Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
/*
 *	setup.S		Copyright (C) 1991, 1992 Linus Torvalds
 *
 * setup.s is responsible for getting the system data from the BIOS,
 * and putting them into the appropriate places in system memory.
 * both setup.s and system has been loaded by the bootblock.
 *
 * This code asks the bios for memory/disk/other parameters, and
 * puts them in a "safe" place: 0x90000-0x901FF, ie where the
 * boot-block used to be. It is then up to the protected mode
 * system to read them from there before the area is overwritten
 * for buffer-blocks.
 *
 * Move PS/2 aux init code to psaux.c
 * (troyer@saifr00.cfsat.Honeywell.COM) 03Oct92
 *
 * some changes and additional features by Christoph Niemann,
 * March 1993/June 1994 (Christoph.Niemann@linux.org)
 *
 * add APM BIOS checking by Stephen Rothwell, May 1994
 * (sfr@canb.auug.org.au)
 *
 * High load stuff, initrd support and position independency
 * by Hans Lermen & Werner Almesberger, February 1996
 * <lermen@elserv.ffm.fgan.de>, <almesber@lrc.epfl.ch>
 *
 * Video handling moved to video.S by Martin Mares, March 1996
 * <mj@k332.feld.cvut.cz>
 *
 * Extended memory detection scheme retwiddled by orc@pell.chi.il.us (david
 * parsons) to avoid loadlin confusion, July 1997
 *
 * Transcribed from Intel (as86) -> AT&T (gas) by Chris Noe, May 1999.
 * <stiker@northlink.com>
 *
 * Fix to work around buggy BIOSes which dont use carry bit correctly
 * and/or report extended memory in CX/DX for e801h memory size detection 
 * call.  As a result the kernel got wrong figures.  The int15/e801h docs
 * from Ralf Brown interrupt list seem to indicate AX/BX should be used
 * anyway.  So to avoid breaking many machines (presumably there was a reason
 * to orginally use CX/DX instead of AX/BX), we do a kludge to see
 * if CX/DX have been changed in the e801 call and if so use AX/BX .
 * Michael Miller, April 2001 <michaelm@mjmm.org>
 *
 * New A20 code ported from SYSLINUX by H. Peter Anvin. AMD Elan bugfixes
 * by Robert Schwebel, December 2001 <robert@schwebel.de>
 *    
 * BIOS Enhanced Disk Drive support
 * by Matt Domsch <Matt_Domsch@dell.com> October 2002
 * conformant to T13 Committee www.t13.org
 *   projects 1572D, 1484D, 1386D, 1226DT
 */

#include <linux/config.h>
#include <asm/segment.h>
#include <linux/version.h>
#include <linux/compile.h>
#include <asm/boot.h>
#include <asm/e820.h>
#include <asm/edd.h>    
#include <asm/page.h>
	
/* Signature words to ensure LILO loaded us right */
#define SIG1	0xAA55
#define SIG2	0x5A5A

INITSEG  = DEF_INITSEG		# 0x9000, we move boot here, out of the way
SYSSEG   = DEF_SYSSEG		# 0x1000, system loaded at 0x10000 (65536).
SETUPSEG = DEF_SETUPSEG		# 0x9020, this is the current segment
				# ... and the former contents of CS

DELTA_INITSEG = SETUPSEG - INITSEG	# 0x0020

.code16
.globl begtext, begdata, begbss, endtext, enddata, endbss

.text
begtext:
.data
begdata:
.bss
begbss:
.text

start:
	jmp	trampoline

# This is the setup header, and it must start at %cs:2 (old 0x9020:2)

		.ascii	"HdrS"		# header signature
		.word	0x0203		# header version number (>= 0x0105)
					# or else old loadlin-1.5 will fail)
realmode_swtch:	.word	0, 0		# default_switch, SETUPSEG
start_sys_seg:	.word	SYSSEG
		.word	kernel_version	# pointing to kernel version string
					# above section of header is compatible
					# with loadlin-1.5 (header v1.5). Don't
					# change it.

type_of_loader:	.byte	0		# = 0, old one (LILO, Loadlin,
					#      Bootlin, SYSLX, bootsect...)
					# See Documentation/i386/boot.txt for
					# assigned ids
	
# flags, unused bits must be zero (RFU) bit within loadflags
loadflags:
LOADED_HIGH	= 1			# If set, the kernel is loaded high
CAN_USE_HEAP	= 0x80			# If set, the loader also has set
					# heap_end_ptr to tell how much
					# space behind setup.S can be used for
					# heap purposes.
					# Only the loader knows what is free
#ifndef __BIG_KERNEL__
		.byte	0
#else
		.byte	LOADED_HIGH
#endif

setup_move_size: .word  0x8000		# size to move, when setup is not
					# loaded at 0x90000. We will move setup 
					# to 0x90000 then just before jumping
					# into the kernel. However, only the
					# loader knows how much data behind
					# us also needs to be loaded.

code32_start:				# here loaders can put a different
					# start address for 32-bit code.
#ifndef __BIG_KERNEL__
		.long	0x1000		#   0x1000 = default for zImage
#else
		.long	0x100000	# 0x100000 = default for big kernel
#endif

ramdisk_image:	.long	0		# address of loaded ramdisk image
					# Here the loader puts the 32-bit
					# address where it loaded the image.
					# This only will be read by the kernel.

ramdisk_size:	.long	0		# its size in bytes

bootsect_kludge:
		.word  bootsect_helper, SETUPSEG

heap_end_ptr:	.word	modelist+1024	# (Header version 0x0201 or later)
					# space from here (exclusive) down to
					# end of setup code can be used by setup
					# for local heap purposes.

pad1:		.word	0
cmd_line_ptr:	.long 0			# (Header version 0x0202 or later)
					# If nonzero, a 32-bit pointer
					# to the kernel command line.
					# The command line should be
					# located between the start of
					# setup and the end of low
					# memory (0xa0000), or it may
					# get overwritten before it
					# gets read.  If this field is
					# used, there is no longer
					# anything magical about the
					# 0x90000 segment; the setup
					# can be located anywhere in
					# low memory 0x10000 or higher.

ramdisk_max:	.long __MAXMEM-1	# (Header version 0x0203 or later)
					# The highest safe address for
					# the contents of an initrd

trampoline:	call	start_of_setup
		.space	1024
# End of setup header #####################################################

start_of_setup:
# Bootlin depends on this being done early
	movw	$0x01500, %ax
	movb	$0x81, %dl
	int	$0x13

#ifdef SAFE_RESET_DISK_CONTROLLER
# Reset the disk controller.
	movw	$0x0000, %ax
	movb	$0x80, %dl
	int	$0x13
#endif

# Set %ds = %cs, we know that SETUPSEG = %cs at this point
	movw	%cs, %ax		# aka SETUPSEG
	movw	%ax, %ds
# Check signature at end of setup
	cmpw	$SIG1, setup_sig1
	jne	bad_sig

	cmpw	$SIG2, setup_sig2
	jne	bad_sig

	jmp	good_sig1

# Routine to print asciiz string at ds:si
prtstr:
	lodsb
	andb	%al, %al
	jz	fin

	call	prtchr
	jmp	prtstr

fin:	ret

# Space printing
prtsp2:	call	prtspc		# Print double space
prtspc:	movb	$0x20, %al	# Print single space (note: fall-thru)

# Part of above routine, this one just prints ascii al
prtchr:	pushw	%ax
	pushw	%cx
	xorb	%bh, %bh
	movw	$0x01, %cx
	movb	$0x0e, %ah
	int	$0x10
	popw	%cx
	popw	%ax
	ret

beep:	movb	$0x07, %al
	jmp	prtchr
	
no_sig_mess: .string	"No setup signature found ..."

good_sig1:
	jmp	good_sig

# We now have to find the rest of the setup code/data
bad_sig:
	movw	%cs, %ax			# SETUPSEG
	subw	$DELTA_INITSEG, %ax		# INITSEG
	movw	%ax, %ds
	xorb	%bh, %bh
	movb	(497), %bl			# get setup sect from bootsect
	subw	$4, %bx				# LILO loads 4 sectors of setup
	shlw	$8, %bx				# convert to words (1sect=2^8 words)
	movw	%bx, %cx
	shrw	$3, %bx				# convert to segment
	addw	$SYSSEG, %bx
	movw	%bx, %cs:start_sys_seg
# Move rest of setup code/data to here
	movw	$2048, %di			# four sectors loaded by LILO
	subw	%si, %si
	pushw	%cs
	popw	%es
	movw	$SYSSEG, %ax
	movw	%ax, %ds
	rep
	movsw
	movw	%cs, %ax			# aka SETUPSEG
	movw	%ax, %ds
	cmpw	$SIG1, setup_sig1
	jne	no_sig

	cmpw	$SIG2, setup_sig2
	jne	no_sig

	jmp	good_sig

no_sig:
	lea	no_sig_mess, %si
	call	prtstr

no_sig_loop:
	hlt
	jmp	no_sig_loop

good_sig:
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax 		# aka INITSEG
	movw	%ax, %ds
# Check if an old loader tries to load a big-kernel
	testb	$LOADED_HIGH, %cs:loadflags	# Do we have a big kernel?
	jz	loader_ok			# No, no danger for old loaders.

	cmpb	$0, %cs:type_of_loader 		# Do we have a loader that
						# can deal with us?
	jnz	loader_ok			# Yes, continue.

	pushw	%cs				# No, we have an old loader,
	popw	%ds				# die. 
	lea	loader_panic_mess, %si
	call	prtstr

	jmp	no_sig_loop

loader_panic_mess: .string "Wrong loader, giving up..."

loader_ok:
# Get memory size (extended mem, kB)

	xorl	%eax, %eax
	movl	%eax, (0x1e0)
#ifndef STANDARD_MEMORY_BIOS_CALL
	movb	%al, (E820NR)
# Try three different memory detection schemes.  First, try
# e820h, which lets us assemble a memory map, then try e801h,
# which returns a 32-bit memory size, and finally 88h, which
# returns 0-64m

# method E820H:
# the memory map from hell.  e820h returns memory classified into
# a whole bunch of different types, and allows memory holes and
# everything.  We scan through this memory map and build a list
# of the first 32 memory areas, which we return at [E820MAP].
# This is documented at http://www.teleport.com/~acpi/acpihtml/topic245.htm

#define SMAP  0x534d4150

meme820:
	xorl	%ebx, %ebx			# continuation counter
	movw	$E820MAP, %di			# point into the whitelist
						# so we can have the bios
						# directly write into it.

jmpe820:
	movl	$0x0000e820, %eax		# e820, upper word zeroed
	movl	$SMAP, %edx			# ascii 'SMAP'
	movl	$20, %ecx			# size of the e820rec
	pushw	%ds				# data record.
	popw	%es
	int	$0x15				# make the call
	jc	bail820				# fall to e801 if it fails

	cmpl	$SMAP, %eax			# check the return is `SMAP'
	jne	bail820				# fall to e801 if it fails

#	cmpl	$1, 16(%di)			# is this usable memory?
#	jne	again820

	# If this is usable memory, we save it by simply advancing %di by
	# sizeof(e820rec).
	#
good820:
	movb	(E820NR), %al			# up to 32 entries
	cmpb	$E820MAX, %al
	jnl	bail820

	incb	(E820NR)
	movw	%di, %ax
	addw	$20, %ax
	movw	%ax, %di
again820:
	cmpl	$0, %ebx			# check to see if
	jne	jmpe820				# %ebx is set to EOF
bail820:


# method E801H:
# memory size is in 1k chunksizes, to avoid confusing loadlin.
# we store the 0xe801 memory size in a completely different place,
# because it will most likely be longer than 16 bits.
# (use 1e0 because that's what Larry Augustine uses in his
# alternative new memory detection scheme, and it's sensible
# to write everything into the same place.)

meme801:
	stc					# fix to work around buggy
	xorw	%cx,%cx				# BIOSes which dont clear/set
	xorw	%dx,%dx				# carry on pass/error of
						# e801h memory size call
						# or merely pass cx,dx though
						# without changing them.
	movw	$0xe801, %ax
	int	$0x15
	jc	mem88

	cmpw	$0x0, %cx			# Kludge to handle BIOSes
	jne	e801usecxdx			# which report their extended
	cmpw	$0x0, %dx			# memory in AX/BX rather than
	jne	e801usecxdx			# CX/DX.  The spec I have read
	movw	%ax, %cx			# seems to indicate AX/BX 
	movw	%bx, %dx			# are more reasonable anyway...

e801usecxdx:
	andl	$0xffff, %edx			# clear sign extend
	shll	$6, %edx			# and go from 64k to 1k chunks
	movl	%edx, (0x1e0)			# store extended memory size
	andl	$0xffff, %ecx			# clear sign extend
 	addl	%ecx, (0x1e0)			# and add lower memory into
						# total size.

# Ye Olde Traditional Methode.  Returns the memory size (up to 16mb or
# 64mb, depending on the bios) in ax.
mem88:

#endif
	movb	$0x88, %ah
	int	$0x15
	movw	%ax, (2)

# Set the keyboard repeat rate to the max
	movw	$0x0305, %ax
	xorw	%bx, %bx
	int	$0x16

# Check for video adapter and its parameters and allow the
# user to browse video modes.
	call	video				# NOTE: we need %ds pointing
						# to bootsector

# Get hd0 data...
	xorw	%ax, %ax
	movw	%ax, %ds
	ldsw	(4 * 0x41), %si
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	pushw	%ax
	movw	%ax, %es
	movw	$0x0080, %di
	movw	$0x10, %cx
	pushw	%cx
	cld
	rep
 	movsb
# Get hd1 data...
	xorw	%ax, %ax
	movw	%ax, %ds
	ldsw	(4 * 0x46), %si
	popw	%cx
	popw	%es
	movw	$0x0090, %di
	rep
	movsb
# Check that there IS a hd1 :-)
	movw	$0x01500, %ax
	movb	$0x81, %dl
	int	$0x13
	jc	no_disk1
	
	cmpb	$3, %ah
	je	is_disk1

no_disk1:
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax 		# aka INITSEG
	movw	%ax, %es
	movw	$0x0090, %di
	movw	$0x10, %cx
	xorw	%ax, %ax
	cld
	rep
	stosb
is_disk1:
# check for Micro Channel (MCA) bus
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	movw	%ax, %ds
	xorw	%ax, %ax
	movw	%ax, (0xa0)			# set table length to 0
	movb	$0xc0, %ah
	stc
	int	$0x15				# moves feature table to es:bx
	jc	no_mca

	pushw	%ds
	movw	%es, %ax
	movw	%ax, %ds
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	movw	%ax, %es
	movw	%bx, %si
	movw	$0xa0, %di
	movw	(%si), %cx
	addw	$2, %cx				# table length is a short
	cmpw	$0x10, %cx
	jc	sysdesc_ok

	movw	$0x10, %cx			# we keep only first 16 bytes
sysdesc_ok:
	rep
	movsb
	popw	%ds
no_mca:
# Check for PS/2 pointing device
	movw	%cs, %ax			# aka SETUPSEG
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	movw	%ax, %ds
	movw	$0, (0x1ff)			# default is no pointing device
	int	$0x11				# int 0x11: equipment list
	testb	$0x04, %al			# check if mouse installed
	jz	no_psmouse

	movw	$0xAA, (0x1ff)			# device present
no_psmouse:

#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE)
# Then check for an APM BIOS...
						# %ds points to the bootsector
	movw	$0, 0x40			# version = 0 means no APM BIOS
	movw	$0x05300, %ax			# APM BIOS installation check
	xorw	%bx, %bx
	int	$0x15
	jc	done_apm_bios			# Nope, no APM BIOS
	
	cmpw	$0x0504d, %bx			# Check for "PM" signature
	jne	done_apm_bios			# No signature, no APM BIOS

	andw	$0x02, %cx			# Is 32 bit supported?
	je	done_apm_bios			# No 32-bit, no (good) APM BIOS

	movw	$0x05304, %ax			# Disconnect first just in case
	xorw	%bx, %bx
	int	$0x15				# ignore return code
	movw	$0x05303, %ax			# 32 bit connect
	xorl	%ebx, %ebx
	xorw	%cx, %cx			# paranoia :-)
	xorw	%dx, %dx			#   ...
	xorl	%esi, %esi			#   ...
	xorw	%di, %di			#   ...
	int	$0x15
	jc	no_32_apm_bios			# Ack, error. 

	movw	%ax,  (66)			# BIOS code segment
	movl	%ebx, (68)			# BIOS entry point offset
	movw	%cx,  (72)			# BIOS 16 bit code segment
	movw	%dx,  (74)			# BIOS data segment
	movl	%esi, (78)			# BIOS code segment lengths
	movw	%di,  (82)			# BIOS data segment length
# Redo the installation check as the 32 bit connect
# modifies the flags returned on some BIOSs
	movw	$0x05300, %ax			# APM BIOS installation check
	xorw	%bx, %bx
	xorw	%cx, %cx			# paranoia
	int	$0x15
	jc	apm_disconnect			# error -> shouldn't happen

	cmpw	$0x0504d, %bx			# check for "PM" signature
	jne	apm_disconnect			# no sig -> shouldn't happen

	movw	%ax, (64)			# record the APM BIOS version
	movw	%cx, (76)			# and flags
	jmp	done_apm_bios

apm_disconnect:					# Tidy up
	movw	$0x05304, %ax			# Disconnect
	xorw	%bx, %bx
	int	$0x15				# ignore return code

	jmp	done_apm_bios

no_32_apm_bios:
	andw	$0xfffd, (76)			# remove 32 bit support bit
done_apm_bios:
#endif

#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
# Do the BIOS Enhanced Disk Drive calls
# This consists of two calls:
#    int 13h ah=41h "Check Extensions Present"
#    int 13h ah=48h "Get Device Parameters"
#
# A buffer of size EDDMAXNR*(EDDEXTSIZE+EDDPARMSIZE) is reserved for our use
# in the empty_zero_page at EDDBUF.  The first four bytes of which are
# used to store the device number, interface support map and version
# results from fn41.  The following 74 bytes are used to store
# the results from fn48.  Starting from device 80h, fn41, then fn48
# are called and their results stored in EDDBUF+n*(EDDEXTSIZE+EDDPARMIZE).
# Then the pointer is incremented to store the data for the next call.
# This repeats until either a device doesn't exist, or until EDDMAXNR
# devices have been stored.
# The one tricky part is that ds:si always points four bytes into
# the structure, and the fn41 results are stored at offsets
# from there.  This removes the need to increment the pointer for
# every store, and leaves it ready for the fn48 call.
# A second one-byte buffer, EDDNR, in the empty_zero_page stores
# the number of BIOS devices which exist, up to EDDMAXNR.
# In setup.c, copy_edd() stores both empty_zero_page buffers away
# for later use, as they would get overwritten otherwise. 
# This code is sensitive to the size of the structs in edd.h
edd_start:  
						# %ds points to the bootsector
       						# result buffer for fn48
    	movw	$EDDBUF+EDDEXTSIZE, %si		# in ds:si, fn41 results
						# kept just before that    
	movb	$0, (EDDNR)			# zero value at EDDNR
    	movb	$0x80, %dl			# BIOS device 0x80

edd_check_ext:
	movb	$CHECKEXTENSIONSPRESENT, %ah    # Function 41
	movw	$EDDMAGIC1, %bx			# magic
	int	$0x13				# make the call
	jc	edd_done			# no more BIOS devices

    	cmpw	$EDDMAGIC2, %bx			# is magic right?
	jne	edd_next			# nope, next...

    	movb	%dl, %ds:-4(%si)		# store device number
    	movb	%ah, %ds:-3(%si)		# store version
	movw	%cx, %ds:-2(%si)		# store extensions
	incb	(EDDNR)				# note that we stored something
        
edd_get_device_params:  
	movw	$EDDPARMSIZE, %ds:(%si)		# put size
    	movb	$GETDEVICEPARAMETERS, %ah	# Function 48
	int	$0x13				# make the call
						# Don't check for fail return
						# it doesn't matter.
	movw	%si, %ax			# increment si
	addw	$EDDPARMSIZE+EDDEXTSIZE, %ax
	movw	%ax, %si

edd_next:
        incb	%dl				# increment to next device
       	cmpb	$EDDMAXNR, (EDDNR) 		# Out of space?
	jb	edd_check_ext			# keep looping
    
edd_done:   
#endif

# Now we want to move to protected mode ...
	cmpw	$0, %cs:realmode_swtch
	jz	rmodeswtch_normal

	lcall	*%cs:realmode_swtch

	jmp	rmodeswtch_end

rmodeswtch_normal:
        pushw	%cs
	call	default_switch

rmodeswtch_end:
# we get the code32 start address and modify the below 'jmpi'
# (loader may have changed it)
	movl	%cs:code32_start, %eax
	movl	%eax, %cs:code32

# Now we move the system to its rightful place ... but we check if we have a
# big-kernel. In that case we *must* not move it ...
	testb	$LOADED_HIGH, %cs:loadflags
	jz	do_move0			# .. then we have a normal low
						# loaded zImage
						# .. or else we have a high
						# loaded bzImage
	jmp	end_move			# ... and we skip moving

do_move0:
	movw	$0x100, %ax			# start of destination segment
	movw	%cs, %bp			# aka SETUPSEG
	subw	$DELTA_INITSEG, %bp		# aka INITSEG
	movw	%cs:start_sys_seg, %bx		# start of source segment
	cld
do_move:
	movw	%ax, %es			# destination segment
	incb	%ah				# instead of add ax,#0x100
	movw	%bx, %ds			# source segment
	addw	$0x100, %bx
	subw	%di, %di
	subw	%si, %si
	movw 	$0x800, %cx
	rep
	movsw
	cmpw	%bp, %bx			# assume start_sys_seg > 0x200,
						# so we will perhaps read one
						# page more than needed, but
						# never overwrite INITSEG
						# because destination is a
						# minimum one page below source
	jb	do_move

end_move:
# then we load the segment descriptors
	movw	%cs, %ax			# aka SETUPSEG
	movw	%ax, %ds
		
# Check whether we need to be downward compatible with version <=201
	cmpl	$0, cmd_line_ptr
	jne	end_move_self		# loader uses version >=202 features
	cmpb	$0x20, type_of_loader
	je	end_move_self		# bootsect loader, we know of it

# Boot loader doesnt support boot protocol version 2.02.
# If we have our code not at 0x90000, we need to move it there now.
# We also then need to move the params behind it (commandline)
# Because we would overwrite the code on the current IP, we move
# it in two steps, jumping high after the first one.
	movw	%cs, %ax
	cmpw	$SETUPSEG, %ax
	je	end_move_self

	cli					# make sure we really have
						# interrupts disabled !
						# because after this the stack
						# should not be used
	subw	$DELTA_INITSEG, %ax		# aka INITSEG
	movw	%ss, %dx
	cmpw	%ax, %dx
	jb	move_self_1

	addw	$INITSEG, %dx
	subw	%ax, %dx			# this will go into %ss after
						# the move
move_self_1:
	movw	%ax, %ds
	movw	$INITSEG, %ax			# real INITSEG
	movw	%ax, %es
	movw	%cs:setup_move_size, %cx
	std					# we have to move up, so we use
						# direction down because the
						# areas may overlap
	movw	%cx, %di
	decw	%di
	movw	%di, %si
	subw	$move_self_here+0x200, %cx
	rep
	movsb
	ljmp	$SETUPSEG, $move_self_here

move_self_here:
	movw	$move_self_here+0x200, %cx
	rep
	movsb
	movw	$SETUPSEG, %ax
	movw	%ax, %ds
	movw	%dx, %ss
end_move_self:					# now we are at the right place

#
# Enable A20.  This is at the very best an annoying procedure.
# A20 code ported from SYSLINUX 1.52-1.63 by H. Peter Anvin.
# AMD Elan bug fix by Robert Schwebel.
#

#if defined(CONFIG_MELAN)
	movb $0x02, %al			# alternate A20 gate
	outb %al, $0x92			# this works on SC410/SC520
a20_elan_wait:
	call a20_test
	jz a20_elan_wait
	jmp a20_done
#endif


A20_TEST_LOOPS		=  32		# Iterations per wait
A20_ENABLE_LOOPS	= 255		# Total loops to try		


a20_try_loop:

	# First, see if we are on a system with no A20 gate.
a20_none:
	call	a20_test
	jnz	a20_done

	# Next, try the BIOS (INT 0x15, AX=0x2401)
a20_bios:
	movw	$0x2401, %ax
	pushfl					# Be paranoid about flags
	int	$0x15
	popfl

	call	a20_test
	jnz	a20_done

	# Try enabling A20 through the keyboard controller
a20_kbc:
	call	empty_8042

	call	a20_test			# Just in case the BIOS worked
	jnz	a20_done			# but had a delayed reaction.

	movb	$0xD1, %al			# command write
	outb	%al, $0x64
	call	empty_8042

	movb	$0xDF, %al			# A20 on
	outb	%al, $0x60
	call	empty_8042

	# Wait until a20 really *is* enabled; it can take a fair amount of
	# time on certain systems; Toshiba Tecras are known to have this
	# problem.
a20_kbc_wait:
	xorw	%cx, %cx
a20_kbc_wait_loop:
	call	a20_test
	jnz	a20_done
	loop	a20_kbc_wait_loop

	# Final attempt: use "configuration port A"
a20_fast:
	inb	$0x92, %al			# Configuration Port A
	orb	$0x02, %al			# "fast A20" version
	andb	$0xFE, %al			# don't accidentally reset
	outb	%al, $0x92

	# Wait for configuration port A to take effect
a20_fast_wait:
	xorw	%cx, %cx
a20_fast_wait_loop:
	call	a20_test
	jnz	a20_done
	loop	a20_fast_wait_loop

	# A20 is still not responding.  Try frobbing it again.
	# 
	decb	(a20_tries)
	jnz	a20_try_loop
	
	movw	$a20_err_msg, %si
	call	prtstr

a20_die:
	hlt
	jmp	a20_die

a20_tries:
	.byte	A20_ENABLE_LOOPS

a20_err_msg:
	.ascii	"linux: fatal error: A20 gate not responding!"
	.byte	13, 10, 0

	# If we get here, all is good
a20_done:

# set up gdt and idt
	lidt	idt_48				# load idt with 0,0
	xorl	%eax, %eax			# Compute gdt_base
	movw	%ds, %ax			# (Convert %ds:gdt to a linear ptr)
	shll	$4, %eax
	addl	$gdt, %eax
	movl	%eax, (gdt_48+2)
	lgdt	gdt_48				# load gdt with whatever is
						# appropriate

# make sure any possible coprocessor is properly reset..
	xorw	%ax, %ax
	outb	%al, $0xf0
	call	delay

	outb	%al, $0xf1
	call	delay

# well, that went ok, I hope. Now we mask all interrupts - the rest
# is done in init_IRQ().
	movb	$0xFF, %al			# mask all interrupts for now
	outb	%al, $0xA1
	call	delay
	
	movb	$0xFB, %al			# mask all irq's but irq2 which
	outb	%al, $0x21			# is cascaded

# Well, that certainly wasn't fun :-(. Hopefully it works, and we don't
# need no steenking BIOS anyway (except for the initial loading :-).
# The BIOS-routine wants lots of unnecessary data, and it's less
# "interesting" anyway. This is how REAL programmers do it.
#
# Well, now's the time to actually move into protected mode. To make
# things as simple as possible, we do no register set-up or anything,
# we let the gnu-compiled 32-bit programs do that. We just jump to
# absolute address 0x1000 (or the loader supplied one),
# in 32-bit protected mode.
#
# Note that the short jump isn't strictly needed, although there are
# reasons why it might be a good idea. It won't hurt in any case.
	movw	$1, %ax				# protected mode (PE) bit
	lmsw	%ax				# This is it!
	jmp	flush_instr

flush_instr:
	xorw	%bx, %bx			# Flag to indicate a boot
	xorl	%esi, %esi			# Pointer to real-mode code
	movw	%cs, %si
	subw	$DELTA_INITSEG, %si
	shll	$4, %esi			# Convert to 32-bit pointer
# NOTE: For high loaded big kernels we need a
#	jmpi    0x100000,__KERNEL_CS
#
#	but we yet haven't reloaded the CS register, so the default size 
#	of the target offset still is 16 bit.
#       However, using an operand prefix (0x66), the CPU will properly
#	take our 48 bit far pointer. (INTeL 80386 Programmer's Reference
#	Manual, Mixing 16-bit and 32-bit code, page 16-6)

	.byte 0x66, 0xea			# prefix + jmpi-opcode
code32:	.long	0x1000				# will be set to 0x100000
						# for big kernels
	.word	__KERNEL_CS

# Here's a bunch of information about your current kernel..
kernel_version:	.ascii	UTS_RELEASE
		.ascii	" ("
		.ascii	LINUX_COMPILE_BY
		.ascii	"@"
		.ascii	LINUX_COMPILE_HOST
		.ascii	") "
		.ascii	UTS_VERSION
		.byte	0

# This is the default real mode switch routine.
# to be called just before protected mode transition
default_switch:
	cli					# no interrupts allowed !
	movb	$0x80, %al			# disable NMI for bootup
						# sequence
	outb	%al, $0x70
	lret

# This routine only gets called, if we get loaded by the simple
# bootsect loader _and_ have a bzImage to load.
# Because there is no place left in the 512 bytes of the boot sector,
# we must emigrate to code space here.
bootsect_helper:
	cmpw	$0, %cs:bootsect_es
	jnz	bootsect_second

	movb	$0x20, %cs:type_of_loader
	movw	%es, %ax
	shrw	$4, %ax
	movb	%ah, %cs:bootsect_src_base+2
	movw	%es, %ax
	movw	%ax, %cs:bootsect_es
	subw	$SYSSEG, %ax
	lret					# nothing else to do for now

bootsect_second:
	pushw	%cx
	pushw	%si
	pushw	%bx
	testw	%bx, %bx			# 64K full?
	jne	bootsect_ex

	movw	$0x8000, %cx			# full 64K, INT15 moves words
	pushw	%cs
	popw	%es
	movw	$bootsect_gdt, %si
	movw	$0x8700, %ax
	int	$0x15
	jc	bootsect_panic			# this, if INT15 fails

	movw	%cs:bootsect_es, %es		# we reset %es to always point
	incb	%cs:bootsect_dst_base+2		# to 0x10000
bootsect_ex:
	movb	%cs:bootsect_dst_base+2, %ah
	shlb	$4, %ah				# we now have the number of
						# moved frames in %ax
	xorb	%al, %al
	popw	%bx
	popw	%si
	popw	%cx
	lret

bootsect_gdt:
	.word	0, 0, 0, 0
	.word	0, 0, 0, 0

bootsect_src:
	.word	0xffff

bootsect_src_base:
	.byte	0x00, 0x00, 0x01		# base = 0x010000
	.byte	0x93				# typbyte
	.word	0				# limit16,base24 =0

bootsect_dst:
	.word	0xffff

bootsect_dst_base:
	.byte	0x00, 0x00, 0x10		# base = 0x100000
	.byte	0x93				# typbyte
	.word	0				# limit16,base24 =0
	.word	0, 0, 0, 0			# BIOS CS
	.word	0, 0, 0, 0			# BIOS DS

bootsect_es:
	.word	0

bootsect_panic:
	pushw	%cs
	popw	%ds
	cld
	leaw	bootsect_panic_mess, %si
	call	prtstr
	
bootsect_panic_loop:
	jmp	bootsect_panic_loop

bootsect_panic_mess:
	.string	"INT15 refuses to access high mem, giving up."


# This routine tests whether or not A20 is enabled.  If so, it
# exits with zf = 0.
#
# The memory address used, 0x200, is the int $0x80 vector, which
# should be safe.

A20_TEST_ADDR = 4*0x80

a20_test:
	pushw	%cx
	pushw	%ax
	xorw	%cx, %cx
	movw	%cx, %fs			# Low memory
	decw	%cx
	movw	%cx, %gs			# High memory area
	movw	$A20_TEST_LOOPS, %cx
	movw	%fs:(A20_TEST_ADDR), %ax
	pushw	%ax
a20_test_wait:
	incw	%ax
	movw	%ax, %fs:(A20_TEST_ADDR)
	call	delay				# Serialize and make delay constant
	cmpw	%gs:(A20_TEST_ADDR+0x10), %ax
	loope	a20_test_wait

	popw	%fs:(A20_TEST_ADDR)
	popw	%ax
	popw	%cx
	ret	

# This routine checks that the keyboard command queue is empty
# (after emptying the output buffers)
#
# Some machines have delusions that the keyboard buffer is always full
# with no keyboard attached...
#
# If there is no keyboard controller, we will usually get 0xff
# to all the reads.  With each IO taking a microsecond and
# a timeout of 100,000 iterations, this can take about half a
# second ("delay" == outb to port 0x80). That should be ok,
# and should also be plenty of time for a real keyboard controller
# to empty.
#

empty_8042:
	pushl	%ecx
	movl	$100000, %ecx

empty_8042_loop:
	decl	%ecx
	jz	empty_8042_end_loop

	call	delay

	inb	$0x64, %al			# 8042 status port
	testb	$1, %al				# output buffer?
	jz	no_output

	call	delay
	inb	$0x60, %al			# read it
	jmp	empty_8042_loop

no_output:
	testb	$2, %al				# is input buffer full?
	jnz	empty_8042_loop			# yes - loop
empty_8042_end_loop:
	popl	%ecx
	ret

# Read the cmos clock. Return the seconds in al
gettime:
	pushw	%cx
	movb	$0x02, %ah
	int	$0x1a
	movb	%dh, %al			# %dh contains the seconds
	andb	$0x0f, %al
	movb	%dh, %ah
	movb	$0x04, %cl
	shrb	%cl, %ah
	aad
	popw	%cx
	ret

# Delay is needed after doing I/O
delay:
	outb	%al,$0x80
	ret

# Descriptor tables
#
# NOTE: if you think the GDT is large, you can make it smaller by just
# defining the KERNEL_CS and KERNEL_DS entries and shifting the gdt
# address down by GDT_ENTRY_KERNEL_CS*8. This puts bogus entries into
# the GDT, but those wont be used so it's not a problem.
#
gdt:
	.fill GDT_ENTRY_KERNEL_CS,8,0

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9A00				# code read/exec
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)

	.word	0xFFFF				# 4Gb - (0x100000*0x1000 = 4Gb)
	.word	0				# base address = 0
	.word	0x9200				# data read/write
	.word	0x00CF				# granularity = 4096, 386
						#  (+5th nibble of limit)
idt_48:
	.word	0				# idt limit = 0
	.word	0, 0				# idt base = 0L
gdt_48:
	.word	GDT_ENTRY_KERNEL_CS*8 + 16 - 1	# gdt limit

	.word	0, 0				# gdt base (filled in later)

# Include video setup & detection code

#include "video.S"

# Setup signature -- must be last
setup_sig1:	.word	SIG1
setup_sig2:	.word	SIG2

# After this point, there is some free space which is used by the video mode
# handling code to store the temporary mode table (not used by the kernel).

modelist:

.text
endtext:
.data
enddata:
.bss
endbss: