, next_phys has not incr. yet */
		pcurr_tcb->tcb_phys = next_phys;
		next_phys += sizeof (tcb_t);

		/* set the link to next tcb */
		if (ele_no == (qlen - 1))
			pcurr_tcb->tcb_hdr.cb_lnk_ptr =
				cpu_to_le32(bdp->tcb_phys);
		else
			pcurr_tcb->tcb_hdr.cb_lnk_ptr = cpu_to_le32(next_phys);

		pcurr_tcb->tcb_hdr.cb_status = 0;
		pcurr_tcb->tcb_hdr.cb_cmd = cpu_to_le16(txcommand);
		pcurr_tcb->tcb_cnt = 0;	
		pcurr_tcb->tcb_thrshld = bdp->tx_thld;	
		if (ele_no < 2) {
			pcurr_tcb->tcb_hdr.cb_status =
				cpu_to_le16(CB_STATUS_COMPLETE);
		}
		pcurr_tcb->tcb_tbd_num = 1;

		if (bdp->flags & IS_BACHELOR) {
			pcurr_tcb->tcb_tbd_ptr =
				__constant_cpu_to_le32(0xFFFFFFFF);
		} else {
			pcurr_tcb->tcb_tbd_ptr =
				cpu_to_le32(pcurr_tcb->tcb_phys + 0x10);
		}

#ifdef E100_ZEROCOPY
		if (bdp->flags & IS_BACHELOR) {
			pcurr_tcb->tcb_tbd_expand_ptr =
				cpu_to_le32(pcurr_tcb->tcb_phys + 0x20);
		} else {
			pcurr_tcb->tcb_tbd_expand_ptr =
				cpu_to_le32(pcurr_tcb->tcb_phys + 0x10);
		}
		pcurr_tcb->tcb_tbd_dflt_ptr = pcurr_tcb->tcb_tbd_ptr;
#endif

		if (bdp->flags & USE_IPCB) {
			pcurr_tcb->tbd_ptr = &(pcurr_tcb->tcbu.tbd_array[1]);
			pcurr_tcb->tcbu.ipcb.ip_activation_high =
				IPCB_IP_ACTIVATION_DEFAULT;
			pcurr_tcb->tcbu.ipcb.vlan = 0;
		} else {
			pcurr_tcb->tbd_ptr = &(pcurr_tcb->tcbu.tbd_array[0]);
		}

		pcurr_tcb->tcb_skb = NULL;
	}

	wmb();
}

/***************************************************************************/
/***************************************************************************/
/*       Memory Management Routines                                        */
/***************************************************************************/

/**
 * e100_alloc_space - allocate private driver data
 * @bdp: atapter's private data struct
 *
 * This routine allocates memory for the driver. Memory allocated is for the
 * selftest and statistics structures.
 *
 * Returns:
 *      0: if the operation was successful
 *      %-ENOMEM: if memory allocation failed
 */
unsigned char __devinit
e100_alloc_space(struct e100_private *bdp)
{
	unsigned long off;

	/* allocate all the dma-able structures in one call:
	 * selftest results, adapter stats, and non-tx cb commands */
	if (!(bdp->dma_able =
	      pci_alloc_consistent(bdp->pdev, sizeof (bd_dma_able_t),
				   &(bdp->dma_able_phys)))) {
		goto err;
	}

	/* now assign the various pointers into the struct we've just allocated */
	off = offsetof(bd_dma_able_t, selftest);

	bdp->selftest = (self_test_t *) (bdp->dma_able + off);
	bdp->selftest_phys = bdp->dma_able_phys + off;

	off = offsetof(bd_dma_able_t, stats_counters);

	bdp->stats_counters = (max_counters_t *) (bdp->dma_able + off);
	bdp->stat_cnt_phys = bdp->dma_able_phys + off;

	return 0;

err:
	printk(KERN_ERR
	       "%s - Failed to allocate memory\n", e100_short_driver_name);
	return -ENOMEM;
}

/**
 * e100_alloc_tcb_pool - allocate TCB circular list
 * @bdp: atapter's private data struct
 *
 * This routine allocates memory for the circular list of transmit descriptors.
 *
 * Returns:
 *       0: if allocation has failed.
 *       1: Otherwise. 
 */
int
e100_alloc_tcb_pool(struct e100_private *bdp)
{
	int stcb = sizeof (tcb_t) * bdp->params.TxDescriptors;

	/* allocate space for the TCBs */
	if (!(bdp->tcb_pool.data =
	      pci_alloc_consistent(bdp->pdev, stcb, &bdp->tcb_phys)))
		return 0;

	memset(bdp->tcb_pool.data, 0x00, stcb);

	return 1;
}

void
e100_free_tcb_pool(struct e100_private *bdp)
{
	pci_free_consistent(bdp->pdev,
			    sizeof (tcb_t) * bdp->params.TxDescriptors,
			    bdp->tcb_pool.data, bdp->tcb_phys);
	bdp->tcb_phys = 0;
}

static void
e100_dealloc_space(struct e100_private *bdp)
{
	if (bdp->dma_able) {
		pci_free_consistent(bdp->pdev, sizeof (bd_dma_able_t),
				    bdp->dma_able, bdp->dma_able_phys);
	}

	bdp->selftest_phys = 0;
	bdp->stat_cnt_phys = 0;
	bdp->dma_able_phys = 0;
	bdp->dma_able = 0;
}

static void
e100_free_rfd_pool(struct e100_private *bdp)
{
	struct rx_list_elem *rx_struct;

	while (!list_empty(&(bdp->active_rx_list))) {

		rx_struct = list_entry(bdp->active_rx_list.next,
				       struct rx_list_elem, list_elem);
		list_del(&(rx_struct->list_elem));
		pci_unmap_single(bdp->pdev, rx_struct->dma_addr,
				 sizeof (rfd_t), PCI_DMA_TODEVICE);
		dev_kfree_skb(rx_struct->skb);
		kfree(rx_struct);
	}

	while (!list_empty(&(bdp->rx_struct_pool))) {
		rx_struct = list_entry(bdp->rx_struct_pool.next,
				       struct rx_list_elem, list_elem);
		list_del(&(rx_struct->list_elem));
		kfree(rx_struct);
	}
}

/**
 * e100_alloc_rfd_pool - allocate RFDs
 * @bdp: atapter's private data struct
 *
 * Allocates initial pool of skb which holds both rfd and data,
 * and return a pointer to the head of the list
 */
static int
e100_alloc_rfd_pool(struct e100_private *bdp)
{
	struct rx_list_elem *rx_struct;
	int i;

	INIT_LIST_HEAD(&(bdp->active_rx_list));
	INIT_LIST_HEAD(&(bdp->rx_struct_pool));
	bdp->skb_req = bdp->params.RxDescriptors;
	for (i = 0; i < bdp->skb_req; i++) {
		rx_struct = kmalloc(sizeof (struct rx_list_elem), GFP_ATOMIC);
		list_add(&(rx_struct->list_elem), &(bdp->rx_struct_pool));
	}
	e100_alloc_skbs(bdp);
	return !list_empty(&(bdp->active_rx_list));

}

void
e100_clear_pools(struct e100_private *bdp)
{
	bdp->last_tcb = NULL;
	e100_free_rfd_pool(bdp);
	e100_free_tcb_pool(bdp);
}

/*****************************************************************************/
/*****************************************************************************/
/*      Run Time Functions                                                   */
/*****************************************************************************/

/**
 * e100_watchdog
 * @dev: adapter's net_device struct
 *
 * This routine runs every 2 seconds and updates our statitics and link state,
 * and refreshs txthld value.
 */
void
e100_watchdog(struct net_device *dev)
{
	struct e100_private *bdp = dev->priv;

	read_lock(&(bdp->isolate_lock));
	if (bdp->driver_isolated) {
		goto exit;
	}
	if (!netif_running(dev)) {
		goto exit;
	}
	spin_lock_bh(&(bdp->mdi_access_lock));

	/* check if link state has changed */
	if (e100_phy_check(bdp)) {
		if (netif_carrier_ok(dev)) {
			printk(KERN_ERR
			       "e100: %s NIC Link is Up %d Mbps %s duplex\n",
			       bdp->device->name, bdp->cur_line_speed,
			       (bdp->cur_dplx_mode == HALF_DUPLEX) ?
			       "Half" : "Full");

			e100_config_fc(bdp);
			e100_config(bdp);	

		} else {
			printk(KERN_ERR "e100: %s NIC Link is Down\n",
			       bdp->device->name);
		}
	}

	// toggle the tx queue according to link status
	// this also resolves a race condition between tx & non-cu cmd flows
	if (netif_carrier_ok(dev)) {
		if (netif_running(dev))
			netif_wake_queue(dev);
	} else {
		netif_stop_queue(dev);
	}

	rmb();

	if (e100_update_stats(bdp)) {

		/* Check if a change in the IFS parameter is needed,
		   and configure the device accordingly */
		if (bdp->params.b_params & PRM_IFS)
			e100_manage_adaptive_ifs(bdp);

		/* Now adjust our dynamic tx threshold value */
		e100_refresh_txthld(bdp);

		/* Now if we are on a 557 and we havn't received any frames then we
		 * should issue a multicast command to reset the RU */
		if (bdp->rev_id < D101A4_REV_ID) {
			if (!(bdp->stats_counters->basic_stats.rcv_gd_frames)) {
				e100_set_multi(dev);
			}
		}

		/* Update the statistics needed by the upper interface */
		/* This should be the last statistic related command
		 * as it's async. now */
		e100_dump_stats_cntrs(bdp);
	}

	wmb();

	spin_unlock_bh(&(bdp->mdi_access_lock));

	/* relaunch watchdog timer in 2 sec */
	mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));

	if (list_empty(&bdp->active_rx_list))
		e100_trigger_SWI(bdp);

exit:
	read_unlock(&(bdp->isolate_lock));
}

/**
 * e100_manage_adaptive_ifs
 * @bdp: atapter's private data struct
 *
 * This routine manages the adaptive Inter-Frame Spacing algorithm
 * using a state machine.
 */
void
e100_manage_adaptive_ifs(struct e100_private *bdp)
{
	static u16 state_table[9][4] = {	// rows are states
		{2, 0, 0, 0},	// state0   // column0: next state if increasing
		{2, 0, 5, 30},	// state1   // column1: next state if decreasing
		{5, 1, 5, 30},	// state2   // column2: IFS value for 100 mbit
		{5, 3, 0, 0},	// state3   // column3: IFS value for 10 mbit
		{5, 3, 10, 60},	// state4
		{8, 4, 10, 60},	// state5
		{8, 6, 0, 0},	// state6
		{8, 6, 20, 60},	// state7
		{8, 7, 20, 60}	// state8
	};

	u32 transmits =
		le32_to_cpu(bdp->stats_counters->basic_stats.xmt_gd_frames);
	u32 collisions =
		le32_to_cpu(bdp->stats_counters->basic_stats.xmt_ttl_coll);
	u32 state = bdp->ifs_state;
	u32 old_value = bdp->ifs_value;
	int next_col;
	u32 min_transmits;

	if (bdp->cur_dplx_mode == FULL_DUPLEX) {
		bdp->ifs_state = 0;
		bdp->ifs_value = 0;

	} else {		/* Half Duplex */
		/* Set speed specific parameters */
		if (bdp->cur_line_speed == 100) {
			next_col = 2;
			min_transmits = MIN_NUMBER_OF_TRANSMITS_100;

		} else {	/* 10 Mbps */
			next_col = 3;
			min_transmits = MIN_NUMBER_OF_TRANSMITS_10;
		}

		if ((transmits / 32 < collisions)
		    && (transmits > min_transmits)) {
			state = state_table[state][0];	/* increment */

		} else if (transmits < min_transmits) {
			state = state_table[state][1];	/* decrement */
		}

		bdp->ifs_value = state_table[state][next_col];
		bdp->ifs_state = state;
	}

	/* If the IFS value has changed, configure the device */
	if (bdp->ifs_value != old_value) {
		e100_config_ifs(bdp);
		e100_config(bdp);
	}
}

void
e100_polling_tasklet(unsigned long ptr)
{
	struct e100_private *bdp = (struct e100_private *) ptr;
	unsigned int rx_congestion = 0;
	u32 skb_cnt;

	/* the device is closed, don't continue or else bad things may happen. */
	if (!netif_running(bdp->device)) {
		return;
	}

	read_lock(&(bdp->isolate_lock));
	if (bdp->driver_isolated) {
		tasklet_schedule(&(bdp->polling_tasklet));
		goto exit;
	}

	e100_alloc_skbs(bdp);

	skb_cnt = e100_rx_srv(bdp, bdp->params.PollingMaxWork, &rx_congestion);

	bdp->drv_stats.rx_tasklet_pkts += skb_cnt;

	if (rx_congestion || skb_cnt) {
		tasklet_schedule(&(bdp->polling_tasklet));
	} else {
		bdp->intr_mask &= ~SCB_INT_MASK;

		bdp->drv_stats.poll_intr_switch++;
	}

	bdp->tx_count = 0;	/* restart tx interrupt batch count */
	e100_tx_srv(bdp);

	e100_set_intr_mask(bdp);

exit:
	read_unlock(&(bdp->isolate_lock));
}

/**
 * e100intr - interrupt handler
 * @irq: the IRQ number
 * @dev_inst: the net_device struct
 * @regs: registers (unused)
 *
 * This routine is the ISR for the e100 board. It services
 * the RX & TX queues & starts the RU if it has stopped due
 * to no resources.
 */
void
e100intr(int irq, void *dev_inst, struct pt_regs *regs)
{
	struct net_device *dev;
	struct e100_private *bdp;
	u16 intr_status;

	dev = dev_inst;
	bdp = dev->priv;

	intr_status = readw(&bdp->scb->scb_status);
	if (!intr_status || (intr_status == 0xffff)) {
		return;
	}

	/* disable intr before we ack & after identifying the intr as ours */
	e100_dis_intr(bdp);

	writew(intr_status, &bdp->scb->scb_status);	/* ack intrs */

	/* the device is closed, don't continue or else bad things may happen. */
	if (!netif_running(dev)) {
		e100_set_intr_mask(bdp);
		return;
	}

	read_lock(&(bdp->isolate_lock));
	if (bdp->driver_isolated) {
		goto exit;
	}

	/* SWI intr (triggered by watchdog) is signal to allocate new skb buffers */
	if (intr_status & SCB_STATUS_ACK_SWI) {
		e100_alloc_skbs(bdp);
	}

	/* do recv work if any */
	if (intr_status &
	    (SCB_STATUS_ACK_FR | SCB_STATUS_ACK_RNR | SCB_STATUS_ACK_SWI)) {
		int rx_congestion;

		bdp->drv_stats.rx_intr_pkts +=
			e100_rx_srv(bdp, 0, &rx_congestion);
		if ((bdp->params.b_params & PRM_RX_CONG) && rx_congestion) {
			bdp->intr_mask |= SCB_INT_MASK;
			tasklet_schedule(&(bdp->polling_tasklet));

			bdp->drv_stats.poll_intr_switch++;
		}
	}

	/* clean up after tx'ed packets */
	if (intr_status & (SCB_STATUS_ACK_CNA | SCB_STATUS_ACK_CX)) {
		bdp->tx_count = 0;	/* restart tx interrupt batch count */
		e100_tx_srv(bdp);
	}

exit:
	e100_set_intr_mask(bdp);
	read_unlock(&(bdp->isolate_lock));
}

/**
 * e100_tx_skb_free - free TX skbs resources
 * @bdp: atapter's private data struct
 * @tcb: associated tcb of the freed skb
 *
 * This routine frees resources of TX skbs.
 */
static void inline
e100_tx_skb_free(struct e100_private *bdp, tcb_t *tcb)
{
	if (tcb->tcb_skb) {
#ifdef E100_ZEROCOPY
		int i;
		tbd_t *tbd_arr = tcb->tbd_ptr;
		int frags = skb_shinfo(tcb->tcb_skb)->nr_frags;

		for (i = 0; i <= frags; i++, tbd_arr++) {
			pci_unmap_single(bdp->pdev,
					 le32_to_cpu(tbd_arr->tbd_buf_addr),
					 le16_to_cpu(tbd_arr->tbd_buf_cnt),
					 PCI_DMA_TODEVICE);
		}
#else
		pci_unmap_single(bdp->pdev,
				 le32_to_cpu((tcb->tbd_ptr)->tbd_buf_addr),
				 tcb->tcb_skb->len, PCI_DMA_TODEVICE);
#endif
		dev_kfree_skb_irq(tcb->tcb_skb);
		tcb->tcb_skb = NULL;
	}
}

/**
 * e100_tx_srv - service TX queues
 * @bdp: atapter's private data struct
 *
 * This routine services the TX queues. It reclaims the TCB's & TBD's & other
 * resources used during the transmit of this buffer. It is called from the ISR.
 * We don't need a tx_lock since we always access buffers which were already
 * prepared.
 */
void
e100_tx_srv(struct e100_private *bdp)
{
	tcb_t *tcb;
	int i;

	/* go over at most TxDescriptors buffers */
	for (i = 0; i < bdp->params.TxDescriptors; i++) {
		tcb = bdp->tcb_pool.data;
		tcb += bdp->tcb_pool.head;

		rmb();

		/* if the buffer at 'head' is not complete, break */
		if (!(tcb->tcb_hdr.cb_status &
		      __constant_cpu_to_le16(CB_STATUS_COMPLETE)))
			break;

		/* service next buffer, clear the out of resource condition */
		e100_tx_skb_free(bdp, tcb);

		if (netif_running(bdp->device))
			netif_wake_queue(bdp->device);

		/* if we've caught up with 'tail', break */
		if (NEXT_TCB_TOUSE(bdp->tcb_pool.head) == bdp->tcb_pool.tail) {
			break;
		}

		bdp->tcb_pool.head = NEXT_TCB_TOUSE(bdp->tcb_pool.head);
	}
}

/**
 * e100_rx_srv - service RX queue
 * @bdp: atapter's private data struct
 * @max_number_of_rfds: max number of RFDs to process
 * @rx_congestion: flag pointer, to inform the calling function of congestion.
 *
 * This routine processes the RX interrupt & services the RX queues.
 * For each successful RFD, it allocates a new msg block, links that
 * into the RFD list, and sends the old msg upstream.
 * The new RFD is then put at the end of the free list of RFD's.
 * It returns the number of serviced RFDs.
 */
u32
e100_rx_srv(struct e100_private *bdp, u32 max_number_of_rfds,
	    int *rx_congestion)
{
	rfd_t *rfd;		/* new rfd, received rfd */
	int i;
	u16 rfd_status;
	struct sk_buff *skb;
	struct net_device *dev;
	unsigned int data_sz;
	struct rx_list_elem *rx_struct;
	u32 rfd_cnt = 0;

	if (rx_congestion) {
		*rx_congestion = 0;
	}

	dev = bdp->device;

	/* current design of rx is as following:
	 * 1. socket buffer (skb) used to pass network packet to upper layer
	 * 2. all HW host memory structures (like RFDs, RBDs and data buffers)
	 *    are placed in a skb's data room
	 * 3. when rx process is complete, we change skb internal pointers to exclude
	 *    from data area all unrelated things (RFD, RDB) and to leave
	 *    just rx'ed packet netto
	 * 4. for each skb passed to upper layer, new one is allocated instead.
	 * 5. if no skb left, in 2 sec another atempt to allocate skbs will be made
	 *    (watchdog trigger SWI intr and isr should allocate new skbs)
	 */
	for (i = 0; i < bdp->params.RxDescriptors; i++) {
		if (max_number_of_rfds && (rfd_cnt >= max_number_of_rfds)) {
			break;
		}
		if (list_empty(&(bdp->active_rx_list))) {
			break;
		}

		rx_struct = list_entry(bdp->active_rx_list.next,
				       struct rx_list_elem, list_elem);
		skb = rx_struct->skb;

		rfd = RFD_POINTER(skb, bdp);	/* locate RFD within skb */

		// sync only the RFD header
		pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
				    bdp->rfd_size, PCI_DMA_FROMDEVICE);
		rfd_status = le16_to_cpu(rfd->rfd_header.cb_status);	/* get RFD's status */
		if (!(rfd_status & RFD_STATUS_COMPLETE))	/* does not contains data yet - exit */
			break;

		/* to allow manipulation with current skb we need to unlink it */
		list_del(&(rx_struct->list_elem));

		/* do not free & unmap badly recieved packet.
		 * move it to the end of skb list for reuse */
		if (!(rfd_status & RFD_STATUS_OK)) {
			e100_add_skb_to_end(bdp, rx_struct);
			continue;
		}

		data_sz = min_t(u16, (le16_to_cpu(rfd->rfd_act_cnt) & 0x3fff),
				(sizeof (rfd_t) - bdp->rfd_size));

		/* now sync all the data */
		pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
				    (data_sz + bdp->rfd_size),
				    PCI_DMA_FROMDEVICE);

		pci_unmap_single(bdp->pdev, rx_struct->dma_addr,
				 sizeof (rfd_t), PCI_DMA_FROMDEVICE);

		list_add(&(rx_struct->list_elem), &(bdp->rx_struct_pool));

		/* end of dma access to rfd */
		bdp->skb_req++;	/* incr number of requested skbs */
		e100_alloc_skbs(bdp);	/* and get them */

		/* set packet size, excluding checksum (2 last bytes) if it is present */
		if ((bdp->flags & DF_CSUM_OFFLOAD)
		    && (bdp->rev_id < D102_REV_ID))
			skb_put(skb, (int) data_sz - 2);
		else
			skb_put(skb, (int) data_sz);

		/* set the protocol */
		skb->protocol = eth_type_trans(skb, dev);

		/* set the checksum info */
		if (bdp->flags & DF_CSUM_OFFLOAD) {
			if (bdp->rev_id >= D102_REV_ID) {
				skb->ip_summed = e100_D102_check_checksum(rfd);
			} else {
				skb->ip_summed = e100_D101M_checksum(bdp, skb);
			}
		} else {
			skb->ip_summed = CHECKSUM_NONE;
		}

		switch (netif_rx(skb)) {
		case NET_RX_BAD:
			break;

		case NET_RX_DROP:
		case NET_RX_CN_MOD:
		case NET_RX_CN_HIGH:
			if (bdp->params.b_params & PRM_RX_CONG) {
				if (rx_congestion) {
					*rx_congestion = 1;
				}
			}
			/* FALL THROUGH TO STATISTICS UPDATE */
		default:
			bdp->drv_stats.net_stats.rx_bytes += skb->len;
			break;
		}

		rfd_cnt++;
	}			/* end of rfd loop */

	/* restart the RU if it has stopped */
	if ((readw(&bdp->scb->scb_status) & SCB_RUS_MASK) != SCB_RUS_READY) {
		e100_start_ru(bdp);
	}

	return rfd_cnt;
}

void
e100_refresh_txthld(struct e100_private *bdp)
{
	basic_cntr_t *pstat = &(bdp->stats_counters->basic_stats);

	/* as long as tx_per_underrun is not 0, we can go about dynamically *
	 * adjusting the xmit threshold. we stop doing that & resort to defaults
	 * * once the adjustments become meaningless. the value is adjusted by *
	 * dumping the error counters & checking the # of xmit underrun errors *
	 * we've had. */
	if (bdp->tx_per_underrun) {
		/* We are going to last values dumped from the dump statistics
		 * command */
		if (le32_to_cpu(pstat->xmt_gd_frames)) {
			if (le32_to_cpu(pstat->xmt_uruns)) {
				/* 
				 * if we have had more than one underrun per "DEFAULT #
				 * OF XMITS ALLOWED PER UNDERRUN" good xmits, raise the
				 * THRESHOLD.
				 */
				if ((le32_to_cpu(pstat->xmt_gd_frames) /
				     le32_to_cpu(pstat->xmt_uruns)) <
				    bdp->tx_per_underrun) {
					bdp->tx_thld += 3;
				}
			}

			/* 
			 * if we've had less than one underrun per the DEFAULT number of
			 * of good xmits allowed, lower the THOLD but not less than 0 
			 */
			if (le32_to_cpu(pstat->xmt_gd_frames) >
			    bdp->tx_per_underrun) {
				bdp->tx_thld--;

				if (bdp->tx_thld < 6)
					bdp->tx_thld = 6;

			}
		}

		/* end good xmits */
		/* 
		 * * if our adjustments are becoming unresonable, stop adjusting &
		 * resort * to defaults & pray. A THOLD value > 190 means that the
		 * adapter will * wait for 190*8=1520 bytes in TX FIFO before it
		 * starts xmit. Since * MTU is 1514, it doesn't make any sense for
		 * further increase. */
		if (bdp->tx_thld >= 190) {
			bdp->tx_per_underrun = 0;
			bdp->tx_thld = 189;
		}
	}			/* end underrun check */
}

#ifdef E100_ZEROCOPY
/**
 * e100_pseudo_hdr_csum - compute IP pseudo-header checksum
 * @ip: points to the header of the IP packet
 *
 * Return the 16 bit checksum of the IP pseudo-header.,which is computed
 * on the fields: IP src, IP dst, next protocol, payload length.
 * The checksum vaule is returned in network byte order.
 */
static inline u16
e100_pseudo_hdr_csum(const struct iphdr *ip)
{
	u32 pseudo = 0;
	u32 payload_len = 0;

	payload_len = ntohs(ip->tot_len) - (ip->ihl * 4);

	pseudo += htons(payload_len);
	pseudo += (ip->protocol << 8);
	pseudo += ip->saddr & 0x0000ffff;
	pseudo += (ip->saddr & 0xffff0000) >> 16;
	pseudo += ip->daddr & 0x0000ffff;
	pseudo += (ip->daddr & 0xffff0000) >> 16;

	return FOLD_CSUM(pseudo);
}
#endif /* E100_ZEROCOPY */

/**
 * e100_prepare_xmit_buff - prepare a buffer for transmission
 * @bdp: atapter's private data struct
 * @skb: skb to send
 *
 * This routine prepare a buffer for transmission. It checks
 * the message length for the appropiate size. It picks up a
 * free tcb from the TCB pool and sets up the corresponding
 * TBD's. If the number of fragments are more than the number
 * of TBD/TCB it copies all the fragments in a coalesce buffer.
 * It returns a pointer to the prepared TCB.
 */
static inline tcb_t *
e100_prepare_xmit_buff(struct e100_private *bdp, struct sk_buff *skb)
{
	tcb_t *tcb, *prev_tcb;

	tcb = bdp->tcb_pool.data;
	tcb += TCB_TO_USE(bdp->tcb_pool);

	if (bdp->flags & USE_IPCB) {
		tcb->tcbu.ipcb.ip_activation_high = IPCB_IP_ACTIVATION_DEFAULT;
		tcb->tcbu.ipcb.ip_schedule &= ~IPCB_TCP_PACKET;
		tcb->tcbu.ipcb.ip_schedule &= ~IPCB_TCPUDP_CHECKSUM_ENABLE;
	}

	tcb->tcb_hdr.cb_status = 0;
	tcb->tcb_thrshld = bdp->tx_thld;
	tcb->tcb_hdr.cb_cmd |= __constant_cpu_to_le16(CB_S_BIT);

	/* set the I bit on the modulo tcbs, so we will get an interrupt * to
	 * clean things up */
	if (!(++bdp->tx_count % TX_FRAME_CNT)) {
		tcb->tcb_hdr.cb_cmd |= __constant_cpu_to_le16(CB_I_BIT);
	}

	tcb->tcb_skb = skb;

#ifdef E100_ZEROCOPY
	if (skb->ip_summed == CHECKSUM_HW) {
		const struct iphdr *ip = skb->nh.iph;

		if ((ip->protocol == IPPROTO_TCP) ||
		    (ip->protocol == IPPROTO_UDP)) {
			u16 *chksum;

			tcb->tcbu.ipcb.ip_activation_high =
				IPCB_HARDWAREPARSING_ENABLE;
			tcb->tcbu.ipcb.ip_schedule |=
				IPCB_TCPUDP_CHECKSUM_ENABLE;

			if (ip->protocol == IPPROTO_TCP) {
				struct tcphdr *tcp;

				tcp = (struct tcphdr *) ((u32 *) ip + ip->ihl);
				chksum = &(tcp->check);
				tcb->tcbu.ipcb.ip_schedule |= IPCB_TCP_PACKET;
			} else {
				struct udphdr *udp;

				udp = (struct udphdr *) ((u32 *) ip + ip->ihl);
				chksum = &(udp->check);
			}

			*chksum = e100_pseudo_hdr_csum(ip);
		}
	}

	if (!skb_shinfo(skb)->nr_frags) {
		(tcb->tbd_ptr)->tbd_buf_addr =
			cpu_to_le32(pci_map_single(bdp->pdev, skb->data,
						   skb->len, PCI_DMA_TODEVICE));
		(tcb->tbd_ptr)->tbd_buf_cnt = cpu_to_le16(skb->len);
		tcb->tcb_tbd_num = 1;
		tcb->tcb_tbd_ptr = tcb->tcb_tbd_dflt_ptr;
	} else {
		int i;
		void *addr;
		tbd_t *tbd_arr_ptr = &(tcb->tbd_ptr[1]);
		skb_frag_t *frag = &skb_shinfo(skb)->frags[0];

		(tcb->tbd_ptr)->tbd_buf_addr =
			cpu_to_le32(pci_map_single(bdp->pdev, skb->data,
						   (skb->len - skb->data_len),
						   PCI_DMA_TODEVICE));
		(tcb->tbd_ptr)->tbd_buf_cnt =
			cpu_to_le16(skb->len - skb->data_len);

		for (i = 0; i < skb_shinfo(skb)->nr_frags;
		     i++, tbd_arr_ptr++, frag++) {

			addr = ((void *) page_address(frag->page) +
				frag->page_offset);

			tbd_arr_ptr->tbd_buf_addr =
				cpu_to_le32(pci_map_single(bdp->pdev,
							   addr, frag->size,
							   PCI_DMA_TODEVICE));
			tbd_arr_ptr->tbd_buf_cnt = cpu_to_le16(frag->size);
		}
		tcb->tcb_tbd_num = skb_shinfo(skb)->nr_frags + 1;
		tcb->tcb_tbd_ptr = tcb->tcb_tbd_expand_ptr;
	}
#else
	(tcb->tbd_ptr)->tbd_buf_addr =
		cpu_to_le32(pci_map_single(bdp->pdev, skb->data,
					   skb->len, PCI_DMA_TODEVICE));
	(tcb->tbd_ptr)->tbd_buf_cnt = cpu_to_le16(skb->len);
#endif

	/* clear the S-BIT on the previous tcb */
	prev_tcb = bdp->tcb_pool.data;
	prev_tcb += PREV_TCB_USED(bdp->tcb_pool);
	prev_tcb->tcb_hdr.cb_cmd &= __constant_cpu_to_le16((u16) ~CB_S_BIT);

	bdp->tcb_pool.tail = NEXT_TCB_TOUSE(bdp->tcb_pool.tail);

	wmb();

	e100_start_cu(bdp, tcb);

	return tcb;
}

/* Changed for 82558 enhancement */
/**
 * e100_start_cu - start the adapter's CU
 * @bdp: atapter's private data struct
 * @tcb: TCB to be transmitted
 *
 * This routine issues a CU Start or CU Resume command to the 82558/9.
 * This routine was added because the prepare_ext_xmit_buff takes advantage
 * of the 82558/9's Dynamic TBD chaining feature and has to start the CU as
 * soon as the first TBD is ready. 
 *
 * e100_start_cu must be called while holding the tx_lock ! 
 */
void
e100_start_cu(struct e100_private *bdp, tcb_t *tcb)
{
	unsigned long lock_flag;

	spin_lock_irqsave(&(bdp->bd_lock), lock_flag);
	switch (bdp->next_cu_cmd) {
	case RESUME_NO_WAIT:
		/*last cu command was a CU_RESMUE if this is a 558 or newer we dont need to
		 * wait for command word to clear, we reach here only if we are bachlor
		 */
		e100_exec_cmd(bdp, SCB_CUC_RESUME);
		break;

	case RESUME_WAIT:
		if ((bdp->flags & IS_ICH) &&
		    (bdp->cur_line_speed == 10) &&
		    (bdp->cur_dplx_mode == HALF_DUPLEX)) {
			e100_wait_exec_simple(bdp, SCB_CUC_NOOP);
			udelay(1);
		}
		if ((e100_wait_exec_simple(bdp, SCB_CUC_RESUME)) &&
		    (bdp->flags & IS_BACHELOR) && (!(bdp->flags & IS_ICH))) {
			bdp->next_cu_cmd = RESUME_NO_WAIT;
		}
		break;

	case START_WAIT:
		// The last command was a non_tx CU command
		if (!e100_wait_cus_idle(bdp))
			printk(KERN_DEBUG
			       "%s cu_start: timeout waiting for cu\n",
			       bdp->device->name);
		if (!e100_wait_exec_cmplx(bdp, (u32) (tcb->tcb_phys),
					  SCB_CUC_START)) {
			printk(KERN_DEBUG
			       "%s cu_start: timeout waiting for scb\n",
			       bdp->device->name);
			e100_exec_cmplx(bdp, (u32) (tcb->tcb_phys),
					SCB_CUC_START);
		}

		bdp->next_cu_cmd = RESUME_WAIT;

		break;
	}

	/* save the last tcb */
	bdp->last_tcb = tcb;

	spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);
}

/* ====================================================================== */
/* hw                                                                     */
/* ====================================================================== */

/**
 * e100_selftest - perform H/W self test
 * @bdp: atapter's private data struct
 * @st_timeout: address to return timeout value, if fails
 * @st_result: address to return selftest result, if fails
 *
 * This routine will issue PORT Self-test command to test the e100.
 * The self-test will fail if the adapter's master-enable bit is not
 * set in the PCI Command Register, or if the adapter is not seated
 * in a PCI master-enabled slot. we also disable interrupts when the
 * command is completed.
 *
 * Returns:
 *      true: if adapter passes self_test
 *      false: otherwise
 */
unsigned char
e100_selftest(struct e100_private *bdp, u32 *st_timeout, u32 *st_result)
{
	u32 selftest_cmd;

	/* initialize the nic state before running test */
	e100_sw_reset(bdp, PORT_SOFTWARE_RESET);
	/* Setup the address of the self_test area */
	selftest_cmd = bdp->selftest_phys;

	/* Setup SELF TEST Command Code in D3 - D0 */
	selftest_cmd |= PORT_SELFTEST;

	/* Initialize the self-test signature and results DWORDS */
	bdp->selftest->st_sign = 0;
	bdp->selftest->st_result = 0xffffffff;

	/* Do the port command */
	writel(selftest_cmd, &bdp->scb->scb_port);
	readw(&(bdp->scb->scb_status));	/* flushes last write, read-safe */

	/* Wait at least 10 milliseconds for the self-test to complete */
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(HZ / 100 + 1);

	/* disable interrupts since the're now enabled */
	e100_dis_intr(bdp);

	/* if The First Self Test DWORD Still Zero, We've timed out. If the
	 * second DWORD is not zero then we have an error. */
	if ((bdp->selftest->st_sign == 0) || (bdp->selftest->st_result != 0)) {

		if (st_timeout)
			*st_timeout = !(le32_to_cpu(bdp->selftest->st_sign));

		if (st_result)
			*st_result = le32_to_cpu(bdp->selftest->st_result);

		return false;
	}

	return true;
}

/**
 * e100_setup_iaaddr - issue IA setup sommand
 * @bdp: atapter's private data struct
 * @eaddr: new ethernet address
 *
 * This routine will issue the IA setup command. This command
 * will notify the 82557 (e100) of what its individual (node)
 * address is. This command will be executed in polled mode.
 *
 * Returns:
 *      true: if the IA setup command was successfully issued and completed
 *      false: otherwise
 */
unsigned char
e100_setup_iaaddr(struct e100_private *bdp, u8 *eaddr)
{
	unsigned int i;
	cb_header_t *ntcb_hdr;
	unsigned char res;
	nxmit_cb_entry_t *cmd;

	if ((cmd = e100_alloc_non_tx_cmd(bdp)) == NULL) {
		res = false;
		goto exit;
	}

	ntcb_hdr = (cb_header_t *) cmd->non_tx_cmd;
	ntcb_hdr->cb_cmd = __constant_cpu_to_le16(CB_IA_ADDRESS);

	for (i = 0; i < ETH_ALEN; i++) {
		(cmd->non_tx_cmd)->ntcb.setup.ia_addr[i] = eaddr[i];
	}

	res = e100_exec_non_cu_cmd(bdp, cmd);
	if (!res)
		printk(KERN_WARNING "%s IA setup failed\n", bdp->device->name);

exit:
	return res;
}

/**
 * e100_start_ru - start the RU if needed
 * @bdp: atapter's private data struct
 *
 * This routine checks the status of the 82557's receive unit(RU),
 * and starts the RU if it was not already active.  However,
 * before restarting the RU, the driver gives the RU the buffers
 * it freed up during the servicing of the ISR. If there are
 * no free buffers to give to the RU, (i.e. we have reached a
 * no resource condition) the RU will not be started till the
 * next ISR.
 */
void
e100_start_ru(struct e100_private *bdp)
{
	struct rx_list_elem *rx_struct = NULL;
	int buffer_found = 0;
	struct list_head *entry_ptr;

	list_for_each(entry_ptr, &(bdp->active_rx_list)) {
		rx_struct =
			list_entry(entry_ptr, struct rx_list_elem, list_elem);
		pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
				    bdp->rfd_size, PCI_DMA_FROMDEVICE);
		if (!((SKB_RFD_STATUS(rx_struct->skb, bdp) &
		       __constant_cpu_to_le16(RFD_STATUS_COMPLETE)))) {
			buffer_found = 1;
			break;
		}
	}

	/* No available buffers */
	if (!buffer_found) {
		return;
	}

	spin_lock(&bdp->bd_lock);

	if (!e100_wait_exec_cmplx(bdp, rx_struct->dma_addr, SCB_RUC_START)) {
		printk(KERN_DEBUG
		       "%s start_ru: wait_scb failed\n", bdp->device->name);
		e100_exec_cmplx(bdp, rx_struct->dma_addr, SCB_RUC_START);
	}
	if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
		bdp->next_cu_cmd = RESUME_WAIT;
	}
	spin_unlock(&bdp->bd_lock);
}

/**
 * e100_cmd_complete_location
 * @bdp: atapter's private data struct
 *
 * This routine returns a pointer to the location of the command-complete
 * DWord in the dump statistical counters area, according to the statistical
 * counters mode (557 - basic, 558 - extended, or 559 - TCO mode).
 * See e100_config_init() for the setting of the statistical counters mode.
 */
static u32 *
e100_cmd_complete_location(struct e100_private *bdp)
{
	u32 *cmd_complete;
	max_counters_t *stats = bdp->stats_counters;

	switch (bdp->stat_mode) {
	case E100_EXTENDED_STATS:
		cmd_complete =
			(u32 *) &(((err_cntr_558_t *) (stats))->cmd_complete);
		break;

	case E100_TCO_STATS:
		cmd_complete =
			(u32 *) &(((err_cntr_559_t *) (stats))->cmd_complete);
		break;

	case E100_BASIC_STATS:
	default:		
		cmd_complete =
			(u32 *) &(((err_cntr_557_t *) (stats))->cmd_complete);
		break;
	}

	return cmd_complete;
}

/**
 * e100_clr_cntrs - clear statistics counters
 * @bdp: atapter's private data struct
 *
 * This routine will clear the adapter error statistic counters.
 *
 * Returns:
 *      true: if successfully cleared stat counters
 *      false: otherwise
 */
static unsigned char __devinit
e100_clr_cntrs(struct e100_private *bdp)
{
	volatile u32 *pcmd_complete;

	/* clear the dump counter complete word */
	pcmd_complete = e100_cmd_complete_location(bdp);
	*pcmd_complete = 0;
	wmb();

	if (!e100_wait_exec_cmplx(bdp, bdp->stat_cnt_phys, SCB_CUC_DUMP_ADDR))
		return false;

	/* wait 10 microseconds for the command to complete */
	udelay(10);

	if (!e100_wait_exec_simple(bdp, SCB_CUC_DUMP_RST_STAT))
		return false;

	if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
		bdp->next_cu_cmd = RESUME_WAIT;
	}

	return true;
}

static unsigned char
e100_update_stats(struct e100_private *bdp)
{
	u32 *pcmd_complete;
	basic_cntr_t *pstat = &(bdp->stats_counters->basic_stats);

	// check if last dump command completed
	pcmd_complete = e100_cmd_complete_location(bdp);
	if (*pcmd_complete != le32_to_cpu(DUMP_RST_STAT_COMPLETED) &&
	    *pcmd_complete != le32_to_cpu(DUMP_STAT_COMPLETED)) {
		return false;
	}

	/* increment the statistics */
	bdp->drv_stats.net_stats.rx_packets +=
		le32_to_cpu(pstat->rcv_gd_frames);
	bdp->drv_stats.net_stats.tx_packets +=
		le32_to_cpu(pstat->xmt_gd_frames);
	bdp->drv_stats.net_stats.rx_dropped += le32_to_cpu(pstat->rcv_rsrc_err);
	bdp->drv_stats.net_stats.collisions += le32_to_cpu(pstat->xmt_ttl_coll);
	bdp->drv_stats.net_stats.rx_length_errors +=
		le32_to_cpu(pstat->rcv_shrt_frames);
	bdp->drv_stats.net_stats.rx_over_errors +=
		le32_to_cpu(pstat->rcv_rsrc_err);
	bdp->drv_stats.net_stats.rx_crc_errors +=
		le32_to_cpu(pstat->rcv_crc_errs);
	bdp->drv_stats.net_stats.rx_frame_errors +=
		le32_to_cpu(pstat->rcv_algn_errs);
	bdp->drv_stats.net_stats.rx_fifo_errors +=
		le32_to_cpu(pstat->rcv_oruns);
	bdp->drv_stats.net_stats.tx_aborted_errors +=
		le32_to_cpu(pstat->xmt_max_coll);
	bdp->drv_stats.net_stats.tx_carrier_errors +=
		le32_to_cpu(pstat->xmt_lost_crs);
	bdp->drv_stats.net_stats.tx_fifo_errors +=
		le32_to_cpu(pstat->xmt_uruns);

	bdp->drv_stats.tx_late_col += le32_to_cpu(pstat->xmt_late_coll);
	bdp->drv_stats.tx_ok_defrd += le32_to_cpu(pstat->xmt_deferred);
	bdp->drv_stats.tx_one_retry += le32_to_cpu(pstat->xmt_sngl_coll);
	bdp->drv_stats.tx_mt_one_retry += le32_to_cpu(pstat->xmt_mlt_coll);
	bdp->drv_stats.rcv_cdt_frames += le32_to_cpu(pstat->rcv_err_coll);

	if (bdp->stat_mode != E100_BASIC_STATS) {
		ext_cntr_t *pex_stat = &bdp->stats_counters->extended_stats;

		bdp->drv_stats.xmt_fc_pkts +=
			le32_to_cpu(pex_stat->xmt_fc_frames);
		bdp->drv_stats.rcv_fc_pkts +=
			le32_to_cpu(pex_stat->rcv_fc_frames);
		bdp->drv_stats.rcv_fc_unsupported +=
			le32_to_cpu(pex_stat->rcv_fc_unsupported);
	}

	if (bdp->stat_mode == E100_TCO_STATS) {
		tco_cntr_t *ptco_stat = &bdp->stats_counters->tco_stats;

		bdp->drv_stats.xmt_tco_pkts +=
			le16_to_cpu(ptco_stat->xmt_tco_frames);
		bdp->drv_stats.rcv_tco_pkts +=
			le16_to_cpu(ptco_stat->rcv_tco_frames);
	}

	*pcmd_complete = 0;
	return true;
}

/**
 * e100_dump_stat_cntrs
 * @bdp: atapter's private data struct
 *
 * This routine will dump the board statistical counters without waiting
 * for stat_dump to complete. Any access to this stats should verify the completion
 * of the command
 */
void
e100_dump_stats_cntrs(struct e100_private *bdp)
{
	unsigned long lock_flag_bd;

	spin_lock_irqsave(&(bdp->bd_lock), lock_flag_bd);

	/* dump h/w stats counters */
	if (e100_wait_exec_simple(bdp, SCB_CUC_DUMP_RST_STAT)) {
		if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
			bdp->next_cu_cmd = RESUME_WAIT;
		}
	}

	spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag_bd);
}

/**
 * e100_exec_non_cu_cmd
 * @bdp: atapter's private data struct
 * @command: the non-cu command to execute
 *
 * This routine will submit a command block to be executed,
 */
unsigned char
e100_exec_non_cu_cmd(struct e100_private *bdp, nxmit_cb_entry_t *command)
{
	cb_header_t *ntcb_hdr;
	unsigned long lock_flag;
	unsigned long expiration_time;
	unsigned char rc = true;

	ntcb_hdr = (cb_header_t *) command->non_tx_cmd;	/* get hdr of non tcb cmd */

	/* Set the Command Block to be the last command block */
	ntcb_hdr->cb_cmd |= __constant_cpu_to_le16(CB_EL_BIT);
	ntcb_hdr->cb_status = 0;
	ntcb_hdr->cb_lnk_ptr = 0;

	wmb();
	if (in_interrupt())
		return e100_delayed_exec_non_cu_cmd(bdp, command);

	if (netif_running(bdp->device) && (!bdp->driver_isolated))
		return e100_delayed_exec_non_cu_cmd(bdp, command);

	spin_lock_bh(&(bdp->bd_non_tx_lock));

	if (bdp->non_tx_command_state != E100_NON_TX_IDLE) {
		goto delayed_exec;
	}

	if (bdp->last_tcb) {
		rmb();
		if ((bdp->last_tcb->tcb_hdr.cb_status &
		     __constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
			goto delayed_exec;
	}

	if ((readw(&bdp->scb->scb_status) & SCB_CUS_MASK) == SCB_CUS_ACTIVE) {
		goto delayed_exec;
	}

	spin_lock_irqsave(&bdp->bd_lock, lock_flag);

	if (!e100_wait_exec_cmplx(bdp, command->dma_addr, SCB_CUC_START)) {
		spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);
		rc = false;
		goto exit;
	}

	bdp->next_cu_cmd = START_WAIT;
	spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);

	/* now wait for completion of non-cu CB up to 20 msec */
	expiration_time = jiffies + HZ / 50 + 1;
	rmb();
	while (!(ntcb_hdr->cb_status &
		     __constant_cpu_to_le16(CB_STATUS_COMPLETE))) {

		if (time_before(jiffies, expiration_time)) {
			spin_unlock_bh(&(bdp->bd_non_tx_lock));
			yield();
			spin_lock_bh(&(bdp->bd_non_tx_lock));
		} else {
			rc = false;
			goto exit;
		}
		rmb();
	}

exit:
	e100_free_non_tx_cmd(bdp, command);

	if (netif_running(bdp->device))
		netif_wake_queue(bdp->device);

	spin_unlock_bh(&(bdp->bd_non_tx_lock));
	return rc;

delayed_exec:
	spin_unlock_bh(&(bdp->bd_non_tx_lock));
	return e100_delayed_exec_non_cu_cmd(bdp, command);
}

/**
 * e100_sw_reset
 * @bdp: atapter's private data struct
 * @reset_cmd: s/w reset or selective reset
 *
 * This routine will issue a software reset to the adapter. It 
 * will also disable interrupts, as the are enabled after reset.
 */
void
e100_sw_reset(struct e100_private *bdp, u32 reset_cmd)
{
	/* Do  a selective reset first to avoid a potential PCI hang */
	writel(PORT_SELECTIVE_RESET, &bdp->scb->scb_port);
	readw(&(bdp->scb->scb_status));	/* flushes last write, read-safe */

	/* wait for the reset to take effect */
	udelay(20);
	if (reset_cmd == PORT_SOFTWARE_RESET) {
		writel(PORT_SOFTWARE_RESET, &bdp->scb->scb_port);

		/* wait 20 micro seconds for the reset to take effect */
		udelay(20);
	}

	/* Mask off our interrupt line -- its unmasked after reset */
	e100_dis_intr(bdp);
}

/**
 * e100_load_microcode - Download microsocde to controller.
 * @bdp: atapter's private data struct
 *
 * This routine downloads microcode on to the controller. This
 * microcode is available for the 82558/9, 82550. Currently the
 * microcode handles interrupt bundling and TCO workaround.
 *
 * Returns:
 *      true: if successfull
 *      false: otherwise
 */
static unsigned char
e100_load_microcode(struct e100_private *bdp)
{
	static struct {
		u8 rev_id;
		u32 ucode[UCODE_MAX_DWORDS + 1];
		int timer_dword;
		int bundle_dword;
		int min_size_dword;
	} ucode_opts[] = {
		{ D101A4_REV_ID,
		  D101_A_RCVBUNDLE_UCODE,
		  D101_CPUSAVER_TIMER_DWORD,
		  D101_CPUSAVER_BUNDLE_DWORD,
		  D101_CPUSAVER_MIN_SIZE_DWORD },
		{ D101B0_REV_ID,
		  D101_B0_RCVBUNDLE_UCODE,
		  D101_CPUSAVER_TIMER_DWORD,
		  D101_CPUSAVER_BUNDLE_DWORD,
		  D101_CPUSAVER_MIN_SIZE_DWORD },
		{ D101MA_REV_ID,
		  D101M_B_RCVBUNDLE_UCODE,
		  D101M_CPUSAVER_TIMER_DWORD,
		  D101M_CPUSAVER_BUNDLE_DWORD,
		  D101M_CPUSAVER_MIN_SIZE_DWORD },
		{ D101S_REV_ID,
		  D101S_RCVBUNDLE_UCODE,
		  D101S_CPUSAVER_TIMER_DWORD,
		  D101S_CPUSAVER_BUNDLE_DWORD,
		  D101S_CPUSAVER_MIN_SIZE_DWORD },
		{ D102_REV_ID,
		  D102_B_RCVBUNDLE_UCODE,
		  D102_B_CPUSAVER_TIMER_DWORD,
		  D102_B_CPUSAVER_BUNDLE_DWORD,
		  D102_B_CPUSAVER_MIN_SIZE_DWORD },
		{ D102C_REV_ID,
		  D102_C_RCVBUNDLE_UCODE,
		  D102_C_CPUSAVER_TIMER_DWORD,
		  D102_C_CPUSAVER_BUNDLE_DWORD,
		  D102_C_CPUSAVER_MIN_SIZE_DWORD },
		{ D102E_REV_ID,
		  D102_E_RCVBUNDLE_UCODE,
		  D102_E_CPUSAVER_TIMER_DWORD,
		  D102_E_CPUSAVER_BUNDLE_DWORD,
		  D102_E_CPUSAVER_MIN_SIZE_DWORD },
		{ 0, {0}, 0, 0, 0}
	}, *opts;

	opts = ucode_opts;

	/* User turned ucode loading off */
	if (!(bdp->params.b_params & PRM_UCODE))
		return false;

	/* These controllers do not need ucode */
	if (bdp->flags & IS_ICH)
		return false;

	/* Search for ucode match against h/w rev_id */
	while (opts->rev_id) {
		if (bdp->rev_id == opts->rev_id) {
			int i;
			u32 *ucode_dword;
			load_ucode_cb_t *ucode_cmd_ptr;
			nxmit_cb_entry_t *cmd = e100_alloc_non_tx_cmd(bdp);

			if (cmd != NULL) {
				ucode_cmd_ptr =
					(load_ucode_cb_t *) cmd->non_tx_cmd;
				ucode_dword = ucode_cmd_ptr->ucode_dword;
			} else {
				return false;
			}

			memcpy(ucode_dword, opts->ucode, sizeof (opts->ucode));

			/* Insert user-tunable settings */
			ucode_dword[opts->timer_dword] &= 0xFFFF0000;
			ucode_dword[opts->timer_dword] |=
				(u16) bdp->params.IntDelay;
			ucode_dword[opts->bundle_dword] &= 0xFFFF0000;
			ucode_dword[opts->bundle_dword] |=
				(u16) bdp->params.BundleMax;
			ucode_dword[opts->min_size_dword] &= 0xFFFF0000;
			ucode_dword[opts->min_size_dword] |=
				(bdp->params.b_params & PRM_BUNDLE_SMALL) ?
				0xFFFF : 0xFF80;

			for (i = 0; i < UCODE_MAX_DWORDS; i++)
				cpu_to_le32s(&(ucode_dword[i]));

			ucode_cmd_ptr->load_ucode_cbhdr.cb_cmd =
				__constant_cpu_to_le16(CB_LOAD_MICROCODE);

			return e100_exec_non_cu_cmd(bdp, cmd);
		}
		opts++;
	}

	return false;
}

/***************************************************************************/
/***************************************************************************/
/*       EEPROM  Functions                                                 */
/***************************************************************************/

/* Read PWA (printed wired assembly) number */
void __devinit
e100_rd_pwa_no(struct e100_private *bdp)
{
	bdp->pwa_no = e100_eeprom_read(bdp, EEPROM_PWA_NO);
	bdp->pwa_no <<= 16;
	bdp->pwa_no |= e100_eeprom_read(bdp, EEPROM_PWA_NO + 1);
}

/* Read the permanent ethernet address from the eprom. */
void __devinit
e100_rd_eaddr(struct e100_private *bdp)
{
	int i;
	u16 eeprom_word;

	for (i = 0; i < 6; i += 2) {
		eeprom_word =
			e100_eeprom_read(bdp,
					 EEPROM_NODE_ADDRESS_BYTE_0 + (i / 2));

		bdp->device->dev_addr[i] =
			bdp->perm_node_address[i] = (u8) eeprom_word;
		bdp->device->dev_addr[i + 1] =
			bdp->perm_node_address[i + 1] = (u8) (eeprom_word >> 8);
	}
}

/* Check the D102 RFD flags to see if the checksum passed */
static unsigned char
e100_D102_check_checksum(rfd_t *rfd)
{
	if (((le16_to_cpu(rfd->rfd_header.cb_status)) & RFD_PARSE_BIT)
	    && (((rfd->rcvparserstatus & CHECKSUM_PROTOCOL_MASK) ==
		 RFD_TCP_PACKET)
		|| ((rfd->rcvparserstatus & CHECKSUM_PROTOCOL_MASK) ==
		    RFD_UDP_PACKET))
	    && (rfd->checksumstatus & TCPUDP_CHECKSUM_BIT_VALID)
	    && (rfd->checksumstatus & TCPUDP_CHECKSUM_VALID)) {
		return CHECKSUM_UNNECESSARY;
	}
	return CHECKSUM_NONE;
}

/**
 * e100_D101M_checksum
 * @bdp: atapter's private data struct
 * @skb: skb received
 *
 * Sets the skb->csum value from D101 csum found at the end of the Rx frame. The
 * D101M sums all words in frame excluding the ethernet II header (14 bytes) so
 * in case the packet is ethernet II and the protocol is IP, all is need is to
 * assign this value to skb->csum.
 */
static unsigned char
e100_D101M_checksum(struct e100_private *bdp, struct sk_buff *skb)
{
	unsigned short proto = (skb->protocol);

	if (proto == __constant_htons(ETH_P_IP)) {

		skb->csum = get_unaligned((u16 *) (skb->tail));
		return CHECKSUM_HW;
	}
	return CHECKSUM_NONE;
}

/***************************************************************************/
/***************************************************************************/
/***************************************************************************/
/***************************************************************************/
/*       Auxilary Functions                                                */
/***************************************************************************/

/* Print the board's configuration */
void __devinit
e100_print_brd_conf(struct e100_private *bdp)
{
	if (netif_carrier_ok(bdp->device)) {
		printk(KERN_NOTICE
		       "  Mem:0x%08lx  IRQ:%d  Speed:%d Mbps  Dx:%s\n",
		       (unsigned long) bdp->device->mem_start,
		       bdp->device->irq, bdp->cur_line_speed,
		       (bdp->cur_dplx_mode == FULL_DUPLEX) ? "Full" : "Half");
	} else {
		printk(KERN_NOTICE
		       "  Mem:0x%08lx  IRQ:%d  Speed:%d Mbps  Dx:%s\n",
		       (unsigned long) bdp->device->mem_start,
		       bdp->device->irq, 0, "N/A");

		/* Auto negotiation failed so we should display an error */
		printk(KERN_NOTICE "  Failed to detect cable link\n");
		printk(KERN_NOTICE "  Speed and duplex will be determined "
		       "at time of connection\n");
	}

	/* Print the string if checksum Offloading was enabled */
	if (bdp->flags & DF_CSUM_OFFLOAD)
		printk(KERN_NOTICE "  Hardware receive checksums enabled\n");
	else
		printk(KERN_NOTICE "  Hardware receive checksums disabled\n");

	if ((bdp->flags & DF_UCODE_LOADED))
		printk(KERN_NOTICE "  cpu cycle saver enabled\n");
}

/**
 * e100_get_brand_msg
 * @bdp: atapter's private data struct
 *
 * This routine checks if there is specified branding message for a given board
 * type and returns a pointer to the string containing the branding message.
 */
char *
e100_get_brand_msg(struct e100_private *bdp)
{
	int i;

	for (i = 0; e100_vendor_info_array[i].idstr != NULL; i++) {
		if (e100_vendor_info_array[i].device_type == bdp->device_type) {
			return e100_vendor_info_array[i].idstr;
		}
	}

	return e100_vendor_info_array[E100_ALL_BOARDS].idstr;
}

/**
 * e100_pci_setup - setup the adapter's PCI information
 * @pcid: adapter's pci_dev struct
 * @bdp: atapter's private data struct
 *
 * This routine sets up all PCI information for the adapter. It enables the bus
 * master bit (some BIOS don't do this), requests memory ans I/O regions, and
 * calls ioremap() on the adapter's memory region.
 *
 * Returns:
 *      true: if successfull
 *      false: otherwise
 */
static unsigned char __devinit
e100_pci_setup(struct pci_dev *pcid, struct e100_private *bdp)
{
	struct net_device *dev = bdp->device;
	int rc = 0;

	if ((rc = pci_enable_device(pcid)) != 0) {
		goto err;
	}

	/* dev and ven ID have already been checked so it is our device */
	pci_read_config_byte(pcid, PCI_REVISION_ID, (u8 *) &(bdp->rev_id));

	/* address #0 is a memory region */
	dev->mem_start = pci_resource_start(pcid, 0);
	dev->mem_end = dev->mem_start + sizeof (scb_t);

	/* address #1 is a IO region */
	dev->base_addr = pci_resource_start(pcid, 1);

	if ((rc = pci_request_regions(pcid, e100_short_driver_name)) != 0) {
		goto err_disable;
	}

	pci_enable_wake(pcid, 0, 0);

	/* if Bus Mastering is off, turn it on! */
	pci_set_master(pcid);

	/* address #0 is a memory mapping */
	bdp->scb = (scb_t *) ioremap_nocache(dev->mem_start, sizeof (scb_t));

	if (!bdp->scb) {
		printk(KERN_ERR "%s - %s: Failed to map PCI address 0x%lX\n",
		       e100_short_driver_name, dev->name,
		       pci_resource_start(pcid, 0));
		rc = -ENOMEM;
		goto err_region;
	}

	return 0;

err_region:
	pci_release_regions(pcid);
err_disable:
	pci_disable_device(pcid);
err:
	return rc;
}

void
e100_isolate_driver(struct e100_private *bdp)
{
	write_lock_irq(&(bdp->isolate_lock));
	bdp->driver_isolated = true;
	write_unlock_irq(&(bdp->isolate_lock));

	del_timer_sync(&bdp->watchdog_timer);

	if (netif_running(bdp->device))
		netif_stop_queue(bdp->device);

	bdp->last_tcb = NULL;

	e100_sw_reset(bdp, PORT_SELECTIVE_RESET);
}

void
e100_set_speed_duplex(struct e100_private *bdp)
{
	e100_phy_set_speed_duplex(bdp, true);
	e100_config_fc(bdp);	/* re-config flow-control if necessary */
	e100_config(bdp);	
}

static void
e100_tcb_add_C_bit(struct e100_private *bdp)
{
	tcb_t *tcb = (tcb_t *) bdp->tcb_pool.data;
	int i;

	for (i = 0; i < bdp->params.TxDescriptors; i++, tcb++) {
		tcb->tcb_hdr.cb_status |= cpu_to_le16(CB_STATUS_COMPLETE);
	}
}

/* 
 * Procedure:   e100_hw_reset_recover
 *
 * Description: This routine will recover the hw after reset.
 *
 * Arguments:
 *      bdp - Ptr to this card's e100_bdconfig structure
 *        reset_cmd - s/w reset or selective reset. 
 *
 * Returns:
 *        true upon success
 *        false upon failure
 */
unsigned char
e100_hw_reset_recover(struct e100_private *bdp, u32 reset_cmd)
{
	bdp->last_tcb = NULL;
	if (reset_cmd == PORT_SOFTWARE_RESET) {

		/*load CU & RU base */
		if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE)) {
			return false;
		}

		if (e100_load_microcode(bdp)) {
			bdp->flags |= DF_UCODE_LOADED;
		}

		if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE)) {
			return false;
		}

		/* Issue the load dump counters address command */
		if (!e100_wait_exec_cmplx(bdp, bdp->stat_cnt_phys,
					  SCB_CUC_DUMP_ADDR)) {
			return false;
		}

		if (!e100_setup_iaaddr(bdp, bdp->device->dev_addr)) {
			printk(KERN_ERR
			       "e100_hw_reset_recover: setup iaaddr failed\n");
			return false;
		}

		e100_set_multi_exec(bdp->device);

		/* Change for 82558 enhancement */
		/* If 82558/9 and if the user has enabled flow control, set up * the
		 * Flow Control Reg. in the CSR */
		if ((bdp->flags & IS_BACHELOR)
		    && (bdp->params.b_params & PRM_FC)) {
			writeb(DFLT_FC_THLD,
			       &bdp->scb->scb_ext.d101_scb.scb_fc_thld);
			writeb(DFLT_FC_CMD,
			       &bdp->scb->scb_ext.d101_scb.scb_fc_xon_xoff);
		}

	}

	e100_force_config(bdp);

	return true;
}

void
e100_deisolate_driver(struct e100_private *bdp, u8 recover, u8 full_init)
{
	if (full_init) {
		e100_sw_reset(bdp, PORT_SOFTWARE_RESET);
		if (!e100_hw_reset_recover(bdp, PORT_SOFTWARE_RESET))
			printk(KERN_ERR "e100_deisolate_driver:"
			       " HW SOFTWARE reset recover failed\n");
	}

	if (recover) {

		bdp->next_cu_cmd = START_WAIT;
		bdp->last_tcb = NULL;

		/* lets reset the chip */
		if (!full_init) {
			e100_sw_reset(bdp, PORT_SELECTIVE_RESET);

			if (!e100_hw_reset_recover(bdp, PORT_SELECTIVE_RESET)) {
				printk(KERN_ERR "e100_deisolate_driver:"
				       " HW reset recover failed\n");
			}
		}
		e100_start_ru(bdp);

		/* relaunch watchdog timer in 2 sec */
		mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));

		// we must clear tcbs since we may have lost Tx intrrupt
		// or have unsent frames on the tcb chain
		e100_tcb_add_C_bit(bdp);
		e100_tx_srv(bdp);

		e100_set_intr_mask(bdp);

		if (netif_running(bdp->device))
			netif_wake_queue(bdp->device);
	}

	bdp->driver_isolated = false;
}

#ifdef E100_ETHTOOL_IOCTL
static int
e100_do_ethtool_ioctl(struct net_device *dev, struct ifreq *ifr)
{
	struct ethtool_cmd ecmd;
	int rc = -EOPNOTSUPP;

	if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd.cmd)))
		return -EFAULT;

	switch (ecmd.cmd) {
	case ETHTOOL_GSET:
		rc = e100_ethtool_get_settings(dev, ifr);
		break;
	case ETHTOOL_SSET:
		rc = e100_ethtool_set_settings(dev, ifr);
		break;
#ifdef ETHTOOL_GDRVINFO
	case ETHTOOL_GDRVINFO:
		rc = e100_ethtool_get_drvinfo(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_NWAY_RST
	case ETHTOOL_NWAY_RST:
		rc = e100_ethtool_nway_rst(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_GLINK
	case ETHTOOL_GLINK:
		rc = e100_ethtool_glink(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_GEEPROM
	case ETHTOOL_GEEPROM:
	case ETHTOOL_SEEPROM:
		rc = e100_ethtool_eeprom(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_GWOL
	case ETHTOOL_GWOL:
	case ETHTOOL_SWOL:
		rc = e100_ethtool_wol(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_TEST
	case ETHTOOL_TEST:
		rc = e100_ethtool_test(dev, ifr);
		break;
#endif
#ifdef ETHTOOL_GSTRINGS
	case ETHTOOL_GSTRINGS:
		rc = e100_ethtool_gstrings(dev,ifr);
		break;
#endif
#ifdef	ETHTOOL_PHYS_ID
	case ETHTOOL_PHYS_ID:
		rc = e100_ethtool_led_blink(dev,ifr);
		break;
#endif
	default:
		break;
	}			//switch
	return rc;
}

static int
e100_ethtool_get_settings(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_cmd ecmd;
	u16 advert = 0;

	memset((void *) &ecmd, 0, sizeof (ecmd));

	bdp = dev->priv;

	ecmd.supported = bdp->speed_duplex_caps;

	ecmd.port =
		(bdp->speed_duplex_caps & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
	ecmd.transceiver = XCVR_INTERNAL;
	ecmd.phy_address = bdp->phy_addr;

	ecmd.speed = bdp->cur_line_speed;
	ecmd.duplex =
		(bdp->cur_dplx_mode == HALF_DUPLEX) ? DUPLEX_HALF : DUPLEX_FULL;

	ecmd.advertising = ADVERTISED_TP;

	if (bdp->params.e100_speed_duplex == E100_AUTONEG) {
		ecmd.autoneg = AUTONEG_ENABLE;
		ecmd.advertising |= ADVERTISED_Autoneg;
	} else {
		ecmd.autoneg = AUTONEG_DISABLE;
	}

	if (bdp->speed_duplex_caps & SUPPORTED_MII) {
		spin_lock_bh(&(bdp->mdi_access_lock));
		e100_mdi_read(bdp, MII_ADVERTISE, bdp->phy_addr, &advert);
		spin_unlock_bh(&(bdp->mdi_access_lock));

		if (advert & ADVERTISE_10HALF)
			ecmd.advertising |= ADVERTISED_10baseT_Half;
		if (advert & ADVERTISE_10FULL)
			ecmd.advertising |= ADVERTISED_10baseT_Full;
		if (advert & ADVERTISE_100HALF)
			ecmd.advertising |= ADVERTISED_100baseT_Half;
		if (advert & ADVERTISE_100FULL)
			ecmd.advertising |= ADVERTISED_100baseT_Full;
	} else {
		ecmd.autoneg = AUTONEG_DISABLE;
		ecmd.advertising &= ~ADVERTISED_Autoneg;
	}

	if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
		return -EFAULT;

	return 0;
}

static int
e100_ethtool_set_settings(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	int current_duplex;
	int e100_new_speed_duplex;
	int ethtool_new_speed_duplex;
	int speed_duplex_change_required;
	struct ethtool_cmd ecmd;

	if (!capable(CAP_NET_ADMIN)) {
		return -EPERM;
	}

	bdp = dev->priv;
	if (netif_running(dev)) {
		return -EBUSY;
	}
	if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd))) {
		return -EFAULT;
	}
	current_duplex =
		(bdp->cur_dplx_mode == HALF_DUPLEX) ? DUPLEX_HALF : DUPLEX_FULL;
	speed_duplex_change_required = (ecmd.speed != bdp->cur_line_speed)
		|| (ecmd.duplex != current_duplex);

	if ((ecmd.autoneg == AUTONEG_ENABLE) && speed_duplex_change_required) {
		return -EINVAL;
	}

	if ((ecmd.autoneg == AUTONEG_ENABLE)
	    && (bdp->speed_duplex_caps & SUPPORTED_Autoneg)) {
		bdp->params.e100_speed_duplex = E100_AUTONEG;
		e100_set_speed_duplex(bdp);
	} else {
		if (speed_duplex_change_required) {
			if (ecmd.speed == SPEED_10) {
				if (ecmd.duplex == DUPLEX_HALF) {
					e100_new_speed_duplex =
						E100_SPEED_10_HALF;
					ethtool_new_speed_duplex =
						SUPPORTED_10baseT_Half;

				} else {
					e100_new_speed_duplex =
						E100_SPEED_10_FULL;
					ethtool_new_speed_duplex =
						SUPPORTED_10baseT_Full;
				}

			} else {
				if (ecmd.duplex == DUPLEX_HALF) {
					e100_new_speed_duplex =
						E100_SPEED_100_HALF;
					ethtool_new_speed_duplex =
						SUPPORTED_100baseT_Half;

				} else {
					e100_new_speed_duplex =
						E100_SPEED_100_FULL;
					ethtool_new_speed_duplex =
						SUPPORTED_100baseT_Full;
				}
			}

			if (bdp->speed_duplex_caps & ethtool_new_speed_duplex) {
				bdp->params.e100_speed_duplex =
					e100_new_speed_duplex;
				e100_set_speed_duplex(bdp);
			} else {
				return -EOPNOTSUPP;
			}
		}
	}

	return 0;
}

#ifdef ETHTOOL_GLINK
static int
e100_ethtool_glink(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_value info;

	memset((void *) &info, 0, sizeof (info));

	bdp = dev->priv;
	info.cmd = ETHTOOL_GLINK;

	spin_lock_bh(&(bdp->mdi_access_lock));
	info.data = e100_get_link_state(bdp);
	spin_unlock_bh(&(bdp->mdi_access_lock));

	if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
		return -EFAULT;

	return 0;
}
#endif

#ifdef ETHTOOL_TEST
static int
e100_ethtool_test(struct net_device *dev, struct ifreq *ifr)
{
	struct ethtool_test *info;
	int rc = -EFAULT;

	info = kmalloc(sizeof(*info) + E100_MAX_TEST_RES * sizeof(u64),
		       GFP_ATOMIC);

	if (!info)
		return -EFAULT;

	memset((void *) info, 0, sizeof(*info) +
				 E100_MAX_TEST_RES * sizeof(u64));

	if (copy_from_user(info, ifr->ifr_data, sizeof(*info)))
		goto exit;

	info->flags = e100_run_diag(dev, info->data, info->flags);

	if (!copy_to_user(ifr->ifr_data, info,
			 sizeof(*info) + E100_MAX_TEST_RES * sizeof(u64)))
		rc = 0;
exit:
	kfree(info);
	return rc;
}
#endif

#ifdef ETHTOOL_NWAY_RST
static int
e100_ethtool_nway_rst(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	bdp = dev->priv;

	if ((bdp->speed_duplex_caps & SUPPORTED_Autoneg) &&
	    (bdp->params.e100_speed_duplex == E100_AUTONEG)) {
		e100_set_speed_duplex(bdp);
	} else {
		return -EFAULT;
	}
	return 0;
}
#endif

#ifdef ETHTOOL_GDRVINFO
static int
e100_ethtool_get_drvinfo(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_drvinfo info;

	memset((void *) &info, 0, sizeof (info));

	bdp = dev->priv;

	strncpy(info.driver, e100_short_driver_name, sizeof (info.driver) - 1);
	strncpy(info.version, e100_version, sizeof (info.version) - 1);
	strncpy(info.fw_version, e100_get_brand_msg(bdp),
		sizeof (info.fw_version) - 1);
	strncpy(info.bus_info, bdp->pdev->slot_name,
		sizeof (info.bus_info) - 1);
#ifdef ETHTOOL_GEEPROM
	info.eedump_len = (bdp->eeprom_size << 1);	
#endif
#ifdef ETHTOOL_TEST
	info.testinfo_len = E100_MAX_TEST_RES;
#endif
	if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
		return -EFAULT;

	return 0;
}
#endif //ETHTOOL_GDRVINFO

#ifdef ETHTOOL_GEEPROM
static int
e100_ethtool_eeprom(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_eeprom ecmd;
	u16 eeprom_data[256];
	u16 *usr_eeprom_ptr;
	u16 word_length, word_offset;
	int i;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	bdp = dev->priv;

	if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd)))
		return -EFAULT;

	usr_eeprom_ptr =
		(u16 *) (ifr->ifr_data + offsetof(struct ethtool_eeprom, data));

	word_offset = (ecmd.offset >> 1);
	if (word_offset >= bdp->eeprom_size)
		return -EFAULT;

	word_length =
		min_t(u32, (ecmd.len >> 1), (bdp->eeprom_size - word_offset));

	if (ecmd.cmd == ETHTOOL_GEEPROM) {
		for (i = word_offset; i < (word_length + word_offset); i++)
			eeprom_data[i] = e100_eeprom_read(bdp, i);

		ecmd.len = (word_length << 1);
		ecmd.magic = E100_EEPROM_MAGIC;

		if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
			return -EFAULT;

		if (copy_to_user(usr_eeprom_ptr, &(eeprom_data[word_offset]),
				 (ecmd.len << 1)))
			return -EFAULT;
	} else {
		if (ecmd.magic != E100_EEPROM_MAGIC)
			return -EFAULT;

		if (copy_from_user(&(eeprom_data[word_offset]), usr_eeprom_ptr,
				   (ecmd.len << 1)))
			return -EFAULT;

		e100_eeprom_write_block(bdp, word_offset,
					&(eeprom_data[word_offset]),
					word_length);

		ecmd.len = (word_length << 1);

		if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
			return -EFAULT;
	}
	return 0;
}
#endif

#ifdef ETHTOOL_PHYS_ID
#define E100_BLINK_INTERVAL	(HZ/4)
/**
 * e100_led_control
 * @bdp: atapter's private data struct
 * @led_mdi_op: led operation
 *
 * Software control over adapter's led. The possible operations are:
 * TURN LED OFF, TURN LED ON and RETURN LED CONTROL TO HARDWARE.
 */
static void
e100_led_control(struct e100_private *bdp, u16 led_mdi_op)
{
	spin_lock_bh(&bdp->mdi_access_lock);

	e100_mdi_write(bdp, PHY_82555_LED_SWITCH_CONTROL,
		       bdp->phy_addr, led_mdi_op);

	spin_unlock_bh(&bdp->mdi_access_lock);
}
/**
 * e100_led_blink_callback
 * @data: pointer to atapter's private data struct
 *
 * Blink timer callback function. Toggles ON/OFF led status bit and calls
 * led hardware access function. 
 */
static void
e100_led_blink_callback(unsigned long data)
{
	struct e100_private *bdp = (struct e100_private *) data;

	if(bdp->flags & LED_IS_ON) {
		bdp->flags &= ~LED_IS_ON;
		e100_led_control(bdp, PHY_82555_LED_OFF);
	} else {
		bdp->flags |= LED_IS_ON;
		if (bdp->rev_id >= D101MA_REV_ID)
			e100_led_control(bdp, PHY_82555_LED_ON_559);
		else
			e100_led_control(bdp, PHY_82555_LED_ON_PRE_559);
	}

	mod_timer(&bdp->blink_timer, jiffies + E100_BLINK_INTERVAL);
}
/**
 * e100_ethtool_led_blink
 * @dev: pointer to atapter's net_device struct
 * @ifr: pointer to ioctl request structure
 *
 * Blink led ioctl handler. Initialtes blink timer and sleeps until
 * blink period expires. Than it kills timer and returns. The led control
 * is returned back to hardware when blink timer is killed.
 */
static int
e100_ethtool_led_blink(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_value ecmd;

	bdp = dev->priv;

	if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd)))
		return -EFAULT;

	if(!bdp->blink_timer.function) {
		init_timer(&bdp->blink_timer);
		bdp->blink_timer.function = e100_led_blink_callback;
		bdp->blink_timer.data = (unsigned long) bdp;
	}

	mod_timer(&bdp->blink_timer, jiffies);

	set_current_state(TASK_INTERRUPTIBLE);

	if ((!ecmd.data) || (ecmd.data > MAX_SCHEDULE_TIMEOUT / HZ))
		ecmd.data = MAX_SCHEDULE_TIMEOUT / HZ;

	schedule_timeout(ecmd.data * HZ);

	del_timer_sync(&bdp->blink_timer);

	e100_led_control(bdp, PHY_82555_LED_NORMAL_CONTROL);

	return 0;
}
#endif

static inline int __devinit
e100_10BaseT_adapter(struct e100_private *bdp)
{
	return ((bdp->pdev->device == 0x1229) &&
		(bdp->pdev->subsystem_vendor == 0x8086) &&
		(bdp->pdev->subsystem_device == 0x0003));
}

static void __devinit
e100_get_speed_duplex_caps(struct e100_private *bdp)
{
	u16 status;

	e100_mdi_read(bdp, MII_BMSR, bdp->phy_addr, &status);

	bdp->speed_duplex_caps = 0;

	bdp->speed_duplex_caps |=
		(status & BMSR_ANEGCAPABLE) ? SUPPORTED_Autoneg : 0;

	bdp->speed_duplex_caps |=
		(status & BMSR_10HALF) ? SUPPORTED_10baseT_Half : 0;

	bdp->speed_duplex_caps |=
		(status & BMSR_10FULL) ? SUPPORTED_10baseT_Full : 0;

	bdp->speed_duplex_caps |=
		(status & BMSR_100HALF) ? SUPPORTED_100baseT_Half : 0;

	bdp->speed_duplex_caps |=
		(status & BMSR_100FULL) ? SUPPORTED_100baseT_Full : 0;

	if (IS_NC3133(bdp))
		bdp->speed_duplex_caps =
			(SUPPORTED_FIBRE | SUPPORTED_100baseT_Full);
	else
		bdp->speed_duplex_caps |= SUPPORTED_TP;

	if ((status == 0xFFFF) && e100_10BaseT_adapter(bdp)) {
		bdp->speed_duplex_caps =
			(SUPPORTED_10baseT_Half | SUPPORTED_TP);
	} else {
		bdp->speed_duplex_caps |= SUPPORTED_MII;
	}

}

#ifdef ETHTOOL_GWOL
static unsigned char
e100_setup_filter(struct e100_private *bdp)
{
	cb_header_t *ntcb_hdr;
	unsigned char res = false;
	nxmit_cb_entry_t *cmd;

	if ((cmd = e100_alloc_non_tx_cmd(bdp)) == NULL) {
		goto exit;
	}

	ntcb_hdr = (cb_header_t *) cmd->non_tx_cmd;
	ntcb_hdr->cb_cmd = __constant_cpu_to_le16(CB_LOAD_FILTER);

	/* Set EL and FIX bit */
	(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] =
		__constant_cpu_to_le32(CB_FILTER_EL | CB_FILTER_FIX);

	if (bdp->wolopts & WAKE_UCAST) {
		(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] |=
			__constant_cpu_to_le32(CB_FILTER_IA_MATCH);
	}

	if (bdp->wolopts & WAKE_ARP) {
		/* Setup ARP bit and lower IP parts */
		/* bdp->ip_lbytes contains 2 lower bytes of IP address in network byte order */
		(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] |=
			cpu_to_le32(CB_FILTER_ARP | bdp->ip_lbytes);
	}

	res = e100_exec_non_cu_cmd(bdp, cmd);
	if (!res)
		printk(KERN_WARNING "%s Filter setup failed\n",
		       bdp->device->name);

exit:
	return res;

}

static void
e100_do_wol(struct pci_dev *pcid, struct e100_private *bdp)
{
	e100_config_wol(bdp);

	if (e100_config(bdp)) {
		if (bdp->wolopts & (WAKE_UCAST | WAKE_ARP))
			if (!e100_setup_filter(bdp))
				printk(KERN_ERR
				       "e100_config WOL options failed\n");
	} else {
		printk(KERN_ERR "e100_config WOL failed\n");
	}
}

static u16
e100_get_ip_lbytes(struct net_device *dev)
{
	struct in_ifaddr *ifa;
	struct in_device *in_dev;
	u32 res = 0;

	in_dev = (struct in_device *) dev->ip_ptr;
	/* Check if any in_device bound to interface */
	if (in_dev) {
		/* Check if any IP address is bound to interface */
		if ((ifa = in_dev->ifa_list) != NULL) {
			res = __constant_ntohl(ifa->ifa_address);
			res = __constant_htons(res & 0x0000ffff);
		}
	}
	return res;
}

static int
e100_ethtool_wol(struct net_device *dev, struct ifreq *ifr)
{
	struct e100_private *bdp;
	struct ethtool_wolinfo wolinfo;
	int res = 0;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	bdp = dev->priv;

	if (copy_from_user(&wolinfo, ifr->ifr_data, sizeof (wolinfo))) {
		return -EFAULT;
	}

	switch (wolinfo.cmd) {
	case ETHTOOL_GWOL:
		wolinfo.supported = bdp->wolsupported;
		wolinfo.wolopts = bdp->wolopts;
		if (copy_to_user(ifr->ifr_data, &wolinfo, sizeof (wolinfo)))
			res = -EFAULT;
		break;

	case ETHTOOL_SWOL:
		/* If ALL requests are supported or request is DISABLE wol */
		if (((wolinfo.wolopts & bdp->wolsupported) == wolinfo.wolopts)
		    || (wolinfo.wolopts == 0)) {
			bdp->wolopts = wolinfo.wolopts;
		} else {
			res = -EOPNOTSUPP;
		}
		break;
	default:
		break;
	}
	return res;
}

#endif

#ifdef ETHTOOL_GSTRINGS
static int e100_ethtool_gstrings(struct net_device *dev, struct ifreq *ifr)
{
	struct ethtool_gstrings info;
	char *strings = NULL;
	char *usr_strings;
	int i;

	memset((void *) &info, 0, sizeof(info));

	usr_strings = (u8 *) (ifr->ifr_data + 
			      offsetof(struct ethtool_gstrings, data));

	if (copy_from_user(&info, ifr->ifr_data, sizeof (info)))
		return -EFAULT;

	switch (info.string_set) {
	case ETH_SS_TEST:
		if (info.len > E100_MAX_TEST_RES)
			info.len = E100_MAX_TEST_RES;
		strings = kmalloc(info.len * ETH_GSTRING_LEN, GFP_ATOMIC);
		if (!strings)
			return -EFAULT;
		memset(strings, 0, info.len * ETH_GSTRING_LEN);

		for (i = 0; i < info.len; i++) {
			sprintf(strings + i * ETH_GSTRING_LEN, "%-31s",
				test_strings[i]);
		}
		break;
	default:
		return -EOPNOTSUPP;
	}

	if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
		return -EFAULT;

	if (copy_to_user(usr_strings, strings, info.len * ETH_GSTRING_LEN))
		return -EFAULT;

	kfree(strings);
	return 0;
}
#endif
#endif /*E100_ETHTOOL_IOCTL */

#ifdef E100_MII_IOCTL
static int
e100_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct e100_private *bdp;
	struct mii_ioctl_data *data_ptr =
		(struct mii_ioctl_data *) &(ifr->ifr_data);

	bdp = dev->priv;

	switch (cmd) {
	case SIOCGMIIPHY:
		data_ptr->phy_id = bdp->phy_addr & 0x1f;
		break;

	case SIOCGMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		spin_lock_bh(&(bdp->mdi_access_lock));
		e100_mdi_read(bdp, data_ptr->reg_num & 0x1f, bdp->phy_addr,
			      &(data_ptr->val_out));
		spin_unlock_bh(&(bdp->mdi_access_lock));
		break;

	case SIOCSMIIREG:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (netif_running(dev)) {
			return -EBUSY;
		}
		spin_lock_bh(&(bdp->mdi_access_lock));
		e100_mdi_write(bdp, data_ptr->reg_num & 0x1f, bdp->phy_addr,
			       data_ptr->val_in);
		spin_unlock_bh(&(bdp->mdi_access_lock));
		break;

	default:
		return -EOPNOTSUPP;
	}
	return 0;
}
#endif //E100_MII_IOCTL

nxmit_cb_entry_t *
e100_alloc_non_tx_cmd(struct e100_private *bdp)
{
	nxmit_cb_entry_t *non_tx_cmd_elem;

	if (!(non_tx_cmd_elem = (nxmit_cb_entry_t *)
	      kmalloc(sizeof (nxmit_cb_entry_t), GFP_ATOMIC))) {
		return NULL;
	}
	non_tx_cmd_elem->non_tx_cmd =
		pci_alloc_consistent(bdp->pdev, sizeof (nxmit_cb_t),
				     &(non_tx_cmd_elem->dma_addr));
	if (non_tx_cmd_elem->non_tx_cmd == NULL) {
		kfree(non_tx_cmd_elem);
		return NULL;
	}
	return non_tx_cmd_elem;
}

void
e100_free_non_tx_cmd(struct e100_private *bdp,
		     nxmit_cb_entry_t *non_tx_cmd_elem)
{
	pci_free_consistent(bdp->pdev, sizeof (nxmit_cb_t),
			    non_tx_cmd_elem->non_tx_cmd,
			    non_tx_cmd_elem->dma_addr);
	kfree(non_tx_cmd_elem);
}

static void
e100_free_nontx_list(struct e100_private *bdp)
{
	nxmit_cb_entry_t *command;
	int i;

	while (!list_empty(&bdp->non_tx_cmd_list)) {
		command = list_entry(bdp->non_tx_cmd_list.next,
				     nxmit_cb_entry_t, list_elem);
		list_del(&(command->list_elem));
		e100_free_non_tx_cmd(bdp, command);
	}

	for (i = 0; i < CB_MAX_NONTX_CMD; i++) {
		bdp->same_cmd_entry[i] = NULL;
	}
}

static unsigned char
e100_delayed_exec_non_cu_cmd(struct e100_private *bdp,
			     nxmit_cb_entry_t *command)
{
	nxmit_cb_entry_t *same_command;
	cb_header_t *ntcb_hdr;
	u16 cmd;

	ntcb_hdr = (cb_header_t *) command->non_tx_cmd;

	cmd = CB_CMD_MASK & le16_to_cpu(ntcb_hdr->cb_cmd);

	spin_lock_bh(&(bdp->bd_non_tx_lock));

	same_command = bdp->same_cmd_entry[cmd];

	if (same_command != NULL) {
		memcpy((void *) (same_command->non_tx_cmd),
		       (void *) (command->non_tx_cmd), sizeof (nxmit_cb_t));
		e100_free_non_tx_cmd(bdp, command);
	} else {
		list_add_tail(&(command->list_elem), &(bdp->non_tx_cmd_list));
		bdp->same_cmd_entry[cmd] = command;
	}

	if (bdp->non_tx_command_state == E100_NON_TX_IDLE) {
		bdp->non_tx_command_state = E100_WAIT_TX_FINISH;
		mod_timer(&(bdp->nontx_timer_id), jiffies + 1);
	}

	spin_unlock_bh(&(bdp->bd_non_tx_lock));
	return true;
}

static void
e100_non_tx_background(unsigned long ptr)
{
	struct e100_private *bdp = (struct e100_private *) ptr;
	nxmit_cb_entry_t *active_command;
	int restart = true;

	spin_lock_bh(&(bdp->bd_non_tx_lock));

	switch (bdp->non_tx_command_state) {
	case E100_WAIT_TX_FINISH:
		if (bdp->last_tcb != NULL) {
			rmb();
			if ((bdp->last_tcb->tcb_hdr.cb_status &
			     __constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
				goto exit;
		}
		if ((readw(&bdp->scb->scb_status) & SCB_CUS_MASK) ==
		    SCB_CUS_ACTIVE) {
			goto exit;
		}
		break;

	case E100_WAIT_NON_TX_FINISH:
		active_command = list_entry(bdp->non_tx_cmd_list.next,
					    nxmit_cb_entry_t, list_elem);
		rmb();

		if (((((cb_header_t *) (active_command->non_tx_cmd))->cb_status
		      & __constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
		    && time_before(jiffies, active_command->expiration_time)) {
			goto exit;
		} else {
			list_del(&(active_command->list_elem));
			e100_free_non_tx_cmd(bdp, active_command);
		}
		break;

	default:
		break;
	}			//switch

	if (list_empty(&bdp->non_tx_cmd_list)) {
		bdp->non_tx_command_state = E100_NON_TX_IDLE;
		spin_lock_irq(&(bdp->bd_lock));
		bdp->next_cu_cmd = START_WAIT;
		spin_unlock_irq(&(bdp->bd_lock));
		restart = false;
		goto exit;
	} else {
		u16 cmd_type;

		bdp->non_tx_command_state = E100_WAIT_NON_TX_FINISH;
		active_command = list_entry(bdp->non_tx_cmd_list.next,
					    nxmit_cb_entry_t, list_elem);
		spin_lock_irq(&(bdp->bd_lock));
		e100_wait_exec_cmplx(bdp, active_command->dma_addr,
				     SCB_CUC_START);
		spin_unlock_irq(&(bdp->bd_lock));
		active_command->expiration_time = jiffies + HZ;
		cmd_type = CB_CMD_MASK &
			le16_to_cpu(((cb_header_t *)
				     (active_command->non_tx_cmd))->cb_cmd);
		bdp->same_cmd_entry[cmd_type] = NULL;
	}

exit:
	if (restart) {
		mod_timer(&(bdp->nontx_timer_id), jiffies + 1);
	} else {
		if (netif_running(bdp->device))
			netif_wake_queue(bdp->device);
	}
	spin_unlock_bh(&(bdp->bd_non_tx_lock));
}

#ifdef CONFIG_PM
static int
e100_save_state(struct pci_dev *pcid, u32 state)
{
	struct net_device *dev;
	struct e100_private *bdp;

	/* Actually, PCI PM does NOT call this entry */
	if (!(dev = (struct net_device *) pci_get_drvdata(pcid)))
		return -1;
	bdp = dev->priv;
	pci_save_state(pcid, bdp->pci_state);
	return 0;
}

static int
e100_suspend(struct pci_dev *pcid, u32 state)
{
	struct net_device *netdev = pci_get_drvdata(pcid);
	struct e100_private *bdp = netdev->priv;

	e100_isolate_driver(bdp);
	e100_save_state(pcid, state);

	/* If wol is enabled */
#ifdef ETHTOOL_GWOL
	if (bdp->wolopts) {
		bdp->ip_lbytes = e100_get_ip_lbytes(netdev);
		e100_do_wol(pcid, bdp);
		pci_enable_wake(pcid, 3, 1);	/* Enable PME for power state D3 */
		pci_set_power_state(pcid, 3);	/* Set power state to D3.        */
	} else {
		/* Disable bus mastering */
		pci_disable_device(pcid);
		pci_set_power_state(pcid, state);
	}
#else
	pci_disable_device(pcid);
	pci_set_power_state(pcid, state);
#endif

	return 0;
}

static int
e100_resume(struct pci_dev *pcid)
{
	struct net_device *netdev = pci_get_drvdata(pcid);
	struct e100_private *bdp = netdev->priv;
	u8 recover = false;
	u8 full_init = false;

	pci_set_power_state(pcid, 0);
	pci_enable_wake(pcid, 0, 0);	/* Clear PME status and disable PME */
	pci_restore_state(pcid, bdp->pci_state);

	if (netif_running(netdev)) {
		recover = true;
	}

#ifdef ETHTOOL_GWOL
	if (bdp->wolopts & (WAKE_UCAST | WAKE_ARP)) {
		full_init = true;
	}
#endif

	e100_deisolate_driver(bdp, recover, full_init);

	return 0;
}

static int
e100_enable_wake(struct pci_dev *pcid, u32 state, int enable)
{
	/* Driver doesn't need to do anything because it will enable */
	/* wol when suspended.                                       */
	/* Actually, PCI PM does NOT call this entry.                */
	return 0;
}
#endif /* CONFIG_PM */