Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
 *  os.c - OS-dependent functions
 *
 *  Copyright (C) 2000 Andrew Henroid
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/delay.h>
#include <asm/io.h>
#include "acpi.h"
#include "driver.h"

#define _COMPONENT	OS_DEPENDENT
	MODULE_NAME	("os")

static int acpi_irq_irq = 0;
static OSD_HANDLER acpi_irq_handler = NULL;
static void *acpi_irq_context = NULL;

#ifdef ENABLE_DEBUGGER

#include <linux/kdb.h>

/* stuff for debugger support */
int acpi_in_debugger = 0;
extern NATIVE_CHAR line_buf[80];

#endif


ACPI_STATUS
acpi_os_initialize(void)
{
	return AE_OK;
}

ACPI_STATUS
acpi_os_terminate(void)
{
	if (acpi_irq_handler) {
		acpi_os_remove_interrupt_handler(acpi_irq_irq,
						 acpi_irq_handler);
	}
	return AE_OK;
}

s32
acpi_os_printf(const NATIVE_CHAR *fmt,...)
{
	s32 size;
	va_list args;
	va_start(args, fmt);
	size = acpi_os_vprintf(fmt, args);
	va_end(args);
	return size;
}

s32
acpi_os_vprintf(const NATIVE_CHAR *fmt, va_list args)
{
	static char buffer[512];
	int size = vsprintf(buffer, fmt, args);

#ifdef ENABLE_DEBUGGER
	if (acpi_in_debugger) {
		kdb_printf("%s", buffer);
	} else {
		printk("%s", buffer);
	}
#else
	printk("%s", buffer);
#endif

	return size;
}

void *
acpi_os_allocate(u32 size)
{
	return kmalloc(size, GFP_KERNEL);
}

void *
acpi_os_callocate(u32 size)
{
	void *ptr = acpi_os_allocate(size);
	if (ptr)
		memset(ptr, 0, size);
	return ptr;
}

void
acpi_os_free(void *ptr)
{
	kfree(ptr);
}

ACPI_STATUS
acpi_os_map_memory(ACPI_PHYSICAL_ADDRESS phys, u32 size, void **virt)
{
	if (phys > ULONG_MAX) {
		printk(KERN_ERR "ACPI: Cannot map memory that high\n");
		return AE_ERROR;
	}

	if ((unsigned long) phys < virt_to_phys(high_memory)) {
		*virt = phys_to_virt((unsigned long) phys);
		return AE_OK;
	}

	*virt = ioremap((unsigned long) phys, size);
	if (!*virt)
		return AE_ERROR;

	return AE_OK;
}

void
acpi_os_unmap_memory(void *virt, u32 size)
{
	if (virt >= high_memory)
		iounmap(virt);
}

static void
acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
{
	(*acpi_irq_handler)(acpi_irq_context);
}

ACPI_STATUS
acpi_os_install_interrupt_handler(u32 irq, OSD_HANDLER handler, void *context)
{
	acpi_irq_irq = irq;
	acpi_irq_handler = handler;
	acpi_irq_context = context;
	if (request_irq(irq,
			acpi_irq,
			SA_SHIRQ,
			"acpi",
			acpi_irq)) {
		printk(KERN_ERR "ACPI: SCI (IRQ%d) allocation failed\n", irq);
		return AE_ERROR;
	}
	return AE_OK;
}

ACPI_STATUS
acpi_os_remove_interrupt_handler(u32 irq, OSD_HANDLER handler)
{
	if (acpi_irq_handler) {
		free_irq(irq, acpi_irq);
		acpi_irq_handler = NULL;
	}
	return AE_OK;
}

/*
 * Running in interpreter thread context, safe to sleep
 */

void
acpi_os_sleep(u32 sec, u32 ms)
{
	current->state = TASK_INTERRUPTIBLE;
	schedule_timeout(HZ * sec + (ms * HZ) / 1000);
}

void
acpi_os_sleep_usec(u32 us)
{
	udelay(us);
}

u8
acpi_os_in8(ACPI_IO_ADDRESS port)
{
	return inb(port);
}

u16
acpi_os_in16(ACPI_IO_ADDRESS port)
{
	return inw(port);
}

u32
acpi_os_in32(ACPI_IO_ADDRESS port)
{
	return inl(port);
}

void
acpi_os_out8(ACPI_IO_ADDRESS port, u8 val)
{
	outb(val, port);
}

void
acpi_os_out16(ACPI_IO_ADDRESS port, u16 val)
{
	outw(val, port);
}

void
acpi_os_out32(ACPI_IO_ADDRESS port, u32 val)
{
	outl(val, port);
}

UINT8
acpi_os_mem_in8 (ACPI_PHYSICAL_ADDRESS phys_addr)
{
	return (*(u8*) (u32) phys_addr);
}

UINT16
acpi_os_mem_in16 (ACPI_PHYSICAL_ADDRESS phys_addr)
{
	return (*(u16*) (u32) phys_addr);
}

UINT32
acpi_os_mem_in32 (ACPI_PHYSICAL_ADDRESS phys_addr)
{
	return (*(u32*) (u32) phys_addr);
}

void
acpi_os_mem_out8 (ACPI_PHYSICAL_ADDRESS phys_addr, UINT8 value)
{
	*(u8*) (u32) phys_addr = value;
}

void
acpi_os_mem_out16 (ACPI_PHYSICAL_ADDRESS phys_addr, UINT16 value)
{
	*(u16*) (u32) phys_addr = value;
}

void
acpi_os_mem_out32 (ACPI_PHYSICAL_ADDRESS phys_addr, UINT32 value)
{
	*(u32*) (u32) phys_addr = value;
}

ACPI_STATUS
acpi_os_read_pci_cfg_byte(
			  u32 bus,
			  u32 func,
			  u32 addr,
			  u8 * val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!val || !dev || pci_read_config_byte(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

ACPI_STATUS
acpi_os_read_pci_cfg_word(
			  u32 bus,
			  u32 func,
			  u32 addr,
			  u16 * val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!val || !dev || pci_read_config_word(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

ACPI_STATUS
acpi_os_read_pci_cfg_dword(
			   u32 bus,
			   u32 func,
			   u32 addr,
			   u32 * val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!val || !dev || pci_read_config_dword(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

ACPI_STATUS
acpi_os_write_pci_cfg_byte(
			   u32 bus,
			   u32 func,
			   u32 addr,
			   u8 val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!dev || pci_write_config_byte(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

ACPI_STATUS
acpi_os_write_pci_cfg_word(
			   u32 bus,
			   u32 func,
			   u32 addr,
			   u16 val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!dev || pci_write_config_word(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

ACPI_STATUS
acpi_os_write_pci_cfg_dword(
			    u32 bus,
			    u32 func,
			    u32 addr,
			    u32 val)
{
	int devfn = PCI_DEVFN((func >> 16) & 0xffff, func & 0xffff);
	struct pci_dev *dev = pci_find_slot(bus & 0xffff, devfn);
	if (!dev || pci_write_config_dword(dev, addr, val))
		return AE_ERROR;
	return AE_OK;
}

/*
 * Queue for interpreter thread
 */

ACPI_STATUS
acpi_os_queue_for_execution(
			    u32 priority,
			    OSD_EXECUTION_CALLBACK callback,
			    void *context)
{
	if (acpi_run(callback, context))
		return AE_ERROR;
	return AE_OK;
}

/*
 * Semaphores are unused, interpreter access is single threaded
 */

ACPI_STATUS
acpi_os_create_semaphore(u32 max_units, u32 init, ACPI_HANDLE * handle)
{
	/* a hack to fake out sems until we implement them */
	*handle = (ACPI_HANDLE) handle;
	return AE_OK;
}

ACPI_STATUS
acpi_os_delete_semaphore(ACPI_HANDLE handle)
{
	return AE_OK;
}

ACPI_STATUS
acpi_os_wait_semaphore(ACPI_HANDLE handle, u32 units, u32 timeout)
{
	return AE_OK;
}

ACPI_STATUS
acpi_os_signal_semaphore(ACPI_HANDLE handle, u32 units)
{
	return AE_OK;
}

ACPI_STATUS
acpi_os_breakpoint(NATIVE_CHAR *msg)
{
	acpi_os_printf("breakpoint: %s", msg);
	return AE_OK;
}

void
acpi_os_dbg_trap(char *msg)
{
	acpi_os_printf("trap: %s", msg);
}

void
acpi_os_dbg_assert(void *failure, void *file, u32 line, NATIVE_CHAR *msg)
{
	acpi_os_printf("assert: %s", msg);
}

u32
acpi_os_get_line(NATIVE_CHAR *buffer)
{

#ifdef ENABLE_DEBUGGER
	if (acpi_in_debugger) {
		u32 chars;

		kdb_read(buffer, sizeof(line_buf));

		/* remove the CR kdb includes */
		chars = strlen(buffer) - 1;
		buffer[chars] = '\0';
	}
#endif

	return 0;
}

/*
 * We just have to assume we're dealing with valid memory
 */

BOOLEAN
acpi_os_readable(void *ptr, u32 len)
{
	return 1;
}

BOOLEAN
acpi_os_writable(void *ptr, u32 len)
{
	return 1;
}