Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
/*
 * fs/dcache.c
 *
 * Complete reimplementation
 * (C) 1997 Thomas Schoebel-Theuer,
 * with heavy changes by Linus Torvalds
 */

/*
 * Notes on the allocation strategy:
 *
 * The dcache is a master of the icache - whenever a dcache entry
 * exists, the inode will always exist. "iput()" is done either when
 * the dcache entry is deleted or garbage collected.
 */

#include <linux/config.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/cache.h>
#include <linux/module.h>

#include <asm/uaccess.h>

#define DCACHE_PARANOIA 1
/* #define DCACHE_DEBUG 1 */

spinlock_t dcache_lock = SPIN_LOCK_UNLOCKED;

/* Right now the dcache depends on the kernel lock */
#define check_lock()	if (!kernel_locked()) BUG()

static kmem_cache_t *dentry_cache; 

/*
 * This is the single most critical data structure when it comes
 * to the dcache: the hashtable for lookups. Somebody should try
 * to make this good - I've just made it work.
 *
 * This hash-function tries to avoid losing too many bits of hash
 * information, yet avoid using a prime hash-size or similar.
 */
#define D_HASHBITS     d_hash_shift
#define D_HASHMASK     d_hash_mask

static unsigned int d_hash_mask;
static unsigned int d_hash_shift;
static struct list_head *dentry_hashtable;
static LIST_HEAD(dentry_unused);

/* Statistics gathering. */
struct dentry_stat_t dentry_stat = {0, 0, 45, 0,};

/* no dcache_lock, please */
static inline void d_free(struct dentry *dentry)
{
	if (dentry->d_op && dentry->d_op->d_release)
		dentry->d_op->d_release(dentry);
	if (dname_external(dentry)) 
		kfree(dentry->d_name.name);
	kmem_cache_free(dentry_cache, dentry); 
	dentry_stat.nr_dentry--;
}

/*
 * Release the dentry's inode, using the fileystem
 * d_iput() operation if defined.
 * Called with dcache_lock held, drops it.
 */
static inline void dentry_iput(struct dentry * dentry)
{
	struct inode *inode = dentry->d_inode;
	if (inode) {
		dentry->d_inode = NULL;
		list_del_init(&dentry->d_alias);
		spin_unlock(&dcache_lock);
		if (dentry->d_op && dentry->d_op->d_iput)
			dentry->d_op->d_iput(dentry, inode);
		else
			iput(inode);
	} else
		spin_unlock(&dcache_lock);
}

/* 
 * This is dput
 *
 * This is complicated by the fact that we do not want to put
 * dentries that are no longer on any hash chain on the unused
 * list: we'd much rather just get rid of them immediately.
 *
 * However, that implies that we have to traverse the dentry
 * tree upwards to the parents which might _also_ now be
 * scheduled for deletion (it may have been only waiting for
 * its last child to go away).
 *
 * This tail recursion is done by hand as we don't want to depend
 * on the compiler to always get this right (gcc generally doesn't).
 * Real recursion would eat up our stack space.
 */

/*
 * dput - release a dentry
 * @dentry: dentry to release 
 *
 * Release a dentry. This will drop the usage count and if appropriate
 * call the dentry unlink method as well as removing it from the queues and
 * releasing its resources. If the parent dentries were scheduled for release
 * they too may now get deleted.
 *
 * no dcache lock, please.
 */

void dput(struct dentry *dentry)
{
	if (!dentry)
		return;

repeat:
	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
		return;

	/* dput on a free dentry? */
	if (!list_empty(&dentry->d_lru))
		BUG();
	/*
	 * AV: ->d_delete() is _NOT_ allowed to block now.
	 */
	if (dentry->d_op && dentry->d_op->d_delete) {
		if (dentry->d_op->d_delete(dentry))
			goto unhash_it;
	}
	/* Unreachable? Get rid of it */
	if (list_empty(&dentry->d_hash))
		goto kill_it;
	list_add(&dentry->d_lru, &dentry_unused);
	dentry_stat.nr_unused++;
	spin_unlock(&dcache_lock);
	return;

unhash_it:
	list_del_init(&dentry->d_hash);

kill_it: {
		struct dentry *parent;
		list_del(&dentry->d_child);
		/* drops the lock, at that point nobody can reach this dentry */
		dentry_iput(dentry);
		parent = dentry->d_parent;
		d_free(dentry);
		if (dentry == parent)
			return;
		dentry = parent;
		goto repeat;
	}
}

/**
 * d_invalidate - invalidate a dentry
 * @dentry: dentry to invalidate
 *
 * Try to invalidate the dentry if it turns out to be
 * possible. If there are other dentries that can be
 * reached through this one we can't delete it and we
 * return -EBUSY. On success we return 0.
 *
 * no dcache lock.
 */
 
int d_invalidate(struct dentry * dentry)
{
	/*
	 * If it's already been dropped, return OK.
	 */
	spin_lock(&dcache_lock);
	if (list_empty(&dentry->d_hash)) {
		spin_unlock(&dcache_lock);
		return 0;
	}
	/*
	 * Check whether to do a partial shrink_dcache
	 * to get rid of unused child entries.
	 */
	if (!list_empty(&dentry->d_subdirs)) {
		spin_unlock(&dcache_lock);
		shrink_dcache_parent(dentry);
		spin_lock(&dcache_lock);
	}

	/*
	 * Somebody else still using it?
	 *
	 * If it's a directory, we can't drop it
	 * for fear of somebody re-populating it
	 * with children (even though dropping it
	 * would make it unreachable from the root,
	 * we might still populate it if it was a
	 * working directory or similar).
	 */
	if (atomic_read(&dentry->d_count) > 1) {
		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
			spin_unlock(&dcache_lock);
			return -EBUSY;
		}
	}

	list_del_init(&dentry->d_hash);
	spin_unlock(&dcache_lock);
	return 0;
}

/* This should be called _only_ with dcache_lock held */

static inline struct dentry * __dget_locked(struct dentry *dentry)
{
	atomic_inc(&dentry->d_count);
	if (atomic_read(&dentry->d_count) == 1) {
		dentry_stat.nr_unused--;
		list_del_init(&dentry->d_lru);
	}
	return dentry;
}

struct dentry * dget_locked(struct dentry *dentry)
{
	return __dget_locked(dentry);
}

/**
 * d_find_alias - grab a hashed alias of inode
 * @inode: inode in question
 *
 * If inode has a hashed alias - acquire the reference to alias and
 * return it. Otherwise return NULL. Notice that if inode is a directory
 * there can be only one alias and it can be unhashed only if it has
 * no children.
 */

struct dentry * d_find_alias(struct inode *inode)
{
	struct list_head *head, *next, *tmp;
	struct dentry *alias;

	spin_lock(&dcache_lock);
	head = &inode->i_dentry;
	next = inode->i_dentry.next;
	while (next != head) {
		tmp = next;
		next = tmp->next;
		alias = list_entry(tmp, struct dentry, d_alias);
		if (!list_empty(&alias->d_hash)) {
			__dget_locked(alias);
			spin_unlock(&dcache_lock);
			return alias;
		}
	}
	spin_unlock(&dcache_lock);
	return NULL;
}

/*
 *	Try to kill dentries associated with this inode.
 * WARNING: you must own a reference to inode.
 */
void d_prune_aliases(struct inode *inode)
{
	struct list_head *tmp, *head = &inode->i_dentry;
restart:
	spin_lock(&dcache_lock);
	tmp = head;
	while ((tmp = tmp->next) != head) {
		struct dentry *dentry = list_entry(tmp, struct dentry, d_alias);
		if (!atomic_read(&dentry->d_count)) {
			__dget_locked(dentry);
			spin_unlock(&dcache_lock);
			d_drop(dentry);
			dput(dentry);
			goto restart;
		}
	}
	spin_unlock(&dcache_lock);
}

/*
 * Throw away a dentry - free the inode, dput the parent.
 * This requires that the LRU list has already been
 * removed.
 * Called with dcache_lock, drops it and then regains.
 */
static inline void prune_one_dentry(struct dentry * dentry)
{
	struct dentry * parent;

	list_del_init(&dentry->d_hash);
	list_del(&dentry->d_child);
	dentry_iput(dentry);
	parent = dentry->d_parent;
	d_free(dentry);
	if (parent != dentry)
		dput(parent);
	spin_lock(&dcache_lock);
}

/**
 * prune_dcache - shrink the dcache
 * @count: number of entries to try and free
 *
 * Shrink the dcache. This is done when we need
 * more memory, or simply when we need to unmount
 * something (at which point we need to unuse
 * all dentries).
 *
 * This function may fail to free any resources if
 * all the dentries are in use.
 */
 
void prune_dcache(int count)
{
	spin_lock(&dcache_lock);
	for (;;) {
		struct dentry *dentry;
		struct list_head *tmp;

		tmp = dentry_unused.prev;

		if (tmp == &dentry_unused)
			break;
		list_del_init(tmp);
		dentry = list_entry(tmp, struct dentry, d_lru);

		/* If the dentry was recently referenced, don't free it. */
		if (dentry->d_vfs_flags & DCACHE_REFERENCED) {
			dentry->d_vfs_flags &= ~DCACHE_REFERENCED;
			list_add(&dentry->d_lru, &dentry_unused);
			continue;
		}
		dentry_stat.nr_unused--;

		/* Unused dentry with a count? */
		if (atomic_read(&dentry->d_count))
			BUG();

		prune_one_dentry(dentry);
		if (!--count)
			break;
	}
	spin_unlock(&dcache_lock);
}

/*
 * Shrink the dcache for the specified super block.
 * This allows us to unmount a device without disturbing
 * the dcache for the other devices.
 *
 * This implementation makes just two traversals of the
 * unused list.  On the first pass we move the selected
 * dentries to the most recent end, and on the second
 * pass we free them.  The second pass must restart after
 * each dput(), but since the target dentries are all at
 * the end, it's really just a single traversal.
 */

/**
 * shrink_dcache_sb - shrink dcache for a superblock
 * @sb: superblock
 *
 * Shrink the dcache for the specified super block. This
 * is used to free the dcache before unmounting a file
 * system
 */

void shrink_dcache_sb(struct super_block * sb)
{
	struct list_head *tmp, *next;
	struct dentry *dentry;

	/*
	 * Pass one ... move the dentries for the specified
	 * superblock to the most recent end of the unused list.
	 */
	spin_lock(&dcache_lock);
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		list_del(tmp);
		list_add(tmp, &dentry_unused);
	}

	/*
	 * Pass two ... free the dentries for this superblock.
	 */
repeat:
	next = dentry_unused.next;
	while (next != &dentry_unused) {
		tmp = next;
		next = tmp->next;
		dentry = list_entry(tmp, struct dentry, d_lru);
		if (dentry->d_sb != sb)
			continue;
		if (atomic_read(&dentry->d_count))
			continue;
		dentry_stat.nr_unused--;
		list_del_init(tmp);
		prune_one_dentry(dentry);
		goto repeat;
	}
	spin_unlock(&dcache_lock);
}

/*
 * Search for at least 1 mount point in the dentry's subdirs.
 * We descend to the next level whenever the d_subdirs
 * list is non-empty and continue searching.
 */
 
/**
 * have_submounts - check for mounts over a dentry
 * @parent: dentry to check.
 *
 * Return true if the parent or its subdirectories contain
 * a mount point
 */
 
int have_submounts(struct dentry *parent)
{
	struct dentry *this_parent = parent;
	struct list_head *next;

	spin_lock(&dcache_lock);
	if (d_mountpoint(parent))
		goto positive;
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		/* Have we found a mount point ? */
		if (d_mountpoint(dentry))
			goto positive;
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
			goto repeat;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != parent) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
		goto resume;
	}
	spin_unlock(&dcache_lock);
	return 0; /* No mount points found in tree */
positive:
	spin_unlock(&dcache_lock);
	return 1;
}

/*
 * Search the dentry child list for the specified parent,
 * and move any unused dentries to the end of the unused
 * list for prune_dcache(). We descend to the next level
 * whenever the d_subdirs list is non-empty and continue
 * searching.
 */
static int select_parent(struct dentry * parent)
{
	struct dentry *this_parent = parent;
	struct list_head *next;
	int found = 0;

	spin_lock(&dcache_lock);
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		if (!atomic_read(&dentry->d_count)) {
			list_del(&dentry->d_lru);
			list_add(&dentry->d_lru, dentry_unused.prev);
			found++;
		}
		/*
		 * Descend a level if the d_subdirs list is non-empty.
		 */
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
dentry->d_parent->d_name.name, dentry->d_name.name, found);
#endif
			goto repeat;
		}
	}
	/*
	 * All done at this level ... ascend and resume the search.
	 */
	if (this_parent != parent) {
		next = this_parent->d_child.next; 
		this_parent = this_parent->d_parent;
#ifdef DCACHE_DEBUG
printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
#endif
		goto resume;
	}
	spin_unlock(&dcache_lock);
	return found;
}

/**
 * shrink_dcache_parent - prune dcache
 * @parent: parent of entries to prune
 *
 * Prune the dcache to remove unused children of the parent dentry.
 */
 
void shrink_dcache_parent(struct dentry * parent)
{
	int found;

	while ((found = select_parent(parent)) != 0)
		prune_dcache(found);
}

/*
 * This is called from kswapd when we think we need some
 * more memory, but aren't really sure how much. So we
 * carefully try to free a _bit_ of our dcache, but not
 * too much.
 *
 * Priority:
 *   0 - very urgent: shrink everything
 *  ...
 *   6 - base-level: try to shrink a bit.
 */
int shrink_dcache_memory(int priority, unsigned int gfp_mask)
{
	int count = 0;

	/*
	 * Nasty deadlock avoidance.
	 *
	 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
	 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->
	 * put_inode->ext2_discard_prealloc->ext2_free_blocks->lock_super->
	 * DEADLOCK.
	 *
	 * We should make sure we don't hold the superblock lock over
	 * block allocations, but for now:
	 */
	if (!(gfp_mask & __GFP_FS))
		return 0;

	count = dentry_stat.nr_unused >> priority;

	prune_dcache(count);
	kmem_cache_shrink(dentry_cache);
	return 0;
}

#define NAME_ALLOC_LEN(len)	((len+16) & ~15)

/**
 * d_alloc	-	allocate a dcache entry
 * @parent: parent of entry to allocate
 * @name: qstr of the name
 *
 * Allocates a dentry. It returns %NULL if there is insufficient memory
 * available. On a success the dentry is returned. The name passed in is
 * copied and the copy passed in may be reused after this call.
 */
 
struct dentry * d_alloc(struct dentry * parent, const struct qstr *name)
{
	char * str;
	struct dentry *dentry;

	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 
	if (!dentry)
		return NULL;

	if (name->len > DNAME_INLINE_LEN-1) {
		str = kmalloc(NAME_ALLOC_LEN(name->len), GFP_KERNEL);
		if (!str) {
			kmem_cache_free(dentry_cache, dentry); 
			return NULL;
		}
	} else
		str = dentry->d_iname; 

	memcpy(str, name->name, name->len);
	str[name->len] = 0;

	atomic_set(&dentry->d_count, 1);
	dentry->d_vfs_flags = 0;
	dentry->d_flags = 0;
	dentry->d_inode = NULL;
	dentry->d_parent = NULL;
	dentry->d_sb = NULL;
	dentry->d_name.name = str;
	dentry->d_name.len = name->len;
	dentry->d_name.hash = name->hash;
	dentry->d_op = NULL;
	dentry->d_fsdata = NULL;
	dentry->d_mounted = 0;
	INIT_LIST_HEAD(&dentry->d_hash);
	INIT_LIST_HEAD(&dentry->d_lru);
	INIT_LIST_HEAD(&dentry->d_subdirs);
	INIT_LIST_HEAD(&dentry->d_alias);
	if (parent) {
		dentry->d_parent = dget(parent);
		dentry->d_sb = parent->d_sb;
		spin_lock(&dcache_lock);
		list_add(&dentry->d_child, &parent->d_subdirs);
		spin_unlock(&dcache_lock);
	} else
		INIT_LIST_HEAD(&dentry->d_child);

	dentry_stat.nr_dentry++;
	return dentry;
}

/**
 * d_instantiate - fill in inode information for a dentry
 * @entry: dentry to complete
 * @inode: inode to attach to this dentry
 *
 * Fill in inode information in the entry.
 *
 * This turns negative dentries into productive full members
 * of society.
 *
 * NOTE! This assumes that the inode count has been incremented
 * (or otherwise set) by the caller to indicate that it is now
 * in use by the dcache.
 */
 
void d_instantiate(struct dentry *entry, struct inode * inode)
{
	if (!list_empty(&entry->d_alias)) BUG();
	spin_lock(&dcache_lock);
	if (inode)
		list_add(&entry->d_alias, &inode->i_dentry);
	entry->d_inode = inode;
	spin_unlock(&dcache_lock);
}

/**
 * d_alloc_root - allocate root dentry
 * @root_inode: inode to allocate the root for
 *
 * Allocate a root ("/") dentry for the inode given. The inode is
 * instantiated and returned. %NULL is returned if there is insufficient
 * memory or the inode passed is %NULL.
 */
 
struct dentry * d_alloc_root(struct inode * root_inode)
{
	struct dentry *res = NULL;

	if (root_inode) {
		res = d_alloc(NULL, &(const struct qstr) { "/", 1, 0 });
		if (res) {
			res->d_sb = root_inode->i_sb;
			res->d_parent = res;
			d_instantiate(res, root_inode);
		}
	}
	return res;
}

static inline struct list_head * d_hash(struct dentry * parent, unsigned long hash)
{
	hash += (unsigned long) parent / L1_CACHE_BYTES;
	hash = hash ^ (hash >> D_HASHBITS);
	return dentry_hashtable + (hash & D_HASHMASK);
}

/**
 * d_lookup - search for a dentry
 * @parent: parent dentry
 * @name: qstr of name we wish to find
 *
 * Searches the children of the parent dentry for the name in question. If
 * the dentry is found its reference count is incremented and the dentry
 * is returned. The caller must use d_put to free the entry when it has
 * finished using it. %NULL is returned on failure.
 */
 
struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
{
	unsigned int len = name->len;
	unsigned int hash = name->hash;
	const unsigned char *str = name->name;
	struct list_head *head = d_hash(parent,hash);
	struct list_head *tmp;

	spin_lock(&dcache_lock);
	tmp = head->next;
	for (;;) {
		struct dentry * dentry = list_entry(tmp, struct dentry, d_hash);
		if (tmp == head)
			break;
		tmp = tmp->next;
		if (dentry->d_name.hash != hash)
			continue;
		if (dentry->d_parent != parent)
			continue;
		if (parent->d_op && parent->d_op->d_compare) {
			if (parent->d_op->d_compare(parent, &dentry->d_name, name))
				continue;
		} else {
			if (dentry->d_name.len != len)
				continue;
			if (memcmp(dentry->d_name.name, str, len))
				continue;
		}
		__dget_locked(dentry);
		dentry->d_vfs_flags |= DCACHE_REFERENCED;
		spin_unlock(&dcache_lock);
		return dentry;
	}
	spin_unlock(&dcache_lock);
	return NULL;
}

/**
 * d_validate - verify dentry provided from insecure source
 * @dentry: The dentry alleged to be valid child of @dparent
 * @dparent: The parent dentry (known to be valid)
 * @hash: Hash of the dentry
 * @len: Length of the name
 *
 * An insecure source has sent us a dentry, here we verify it and dget() it.
 * This is used by ncpfs in its readdir implementation.
 * Zero is returned in the dentry is invalid.
 */
 
int d_validate(struct dentry *dentry, struct dentry *dparent)
{
	unsigned long dent_addr = (unsigned long) dentry;
	unsigned long min_addr = PAGE_OFFSET;
	unsigned long align_mask = 0x0F;
	struct list_head *base, *lhp;

	if (dent_addr < min_addr)
		goto out;
	if (dent_addr > (unsigned long)high_memory - sizeof(struct dentry))
		goto out;
	if (dent_addr & align_mask)
		goto out;
	if ((!kern_addr_valid(dent_addr)) || (!kern_addr_valid(dent_addr -1 +
						sizeof(struct dentry))))
		goto out;

	if (dentry->d_parent != dparent)
		goto out;

	spin_lock(&dcache_lock);
	lhp = base = d_hash(dparent, dentry->d_name.hash);
	while ((lhp = lhp->next) != base) {
		if (dentry == list_entry(lhp, struct dentry, d_hash)) {
			__dget_locked(dentry);
			spin_unlock(&dcache_lock);
			return 1;
		}
	}
	spin_unlock(&dcache_lock);
out:
	return 0;
}

/*
 * When a file is deleted, we have two options:
 * - turn this dentry into a negative dentry
 * - unhash this dentry and free it.
 *
 * Usually, we want to just turn this into
 * a negative dentry, but if anybody else is
 * currently using the dentry or the inode
 * we can't do that and we fall back on removing
 * it from the hash queues and waiting for
 * it to be deleted later when it has no users
 */
 
/**
 * d_delete - delete a dentry
 * @dentry: The dentry to delete
 *
 * Turn the dentry into a negative dentry if possible, otherwise
 * remove it from the hash queues so it can be deleted later
 */
 
void d_delete(struct dentry * dentry)
{
	/*
	 * Are we the only user?
	 */
	spin_lock(&dcache_lock);
	if (atomic_read(&dentry->d_count) == 1) {
		dentry_iput(dentry);
		return;
	}
	spin_unlock(&dcache_lock);

	/*
	 * If not, just drop the dentry and let dput
	 * pick up the tab..
	 */
	d_drop(dentry);
}

/**
 * d_rehash	- add an entry back to the hash
 * @entry: dentry to add to the hash
 *
 * Adds a dentry to the hash according to its name.
 */
 
void d_rehash(struct dentry * entry)
{
	struct list_head *list = d_hash(entry->d_parent, entry->d_name.hash);
	if (!list_empty(&entry->d_hash)) BUG();
	spin_lock(&dcache_lock);
	list_add(&entry->d_hash, list);
	spin_unlock(&dcache_lock);
}

#define do_switch(x,y) do { \
	__typeof__ (x) __tmp = x; \
	x = y; y = __tmp; } while (0)

/*
 * When switching names, the actual string doesn't strictly have to
 * be preserved in the target - because we're dropping the target
 * anyway. As such, we can just do a simple memcpy() to copy over
 * the new name before we switch.
 *
 * Note that we have to be a lot more careful about getting the hash
 * switched - we have to switch the hash value properly even if it
 * then no longer matches the actual (corrupted) string of the target.
 * The hash value has to match the hash queue that the dentry is on..
 */
static inline void switch_names(struct dentry * dentry, struct dentry * target)
{
	const unsigned char *old_name, *new_name;

	check_lock();
	memcpy(dentry->d_iname, target->d_iname, DNAME_INLINE_LEN); 
	old_name = target->d_name.name;
	new_name = dentry->d_name.name;
	if (old_name == target->d_iname)
		old_name = dentry->d_iname;
	if (new_name == dentry->d_iname)
		new_name = target->d_iname;
	target->d_name.name = new_name;
	dentry->d_name.name = old_name;
}

/*
 * We cannibalize "target" when moving dentry on top of it,
 * because it's going to be thrown away anyway. We could be more
 * polite about it, though.
 *
 * This forceful removal will result in ugly /proc output if
 * somebody holds a file open that got deleted due to a rename.
 * We could be nicer about the deleted file, and let it show
 * up under the name it got deleted rather than the name that
 * deleted it.
 *
 * Careful with the hash switch. The hash switch depends on
 * the fact that any list-entry can be a head of the list.
 * Think about it.
 */
 
/**
 * d_move - move a dentry
 * @dentry: entry to move
 * @target: new dentry
 *
 * Update the dcache to reflect the move of a file name. Negative
 * dcache entries should not be moved in this way.
 */
  
void d_move(struct dentry * dentry, struct dentry * target)
{
	check_lock();

	if (!dentry->d_inode)
		printk(KERN_WARNING "VFS: moving negative dcache entry\n");

	spin_lock(&dcache_lock);
	/* Move the dentry to the target hash queue */
	list_del(&dentry->d_hash);
	list_add(&dentry->d_hash, &target->d_hash);

	/* Unhash the target: dput() will then get rid of it */
	list_del_init(&target->d_hash);

	list_del(&dentry->d_child);
	list_del(&target->d_child);

	/* Switch the parents and the names.. */
	switch_names(dentry, target);
	do_switch(dentry->d_parent, target->d_parent);
	do_switch(dentry->d_name.len, target->d_name.len);
	do_switch(dentry->d_name.hash, target->d_name.hash);

	/* And add them back to the (new) parent lists */
	list_add(&target->d_child, &target->d_parent->d_subdirs);
	list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
	spin_unlock(&dcache_lock);
}

/**
 * d_path - return the path of a dentry
 * @dentry: dentry to report
 * @vfsmnt: vfsmnt to which the dentry belongs
 * @root: root dentry
 * @rootmnt: vfsmnt to which the root dentry belongs
 * @buffer: buffer to return value in
 * @buflen: buffer length
 *
 * Convert a dentry into an ASCII path name. If the entry has been deleted
 * the string " (deleted)" is appended. Note that this is ambiguous. Returns
 * the buffer.
 *
 * "buflen" should be %PAGE_SIZE or more. Caller holds the dcache_lock.
 */
char * __d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
		struct dentry *root, struct vfsmount *rootmnt,
		char *buffer, int buflen)
{
	char * end = buffer+buflen;
	char * retval;
	int namelen;

	*--end = '\0';
	buflen--;
	if (!IS_ROOT(dentry) && list_empty(&dentry->d_hash)) {
		buflen -= 10;
		end -= 10;
		memcpy(end, " (deleted)", 10);
	}

	/* Get '/' right */
	retval = end-1;
	*retval = '/';

	for (;;) {
		struct dentry * parent;

		if (dentry == root && vfsmnt == rootmnt)
			break;
		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
			/* Global root? */
			if (vfsmnt->mnt_parent == vfsmnt)
				goto global_root;
			dentry = vfsmnt->mnt_mountpoint;
			vfsmnt = vfsmnt->mnt_parent;
			continue;
		}
		parent = dentry->d_parent;
		namelen = dentry->d_name.len;
		buflen -= namelen + 1;
		if (buflen < 0)
			break;
		end -= namelen;
		memcpy(end, dentry->d_name.name, namelen);
		*--end = '/';
		retval = end;
		dentry = parent;
	}
	return retval;
global_root:
	namelen = dentry->d_name.len;
	buflen -= namelen;
	if (buflen >= 0) {
		retval -= namelen-1;	/* hit the slash */
		memcpy(retval, dentry->d_name.name, namelen);
	}
	return retval;
}

/*
 * NOTE! The user-level library version returns a
 * character pointer. The kernel system call just
 * returns the length of the buffer filled (which
 * includes the ending '\0' character), or a negative
 * error value. So libc would do something like
 *
 *	char *getcwd(char * buf, size_t size)
 *	{
 *		int retval;
 *
 *		retval = sys_getcwd(buf, size);
 *		if (retval >= 0)
 *			return buf;
 *		errno = -retval;
 *		return NULL;
 *	}
 */
asmlinkage long sys_getcwd(char *buf, unsigned long size)
{
	int error;
	struct vfsmount *pwdmnt, *rootmnt;
	struct dentry *pwd, *root;
	char *page = (char *) __get_free_page(GFP_USER);

	if (!page)
		return -ENOMEM;

	read_lock(&current->fs->lock);
	pwdmnt = mntget(current->fs->pwdmnt);
	pwd = dget(current->fs->pwd);
	rootmnt = mntget(current->fs->rootmnt);
	root = dget(current->fs->root);
	read_unlock(&current->fs->lock);

	error = -ENOENT;
	/* Has the current directory has been unlinked? */
	spin_lock(&dcache_lock);
	if (pwd->d_parent == pwd || !list_empty(&pwd->d_hash)) {
		unsigned long len;
		char * cwd;

		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
		spin_unlock(&dcache_lock);

		error = -ERANGE;
		len = PAGE_SIZE + page - cwd;
		if (len <= size) {
			error = len;
			if (copy_to_user(buf, cwd, len))
				error = -EFAULT;
		}
	} else
		spin_unlock(&dcache_lock);
	dput(pwd);
	mntput(pwdmnt);
	dput(root);
	mntput(rootmnt);
	free_page((unsigned long) page);
	return error;
}

/*
 * Test whether new_dentry is a subdirectory of old_dentry.
 *
 * Trivially implemented using the dcache structure
 */

/**
 * is_subdir - is new dentry a subdirectory of old_dentry
 * @new_dentry: new dentry
 * @old_dentry: old dentry
 *
 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
 * Returns 0 otherwise.
 */
  
int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
{
	int result;

	result = 0;
	for (;;) {
		if (new_dentry != old_dentry) {
			struct dentry * parent = new_dentry->d_parent;
			if (parent == new_dentry)
				break;
			new_dentry = parent;
			continue;
		}
		result = 1;
		break;
	}
	return result;
}

void d_genocide(struct dentry *root)
{
	struct dentry *this_parent = root;
	struct list_head *next;

	spin_lock(&dcache_lock);
repeat:
	next = this_parent->d_subdirs.next;
resume:
	while (next != &this_parent->d_subdirs) {
		struct list_head *tmp = next;
		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
		next = tmp->next;
		if (d_unhashed(dentry)||!dentry->d_inode)
			continue;
		if (!list_empty(&dentry->d_subdirs)) {
			this_parent = dentry;
			goto repeat;
		}
		atomic_dec(&dentry->d_count);
	}
	if (this_parent != root) {
		next = this_parent->d_child.next; 
		atomic_dec(&this_parent->d_count);
		this_parent = this_parent->d_parent;
		goto resume;
	}
	spin_unlock(&dcache_lock);
}

/**
 * find_inode_number - check for dentry with name
 * @dir: directory to check
 * @name: Name to find.
 *
 * Check whether a dentry already exists for the given name,
 * and return the inode number if it has an inode. Otherwise
 * 0 is returned.
 *
 * This routine is used to post-process directory listings for
 * filesystems using synthetic inode numbers, and is necessary
 * to keep getcwd() working.
 */
 
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
	struct dentry * dentry;
	ino_t ino = 0;

	/*
	 * Check for a fs-specific hash function. Note that we must
	 * calculate the standard hash first, as the d_op->d_hash()
	 * routine may choose to leave the hash value unchanged.
	 */
	name->hash = full_name_hash(name->name, name->len);
	if (dir->d_op && dir->d_op->d_hash)
	{
		if (dir->d_op->d_hash(dir, name) != 0)
			goto out;
	}

	dentry = d_lookup(dir, name);
	if (dentry)
	{
		if (dentry->d_inode)
			ino = dentry->d_inode->i_ino;
		dput(dentry);
	}
out:
	return ino;
}

static void __init dcache_init(unsigned long mempages)
{
	struct list_head *d;
	unsigned long order;
	unsigned int nr_hash;
	int i;

	/* 
	 * A constructor could be added for stable state like the lists,
	 * but it is probably not worth it because of the cache nature
	 * of the dcache. 
	 * If fragmentation is too bad then the SLAB_HWCACHE_ALIGN
	 * flag could be removed here, to hint to the allocator that
	 * it should not try to get multiple page regions.  
	 */
	dentry_cache = kmem_cache_create("dentry_cache",
					 sizeof(struct dentry),
					 0,
					 SLAB_HWCACHE_ALIGN,
					 NULL, NULL);
	if (!dentry_cache)
		panic("Cannot create dentry cache");

#if PAGE_SHIFT < 13
	mempages >>= (13 - PAGE_SHIFT);
#endif
	mempages *= sizeof(struct list_head);
	for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++)
		;

	do {
		unsigned long tmp;

		nr_hash = (1UL << order) * PAGE_SIZE /
			sizeof(struct list_head);
		d_hash_mask = (nr_hash - 1);

		tmp = nr_hash;
		d_hash_shift = 0;
		while ((tmp >>= 1UL) != 0UL)
			d_hash_shift++;

		dentry_hashtable = (struct list_head *)
			__get_free_pages(GFP_ATOMIC, order);
	} while (dentry_hashtable == NULL && --order >= 0);

	printk("Dentry-cache hash table entries: %d (order: %ld, %ld bytes)\n",
			nr_hash, order, (PAGE_SIZE << order));

	if (!dentry_hashtable)
		panic("Failed to allocate dcache hash table\n");

	d = dentry_hashtable;
	i = nr_hash;
	do {
		INIT_LIST_HEAD(d);
		d++;
		i--;
	} while (i);
}

static void init_buffer_head(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR)
	{
		struct buffer_head * bh = (struct buffer_head *) foo;

		memset(bh, 0, sizeof(*bh));
		init_waitqueue_head(&bh->b_wait);
	}
}

/* SLAB cache for __getname() consumers */
kmem_cache_t *names_cachep;

/* SLAB cache for file structures */
kmem_cache_t *filp_cachep;

/* SLAB cache for dquot structures */
kmem_cache_t *dquot_cachep;

/* SLAB cache for buffer_head structures */
kmem_cache_t *bh_cachep;
EXPORT_SYMBOL(bh_cachep);

extern void bdev_cache_init(void);
extern void cdev_cache_init(void);

void __init vfs_caches_init(unsigned long mempages)
{
	bh_cachep = kmem_cache_create("buffer_head",
			sizeof(struct buffer_head), 0,
			SLAB_HWCACHE_ALIGN, init_buffer_head, NULL);
	if(!bh_cachep)
		panic("Cannot create buffer head SLAB cache");

	names_cachep = kmem_cache_create("names_cache", 
			PATH_MAX + 1, 0, 
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (!names_cachep)
		panic("Cannot create names SLAB cache");

	filp_cachep = kmem_cache_create("filp", 
			sizeof(struct file), 0,
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if(!filp_cachep)
		panic("Cannot create filp SLAB cache");

#if defined (CONFIG_QUOTA)
	dquot_cachep = kmem_cache_create("dquot", 
			sizeof(struct dquot), sizeof(unsigned long) * 4,
			SLAB_HWCACHE_ALIGN, NULL, NULL);
	if (!dquot_cachep)
		panic("Cannot create dquot SLAB cache");
#endif

	dcache_init(mempages);
	inode_init(mempages);
	mnt_init(mempages);
	bdev_cache_init();
	cdev_cache_init();
}