Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*
 *	linux/arch/alpha/kernel/irq.c
 *
 *	Copyright (C) 1995 Linus Torvalds
 *
 * This file contains the code used by various IRQ handling routines:
 * asking for different IRQ's should be done through these routines
 * instead of just grabbing them. Thus setups with different IRQ numbers
 * shouldn't result in any weird surprises, and installing new handlers
 * should be easier.
 */

#include <linux/config.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/malloc.h>
#include <linux/random.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/dma.h>

extern void timer_interrupt(struct pt_regs * regs);

static unsigned char cache_21 = 0xff;
static unsigned char cache_A1 = 0xff;

#if NR_IRQS == 33
  static unsigned int  cache_804 = 0x00ffffef;
#elif NR_IRQS == 32
  static unsigned char cache_26 = 0xdf;
  static unsigned char cache_27 = 0xff;
#endif

static void mask_irq(int irq)
{
	unsigned long mask;

	if (irq < 16) {
		mask = 1 << (irq & 7);
		if (irq < 8) {
			cache_21 |= mask;
			outb(cache_21, 0x21);
		} else {
			cache_A1 |= mask;
			outb(cache_A1, 0xA1);
		}
#if NR_IRQS == 33
	} else {
		mask = 1 << (irq - 16);
		cache_804 |= mask;
		outl(cache_804, 0x804);
#elif NR_IRQS == 32
	} else {
		mask = 1 << (irq & 7);
		if (irq < 24) {
			cache_26 |= mask;
			outb(cache_26, 0x26);
		} else {
			cache_27 |= mask;
			outb(cache_27, 0x27);
		}
#endif
	}
}

static void unmask_irq(unsigned long irq)
{
	unsigned long mask;

	if (irq < 16) {
		mask = ~(1 << (irq & 7));
		if (irq < 8) {
			cache_21 &= mask;
			outb(cache_21, 0x21);
		} else {
			cache_A1 &= mask;
			outb(cache_A1, 0xA1);
		}
#if NR_IRQS == 33
	} else {
		mask = ~(1 << (irq - 16));
		cache_804 &= mask;
		outl(cache_804, 0x804);
#elif NR_IRQS == 32
	} else {
		mask = ~(1 << (irq & 7));

		if (irq < 24) {
			cache_26 &= mask;
			outb(cache_26, 0x26);
		} else {
			cache_27 &= mask;
			outb(cache_27, 0x27);
		}
#endif
	}
}

void disable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	save_flags(flags);
	cli();
	mask_irq(irq_nr);
	restore_flags(flags);
}

void enable_irq(unsigned int irq_nr)
{
	unsigned long flags, mask;

	mask = ~(1 << (irq_nr & 7));
	save_flags(flags);
	cli();
	unmask_irq(irq_nr);
	restore_flags(flags);
}

/*
 * Initial irq handlers.
 */
static struct irqaction *irq_action[NR_IRQS];

int get_irq_list(char *buf)
{
	int i, len = 0;
	struct irqaction * action;

	for (i = 0 ; i < NR_IRQS ; i++) {
		action = irq_action[i];
		if (!action) 
			continue;
		len += sprintf(buf+len, "%2d: %8d %c %s",
			i, kstat.interrupts[i],
			(action->flags & SA_INTERRUPT) ? '+' : ' ',
			action->name);
		for (action=action->next; action; action = action->next) {
			len += sprintf(buf+len, ",%s %s",
				(action->flags & SA_INTERRUPT) ? " +" : "",
				action->name);
		}
		len += sprintf(buf+len, "\n");
	}
	return len;
}

static inline void ack_irq(int irq)
{
	if (irq < 16) {
		/* ACK the interrupt making it the lowest priority */
		/*  First the slave .. */
		if (irq > 7) {
			outb(0xE0 | (irq - 8), 0xa0);
			irq = 2;
		}
		/* .. then the master */
		outb(0xE0 | irq, 0x20);
	}
}

int request_irq(unsigned int irq, 
		void (*handler)(int, void *, struct pt_regs *),
		unsigned long irqflags, 
		const char * devname,
		void *dev_id)
{
	int shared = 0;
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= NR_IRQS)
		return -EINVAL;
	if (!handler)
		return -EINVAL;
	p = irq_action + irq;
	action = *p;
	if (action) {
		/* Can't share interrupts unless both agree to */
		if (!(action->flags & irqflags & SA_SHIRQ))
			return -EBUSY;

		/* Can't share interrupts unless both are same type */
		if ((action->flags ^ irqflags) & SA_INTERRUPT)
			return -EBUSY;

		/* add new interrupt at end of irq queue */
		do {
			p = &action->next;
			action = *p;
		} while (action);
		shared = 1;
	}

	action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
	if (!action)
		return -ENOMEM;

	if (irqflags & SA_SAMPLE_RANDOM)
		rand_initialize_irq(irq);

	action->handler = handler;
	action->flags = irqflags;
	action->mask = 0;
	action->name = devname;
	action->next = NULL;
	action->dev_id = dev_id;

	save_flags(flags);
	cli();
	*p = action;

	if (!shared)
		unmask_irq(irq);

	restore_flags(flags);
	return 0;
}
		
void free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= NR_IRQS) {
		printk("Trying to free IRQ%d\n",irq);
		return;
	}
	for (p = irq + irq_action; (action = *p) != NULL; p = &action->next) {
		if (action->dev_id != dev_id)
			continue;

		/* Found it - now free it */
		save_flags(flags);
		cli();
		*p = action->next;
		if (!irq[irq_action])
			mask_irq(irq);
		restore_flags(flags);
		kfree(action);
		return;
	}
	printk("Trying to free free IRQ%d\n",irq);
}

static inline void handle_nmi(struct pt_regs * regs)
{
	printk("Whee.. NMI received. Probable hardware error\n");
	printk("61=%02x, 461=%02x\n", inb(0x61), inb(0x461));
}

static void unexpected_irq(int irq, struct pt_regs * regs)
{
	struct irqaction *action;
	int i;

	printk("IO device interrupt, irq = %d\n", irq);
	printk("PC = %016lx PS=%04lx\n", regs->pc, regs->ps);
	printk("Expecting: ");
	for (i = 0; i < 16; i++)
		if ((action = irq_action[i]))
			while (action->handler) {
				printk("[%s:%d] ", action->name, i);
				action = action->next;
			}
	printk("\n");
#if defined(CONFIG_ALPHA_JENSEN)
	printk("64=%02x, 60=%02x, 3fa=%02x 2fa=%02x\n",
		inb(0x64), inb(0x60), inb(0x3fa), inb(0x2fa));
	outb(0x0c, 0x3fc);
	outb(0x0c, 0x2fc);
	outb(0,0x61);
	outb(0,0x461);
#endif
}

static inline void handle_irq(int irq, struct pt_regs * regs)
{
	struct irqaction * action = irq_action[irq];

	kstat.interrupts[irq]++;
	if (!action) {
		unexpected_irq(irq, regs);
		return;
	}
	do {
		action->handler(irq, action->dev_id, regs);
		action = action->next;
	} while (action);
}

static inline void device_interrupt(int irq, int ack, struct pt_regs * regs)
{
	struct irqaction * action;

	if ((unsigned) irq > NR_IRQS) {
		printk("device_interrupt: unexpected interrupt %d\n", irq);
		return;
	}

	kstat.interrupts[irq]++;
	action = irq_action[irq];
	if (action) {
		/* quick interrupts get executed with no extra overhead */
		if (action->flags & SA_INTERRUPT) {
			while (action) {
				action->handler(irq, action->dev_id, regs);
				action = action->next;
			}
			ack_irq(ack);
			return;
		}
	}
	/*
	 * For normal interrupts, we mask it out, and then ACK it.
	 * This way another (more timing-critical) interrupt can
	 * come through while we're doing this one.
	 *
	 * Note! A irq without a handler gets masked and acked, but
	 * never unmasked. The autoirq stuff depends on this (it looks
	 * at the masks before and after doing the probing).
	 */
	mask_irq(ack);
	ack_irq(ack);
	if (!action)
		return;
	if (action->flags & SA_SAMPLE_RANDOM)
		add_interrupt_randomness(irq);
	while (action) {
		action->handler(irq, action->dev_id, regs);
		action = action->next;
	}
	unmask_irq(ack);
}

#ifdef CONFIG_PCI

/*
 * Handle ISA interrupt via the PICs.
 */
static inline void isa_device_interrupt(unsigned long vector,
					struct pt_regs * regs)
{
#if defined(CONFIG_ALPHA_APECS)
#	define IACK_SC	APECS_IACK_SC
#elif defined(CONFIG_ALPHA_LCA)
#	define IACK_SC	LCA_IACK_SC
#elif defined(CONFIG_ALPHA_ALCOR)
#	define IACK_SC	ALCOR_IACK_SC
#else
	/*
	 * This is bogus but necessary to get it to compile
	 * on all platforms.  If you try to use this on any
	 * other than the intended platforms, you'll notice
	 * real fast...
	 */
#	define IACK_SC	1L
#endif
	int j;

#if 1
	/*
	 * Generate a PCI interrupt acknowledge cycle.  The PIC will
	 * respond with the interrupt vector of the highest priority
	 * interrupt that is pending.  The PALcode sets up the
	 * interrupts vectors such that irq level L generates vector
	 * L.
	 */
	j = *(volatile int *) IACK_SC;
	j &= 0xff;
	if (j == 7) {
		if (!(inb(0x20) & 0x80)) {
			/* it's only a passive release... */
			return;
		}
	}
	device_interrupt(j, j, regs);
#else
	unsigned long pic;

	/*
	 * It seems to me that the probability of two or more *device*
	 * interrupts occurring at almost exactly the same time is
	 * pretty low.  So why pay the price of checking for
	 * additional interrupts here if the common case can be
	 * handled so much easier?
	 */
	/* 
	 *  The first read of gives you *all* interrupting lines.
	 *  Therefore, read the mask register and and out those lines
	 *  not enabled.  Note that some documentation has 21 and a1 
	 *  write only.  This is not true.
	 */
	pic = inb(0x20) | (inb(0xA0) << 8);	/* read isr */
	pic &= ~((cache_A1 << 8) | cache_21);	/* apply mask */
	pic &= 0xFFFB;				/* mask out cascade */

	while (pic) {
		j = ffz(~pic);
		pic &= pic - 1;
		device_interrupt(j, j, regs);
	}
#endif
}

static inline void cabriolet_and_eb66p_device_interrupt(unsigned long vector,
							struct pt_regs * regs)
{
	unsigned long pld;
	unsigned int i;
	unsigned long flags;

	save_flags(flags);
	cli();

	/* read the interrupt summary registers */
	pld = inb(0x804) | (inb(0x805) << 8) | (inb(0x806) << 16);

#if 0
	printk("[0x%04X/0x%04X]", pld, inb(0x20) | (inb(0xA0) << 8));
#endif

	/*
	 * Now for every possible bit set, work through them and call
	 * the appropriate interrupt handler.
	 */
	while (pld) {
		i = ffz(~pld);
		pld &= pld - 1;	/* clear least bit set */
		if (i == 4) {
			isa_device_interrupt(vector, regs);
		} else {
			device_interrupt(16 + i, 16 + i, regs);
		}
	}
	restore_flags(flags);
}

static inline void eb66_and_eb64p_device_interrupt(unsigned long vector,
						   struct pt_regs * regs)
{
	unsigned long pld;
	unsigned int i;
	unsigned long flags;

	save_flags(flags);
	cli();

	/* read the interrupt summary registers */
	pld = inb(0x26) | (inb(0x27) << 8);
	/*
	 * Now, for every possible bit set, work through
	 * them and call the appropriate interrupt handler.
	 */
	while (pld) {
		i = ffz(~pld);
		pld &= pld - 1;	/* clear least bit set */

		if (i == 5) {
			isa_device_interrupt(vector, regs);
		} else {
			device_interrupt(16 + i, 16 + i, regs);
		}
	}
	restore_flags(flags);
}

#endif /* CONFIG_PCI */

/*
 * Jensen is special: the vector is 0x8X0 for EISA interrupt X, and
 * 0x9X0 for the local motherboard interrupts..
 *
 *	0x660 - NMI
 *
 *	0x800 - IRQ0  interval timer (not used, as we use the RTC timer)
 *	0x810 - IRQ1  line printer (duh..)
 *	0x860 - IRQ6  floppy disk
 *	0x8E0 - IRQ14 SCSI controller
 *
 *	0x900 - COM1
 *	0x920 - COM2
 *	0x980 - keyboard
 *	0x990 - mouse
 *
 * PCI-based systems are more sane: they don't have the local
 * interrupts at all, and have only normal PCI interrupts from
 * devices.  Happily it's easy enough to do a sane mapping from the
 * Jensen..  Note that this means that we may have to do a hardware
 * "ack" to a different interrupt than we report to the rest of the
 * world.
 */
static inline void srm_device_interrupt(unsigned long vector, struct pt_regs * regs)
{
	int irq, ack;
	unsigned long flags;

	save_flags(flags);
	cli();


	ack = irq = (vector - 0x800) >> 4;

#ifdef CONFIG_ALPHA_JENSEN
	switch (vector) {
	      case 0x660: handle_nmi(regs); return;
		/* local device interrupts: */
	      case 0x900: handle_irq(4, regs); return;	/* com1 -> irq 4 */
	      case 0x920: handle_irq(3, regs); return;	/* com2 -> irq 3 */
	      case 0x980: handle_irq(1, regs); return;	/* kbd -> irq 1 */
	      case 0x990: handle_irq(9, regs); return;	/* mouse -> irq 9 */
	      default:
		if (vector > 0x900) {
			printk("Unknown local interrupt %lx\n", vector);
		}
	}
	/* irq1 is supposed to be the keyboard, silly Jensen (is this really needed??) */
	if (irq == 1)
		irq = 7;
#endif /* CONFIG_ALPHA_JENSEN */

	device_interrupt(irq, ack, regs);

	restore_flags(flags) ;
}

#if NR_IRQS > 64
#  error Number of irqs limited to 64 due to interrupt-probing.
#endif

/*
 * Start listening for interrupts..
 */
unsigned long probe_irq_on(void)
{
	struct irqaction * action;
	unsigned long irqs = 0, irqmask;
	unsigned long delay;
	unsigned int i;

	for (i = NR_IRQS - 1; i > 0; i--) {
		action = irq_action[i];
		if (!action) {
			enable_irq(i);
			irqs |= (1 << i);
		}
	}

	/* wait for spurious interrupts to mask themselves out again */
	for (delay = jiffies + HZ/10; delay > jiffies; )
		/* about 100 ms delay */;
	
	/* now filter out any obviously spurious interrupts */
	irqmask = (((unsigned long)cache_A1)<<8) | (unsigned long) cache_21;
#if NR_IRQS == 33
	irqmask |= (unsigned long) cache_804 << 16;
#elif NR_IRQS == 32
	irqmask |= ((((unsigned long)cache_26)<<16) |
		    (((unsigned long)cache_27)<<24));
#endif
	irqs &= ~irqmask;
	return irqs;
}

/*
 * Get the result of the IRQ probe.. A negative result means that
 * we have several candidates (but we return the lowest-numbered
 * one).
 */
int probe_irq_off(unsigned long irqs)
{
	unsigned long irqmask;
	int i;
	
	irqmask = (((unsigned int)cache_A1)<<8) | (unsigned int)cache_21;
#if NR_IRQS == 33
	irqmask |= (unsigned long) cache_804 << 16;
#elif NR_IRQS == 32
	irqmask |= ((((unsigned long)cache_26)<<16) |
		    (((unsigned long)cache_27)<<24));
#endif
	irqs &= irqmask & ~1;	/* always mask out irq 0---it's the unused timer */
#ifdef CONFIG_ALPHA_P2K
	irqs &= ~(1 << 8);	/* mask out irq 8 since that's the unused RTC input to PIC */
#endif
	if (!irqs)
		return 0;
	i = ffz(~irqs);
	if (irqs != (1UL << i))
		i = -i;
	return i;
}

static void machine_check(unsigned long vector, unsigned long la, struct pt_regs * regs)
{
#if defined(CONFIG_ALPHA_LCA)
	extern void lca_machine_check (unsigned long vector, unsigned long la,
				       struct pt_regs *regs);
	lca_machine_check(vector, la, regs);
#elif defined(CONFIG_ALPHA_APECS)
	extern void apecs_machine_check(unsigned long vector, unsigned long la,
					struct pt_regs * regs);
	apecs_machine_check(vector, la, regs);
#elif defined(CONFIG_ALPHA_ALCOR)
	extern void alcor_machine_check(unsigned long vector, unsigned long la,
					struct pt_regs * regs);
	alcor_machine_check(vector, la, regs);
#else
	printk("Machine check\n");
#endif
}

asmlinkage void do_entInt(unsigned long type, unsigned long vector, unsigned long la_ptr,
	unsigned long a3, unsigned long a4, unsigned long a5,
	struct pt_regs regs)
{
	switch (type) {
		case 0:
			printk("Interprocessor interrupt? You must be kidding\n");
			break;
		case 1:
			timer_interrupt(&regs);
			return;
		case 2:
			machine_check(vector, la_ptr, &regs);
			return;
		case 3:
#if defined(CONFIG_ALPHA_JENSEN) || defined(CONFIG_ALPHA_NONAME) || \
    defined(CONFIG_ALPHA_P2K) || defined(CONFIG_ALPHA_SRM)
			srm_device_interrupt(vector, &regs);
#elif NR_IRQS == 33
			cabriolet_and_eb66p_device_interrupt(vector, &regs);
#elif NR_IRQS == 32
			eb66_and_eb64p_device_interrupt(vector, &regs);
#elif NR_IRQS == 16
			isa_device_interrupt(vector, &regs);
#endif
			return;
		case 4:
			printk("Performance counter interrupt\n");
			break;;
		default:
			printk("Hardware intr %ld %lx? Huh?\n", type, vector);
	}
	printk("PC = %016lx PS=%04lx\n", regs.pc, regs.ps);
}

extern asmlinkage void entInt(void);

void init_IRQ(void)
{
	wrent(entInt, 0);
	dma_outb(0, DMA1_RESET_REG);
	dma_outb(0, DMA2_RESET_REG);
	dma_outb(0, DMA1_CLR_MASK_REG);
	dma_outb(0, DMA2_CLR_MASK_REG);
#if NR_IRQS == 33
	outl(cache_804, 0x804);
#elif NR_IRQS == 32
	outb(cache_26, 0x26);
	outb(cache_27, 0x27);
#endif
	enable_irq(2);		/* enable cascade */
}