Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
/*
	Written 1999-2000 by Donald Becker.

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

	Support and updates available at
	http://www.scyld.com/network/sundance.html
*/

/* These identify the driver base version and may not be removed. */
static const char version1[] =
"sundance.c:v1.01 4/09/00  Written by Donald Becker\n";
static const char version2[] =
"  http://www.scyld.com/network/sundance.html\n";

/* The user-configurable values.
   These may be modified when a driver module is loaded.*/

static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;
static int mtu = 0;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   Typical is a 64 element hash table based on the Ethernet CRC.  */
static int multicast_filter_limit = 32;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature.
   This chip can receive into offset buffers, so the Alpha does not
   need a copy-align. */
static int rx_copybreak = 0;

/* Used to pass the media type, etc.
   Both 'options[]' and 'full_duplex[]' should exist for driver
   interoperability.
   The media type is usually passed in 'options[]'.
*/
#define MAX_UNITS 8		/* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};

/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority, and more than 128 requires modifying the
   Tx error recovery.
   Large receive rings merely waste memory. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
#define RX_RING_SIZE	32

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (2*HZ)

#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/

#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning  You must compile this file with the correct options!
#warning  See the last lines of the source file.
#error You must compile this driver with "-O".
#endif

/* Include files, designed to support most kernel versions 2.0.0 and later. */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>

#include <linux/spinlock.h>


/* Condensed operations for readability. */
#define virt_to_le32desc(addr)  cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr)  bus_to_virt(le32_to_cpu(addr))


MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(mtu, "i");
MODULE_PARM(debug, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");

/*
				Theory of Operation

I. Board Compatibility

This driver is designed for the Sundance Technologies "Alta" ST201 chip.

II. Board-specific settings

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
Some chips explicitly use only 2^N sized rings, while others use a
'next descriptor' pointer that the driver forms into rings.

IIIb/c. Transmit/Receive Structure

This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack.  Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets.  When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine.  Copying also preloads the cache, which is
most useful with small frames.

A subtle aspect of the operation is that the IP header at offset 14 in an
ethernet frame isn't longword aligned for further processing.
Unaligned buffers are permitted by the Sundance hardware, so
frames are received into the skbuff at an offset of "+2", 16-byte aligning
the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.

IV. Notes

IVb. References

The Sundance ST201 datasheet, preliminary version.
http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html

IVc. Errata

*/



enum pci_id_flags_bits {
        /* Set PCI command register bits before calling probe1(). */
        PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
        /* Read and map the single following PCI BAR. */
        PCI_ADDR0=0<<4, PCI_ADDR1=1<<4, PCI_ADDR2=2<<4, PCI_ADDR3=3<<4,
        PCI_ADDR_64BITS=0x100, PCI_NO_ACPI_WAKE=0x200, PCI_NO_MIN_LATENCY=0x400,
};
enum chip_capability_flags {CanHaveMII=1, };
#ifdef USE_IO_OPS
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO  | PCI_ADDR0)
#else
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
#endif

static struct pci_device_id sundance_pci_tbl[] __devinitdata = {
	{ 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	{ 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);

struct pci_id_info {
        const char *name;
        struct match_info {
                int     pci, pci_mask, subsystem, subsystem_mask;
                int revision, revision_mask;                            /* Only 8 bits. */
        } id;
        enum pci_id_flags_bits pci_flags;
        int io_size;                            /* Needed for I/O region check or ioremap(). */
        int drv_flags;                          /* Driver use, intended as capability flags. */
};
static struct pci_id_info pci_id_tbl[] = {
	{"OEM Sundance Technology ST201", {0x10021186, 0xffffffff, },
	 PCI_IOTYPE, 128, CanHaveMII},
	{"Sundance Technology Alta", {0x020113F0, 0xffffffff, },
	 PCI_IOTYPE, 128, CanHaveMII},
	{0,},						/* 0 terminated list. */
};

/* This driver was written to use PCI memory space, however x86-oriented
   hardware often uses I/O space accesses. */
#ifdef USE_IO_OPS
#undef readb
#undef readw
#undef readl
#undef writeb
#undef writew
#undef writel
#define readb inb
#define readw inw
#define readl inl
#define writeb outb
#define writew outw
#define writel outl
#endif

/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.  The name can only partially document the semantics and make
   the driver longer and more difficult to read.
   In general, only the important configuration values or bits changed
   multiple times should be defined symbolically.
*/
enum alta_offsets {
	DMACtrl=0x00,     TxListPtr=0x04, TxDMACtrl=0x08, TxDescPoll=0x0a,
	RxDMAStatus=0x0c, RxListPtr=0x10, RxDMACtrl=0x14, RxDescPoll=0x16,
	LEDCtrl=0x1a, ASICCtrl=0x30,
	EEData=0x34, EECtrl=0x36, TxThreshold=0x3c,
	FlashAddr=0x40, FlashData=0x44, TxStatus=0x46, DownCounter=0x48,
	IntrClear=0x4a, IntrEnable=0x4c, IntrStatus=0x4e,
	MACCtrl0=0x50, MACCtrl1=0x52, StationAddr=0x54,
	MaxTxSize=0x5A, RxMode=0x5c, MIICtrl=0x5e,
	MulticastFilter0=0x60, MulticastFilter1=0x64,
	RxOctetsLow=0x68, RxOctetsHigh=0x6a, TxOctetsLow=0x6c, TxOctetsHigh=0x6e,
	TxFramesOK=0x70, RxFramesOK=0x72, StatsCarrierError=0x74,
	StatsLateColl=0x75, StatsMultiColl=0x76, StatsOneColl=0x77,
	StatsTxDefer=0x78, RxMissed=0x79, StatsTxXSDefer=0x7a, StatsTxAbort=0x7b,
	StatsBcastTx=0x7c, StatsBcastRx=0x7d, StatsMcastTx=0x7e, StatsMcastRx=0x7f,
	/* Aliased and bogus values! */
	RxStatus=0x0c,
};

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
	IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
	IntrDrvRqst=0x0040,
	StatsMax=0x0080, LinkChange=0x0100,
	IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
};

/* Bits in the RxMode register. */
enum rx_mode_bits {
	AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
	AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
};
/* Bits in MACCtrl. */
enum mac_ctrl0_bits {
	EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
	EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
};
enum mac_ctrl1_bits {
	StatsEnable=0x0020,	StatsDisable=0x0040, StatsEnabled=0x0080,
	TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
	RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
};

/* The Rx and Tx buffer descriptors. */
/* Note that using only 32 bit fields simplifies conversion to big-endian
   architectures. */
struct netdev_desc {
	u32 next_desc;
	u32 status;
	struct desc_frag { u32 addr, length; } frag[1];
};

/* Bits in netdev_desc.status */
enum desc_status_bits {
	DescOwn=0x8000, DescEndPacket=0x4000, DescEndRing=0x2000,
	LastFrag=0x80000000, DescIntrOnTx=0x8000, DescIntrOnDMADone=0x80000000,
};

#define PRIV_ALIGN	15 	/* Required alignment mask */
/* Use  __attribute__((aligned (L1_CACHE_BYTES)))  to maintain alignment
   within the structure. */
struct netdev_private {
	/* Descriptor rings first for alignment. */
	struct netdev_desc rx_ring[RX_RING_SIZE];
	struct netdev_desc tx_ring[TX_RING_SIZE];
	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	/* The saved address of a sent-in-place packet/buffer, for later free(). */
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
	struct net_device_stats stats;
	struct timer_list timer;	/* Media monitoring timer. */
	/* Frequently used values: keep some adjacent for cache effect. */
	spinlock_t lock;
	int chip_id, drv_flags;
	/* Note: Cache paragraph grouped variables. */
	struct netdev_desc *rx_head_desc;
	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
	spinlock_t txlock;					/* Group with Tx control cache line. */
	struct netdev_desc *last_tx;		/* Last Tx descriptor used. */
	unsigned int cur_tx, dirty_tx;
	unsigned int tx_full:1;				/* The Tx queue is full. */
	/* These values are keep track of the transceiver/media in use. */
	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
	unsigned int duplex_lock:1;
	unsigned int medialock:1;			/* Do not sense media. */
	unsigned int default_port:4;		/* Last dev->if_port value. */
	/* Multicast and receive mode. */
	spinlock_t mcastlock;				/* SMP lock multicast updates. */
	u16 mcast_filter[4];
	/* MII transceiver section. */
	int mii_cnt;						/* MII device addresses. */
	u16 advertising;					/* NWay media advertisement */
	unsigned char phys[2];				/* MII device addresses. */
};

/* The station address location in the EEPROM. */
#define EEPROM_SA_OFFSET	0x10

static int  eeprom_read(long ioaddr, int location);
static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  netdev_open(struct net_device *dev);
static void check_duplex(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static void init_ring(struct net_device *dev);
static int  start_tx(struct sk_buff *skb, struct net_device *dev);
static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void netdev_error(struct net_device *dev, int intr_status);
static int  netdev_rx(struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int  netdev_close(struct net_device *dev);



static int __devinit sundance_probe1 (struct pci_dev *pdev,
				      const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	static int card_idx;
	int chip_idx = ent->driver_data;
	int irq = pdev->irq;
	int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0;
	long ioaddr;

	if (pci_enable_device(pdev))
		return -EIO;
	pci_set_master(pdev);

	dev = init_etherdev(NULL, sizeof(*np));
	if (!dev)
		return -ENOMEM;

#ifdef USE_IO_OPS
	ioaddr = pci_resource_start(pdev, 0);
	if (!request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name))
		goto err_out_netdev;
#else
	ioaddr = pci_resource_start(pdev, 1);
	if (!request_mem_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name))
		goto err_out_netdev;
	ioaddr = (long) ioremap (ioaddr, pci_id_tbl[chip_idx].io_size);
	if (!ioaddr)
		goto err_out_iomem;
#endif

	printk(KERN_INFO "%s: %s at 0x%lx, ",
		   dev->name, pci_id_tbl[chip_idx].name, ioaddr);

	for (i = 0; i < 3; i++)
		((u16 *)dev->dev_addr)[i] =
			le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
	for (i = 0; i < 5; i++)
			printk("%2.2x:", dev->dev_addr[i]);
	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);

	dev->base_addr = ioaddr;
	dev->irq = irq;

	np = dev->priv;
	np->chip_id = chip_idx;
	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
	spin_lock_init(&np->lock);

	if (dev->mem_start)
		option = dev->mem_start;

	/* The lower four bits are the media type. */
	if (option > 0) {
		if (option & 0x200)
			np->full_duplex = 1;
		np->default_port = option & 15;
		if (np->default_port)
			np->medialock = 1;
	}
	if (card_idx < MAX_UNITS  &&  full_duplex[card_idx] > 0)
		np->full_duplex = 1;

	if (np->full_duplex)
		np->duplex_lock = 1;

	/* The chip-specific entries in the device structure. */
	dev->open = &netdev_open;
	dev->hard_start_xmit = &start_tx;
	dev->stop = &netdev_close;
	dev->get_stats = &get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &mii_ioctl;
	dev->tx_timeout = &tx_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;

	if (mtu)
		dev->mtu = mtu;

	if (1) {
		int phy, phy_idx = 0;
		np->phys[0] = 1;		/* Default setting */
		for (phy = 0; phy < 32 && phy_idx < 4; phy++) {
			int mii_status = mdio_read(dev, phy, 1);
			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
				np->phys[phy_idx++] = phy;
				np->advertising = mdio_read(dev, phy, 4);
				printk(KERN_INFO "%s: MII PHY found at address %d, status "
					   "0x%4.4x advertising %4.4x.\n",
					   dev->name, phy, mii_status, np->advertising);
			}
		}
		np->mii_cnt = phy_idx;
		if (phy_idx == 0)
			printk(KERN_INFO "%s: No MII transceiver found!, ASIC status %x\n",
				   dev->name, readl(ioaddr + ASICCtrl));
	}

	/* Perhaps move the reset here? */
	/* Reset the chip to erase previous misconfiguration. */
	if (debug > 1)
		printk("ASIC Control is %x.\n", readl(ioaddr + ASICCtrl));
	writew(0x007f, ioaddr + ASICCtrl + 2);
	if (debug > 1)
		printk("ASIC Control is now %x.\n", readl(ioaddr + ASICCtrl));

	card_idx++;
	return 0;

#ifndef USE_IO_OPS
err_out_iomem:
	release_mem_region(pci_resource_start(pdev, 1),
			   pci_id_tbl[chip_idx].io_size);
#endif
err_out_netdev:
	unregister_netdev (dev);
	kfree (dev);
	return -ENODEV;
}


/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
static int eeprom_read(long ioaddr, int location)
{
	int boguscnt = 1000;		/* Typical 190 ticks. */
	writew(0x0200 | (location & 0xff), ioaddr + EECtrl);
	do {
		if (! (readw(ioaddr + EECtrl) & 0x8000)) {
			return readw(ioaddr + EEData);
		}
	} while (--boguscnt > 0);
	return 0;
}

/*  MII transceiver control section.
	Read and write the MII registers using software-generated serial
	MDIO protocol.  See the MII specifications or DP83840A data sheet
	for details.

	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
	met by back-to-back 33Mhz PCI cycles. */
#define mdio_delay() readb(mdio_addr)

/* Set iff a MII transceiver on any interface requires mdio preamble.
   This only set with older tranceivers, so the extra
   code size of a per-interface flag is not worthwhile. */
static char mii_preamble_required = 0;

enum mii_reg_bits {
	MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
};
#define MDIO_EnbIn  (0)
#define MDIO_WRITE0 (MDIO_EnbOutput)
#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)

/* Generate the preamble required for initial synchronization and
   a few older transceivers. */
static void mdio_sync(long mdio_addr)
{
	int bits = 32;

	/* Establish sync by sending at least 32 logic ones. */
	while (--bits >= 0) {
		writeb(MDIO_WRITE1, mdio_addr);
		mdio_delay();
		writeb(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
}

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	long mdio_addr = dev->base_addr + MIICtrl;
	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
	int i, retval = 0;

	if (mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the read command bits out. */
	for (i = 15; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		writeb(dataval, mdio_addr);
		mdio_delay();
		writeb(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Read the two transition, 16 data, and wire-idle bits. */
	for (i = 19; i > 0; i--) {
		writeb(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		retval = (retval << 1) | ((readb(mdio_addr) & MDIO_Data) ? 1 : 0);
		writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	return (retval>>1) & 0xffff;
}

static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	long mdio_addr = dev->base_addr + MIICtrl;
	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
	int i;

	if (mii_preamble_required)
		mdio_sync(mdio_addr);

	/* Shift the command bits out. */
	for (i = 31; i >= 0; i--) {
		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;

		writeb(dataval, mdio_addr);
		mdio_delay();
		writeb(dataval | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	/* Clear out extra bits. */
	for (i = 2; i > 0; i--) {
		writeb(MDIO_EnbIn, mdio_addr);
		mdio_delay();
		writeb(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
		mdio_delay();
	}
	return;
}


static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int i;

	/* Do we need to reset the chip??? */

	MOD_INC_USE_COUNT;

	if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) {
		MOD_DEC_USE_COUNT;
		return -EAGAIN;
	}

	if (debug > 1)
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
			   dev->name, dev->irq);

	init_ring(dev);

	writel(virt_to_bus(np->rx_ring), ioaddr + RxListPtr);
	/* The Tx list pointer is written as packets are queued. */

	for (i = 0; i < 6; i++)
		writeb(dev->dev_addr[i], ioaddr + StationAddr + i);

	/* Initialize other registers. */
	/* Configure the PCI bus bursts and FIFO thresholds. */

	if (dev->if_port == 0)
		dev->if_port = np->default_port;

	np->full_duplex = np->duplex_lock;
	np->mcastlock = (spinlock_t) SPIN_LOCK_UNLOCKED;

	set_rx_mode(dev);
	writew(0, ioaddr + DownCounter);
	/* Set the chip to poll every N*320nsec. */
	writeb(100, ioaddr + RxDescPoll);
	writeb(127, ioaddr + TxDescPoll);
	netif_start_queue(dev);

	/* Enable interrupts by setting the interrupt mask. */
	writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
		   | StatsMax | LinkChange, ioaddr + IntrEnable);

	writew(StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);

	if (debug > 2)
		printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
			   "MAC Control %x, %4.4x %4.4x.\n",
			   dev->name, readl(ioaddr + RxStatus), readb(ioaddr + TxStatus),
			   readl(ioaddr + MACCtrl0),
			   readw(ioaddr + MACCtrl1), readw(ioaddr + MACCtrl0));

	/* Set the timer to check for link beat. */
	init_timer(&np->timer);
	np->timer.expires = jiffies + 3*HZ;
	np->timer.data = (unsigned long)dev;
	np->timer.function = &netdev_timer;				/* timer handler */
	add_timer(&np->timer);

	return 0;
}

static void check_duplex(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int mii_reg5 = mdio_read(dev, np->phys[0], 5);
	int negotiated = mii_reg5 & np->advertising;
	int duplex;

	if (np->duplex_lock  ||  mii_reg5 == 0xffff)
		return;
	duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
	if (np->full_duplex != duplex) {
		np->full_duplex = duplex;
		if (debug)
			printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
				   "negotiated capability %4.4x.\n", dev->name,
				   duplex ? "full" : "half", np->phys[0], negotiated);
		writew(duplex ? 0x20 : 0, ioaddr + MACCtrl0);
	}
}

static void netdev_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int next_tick = 10*HZ;

	if (debug > 3) {
		printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
			   "Tx %x Rx %x.\n",
			   dev->name, readw(ioaddr + IntrEnable),
			   readb(ioaddr + TxStatus), readl(ioaddr + RxStatus));
	}
	check_duplex(dev);
	np->timer.expires = jiffies + next_tick;
	add_timer(&np->timer);
}

static void tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;

	printk(KERN_WARNING "%s: Transmit timed out, status %2.2x,"
		   " resetting...\n", dev->name, readb(ioaddr + TxStatus));

#ifndef __alpha__
	{
		int i;
		printk(KERN_DEBUG "  Rx ring %8.8x: ", (int)np->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)np->rx_ring[i].status);
		printk("\n"KERN_DEBUG"  Tx ring %8.8x: ", (int)np->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" %4.4x", np->tx_ring[i].status);
		printk("\n");
	}
#endif

	/* Perhaps we should reinitialize the hardware here. */
	dev->if_port = 0;
	/* Stop and restart the chip's Tx processes . */

	/* Trigger an immediate transmit demand. */
	writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
		   | StatsMax | LinkChange, ioaddr + IntrEnable);

	dev->trans_start = jiffies;
	np->stats.tx_errors++;
	return;
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int i;

	np->tx_full = 0;
	np->cur_rx = np->cur_tx = 0;
	np->dirty_rx = np->dirty_tx = 0;

	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
	np->rx_head_desc = &np->rx_ring[0];

	/* Initialize all Rx descriptors. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = virt_to_le32desc(&np->rx_ring[i+1]);
		np->rx_ring[i].status = 0;
		np->rx_ring[i].frag[0].length = 0;
		np->rx_skbuff[i] = 0;
	}
	/* Wrap the ring. */
	np->rx_ring[i-1].next_desc = virt_to_le32desc(&np->rx_ring[0]);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
		np->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;			/* Mark as being used by this device. */
		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
		np->rx_ring[i].frag[0].addr = virt_to_le32desc(skb->tail);
		np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
	}
	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = 0;
		np->tx_ring[i].status = 0;
	}
	return;
}

static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	struct netdev_desc *txdesc;
	unsigned entry;

	/* Note: Ordering is important here, set the field with the
	   "ownership" bit last, and only then increment cur_tx. */

	/* Calculate the next Tx descriptor entry. */
	entry = np->cur_tx % TX_RING_SIZE;
	np->tx_skbuff[entry] = skb;
	txdesc = &np->tx_ring[entry];

	txdesc->next_desc = 0;
	/* Note: disable the interrupt generation here before releasing. */
	txdesc->status =
		cpu_to_le32((entry<<2) | DescIntrOnDMADone | DescIntrOnTx);
	txdesc->frag[0].addr = virt_to_le32desc(skb->data);
	txdesc->frag[0].length = cpu_to_le32(skb->len | LastFrag);
	if (np->last_tx)
		np->last_tx->next_desc = virt_to_le32desc(txdesc);
	np->last_tx = txdesc;
	np->cur_tx++;

	/* On some architectures: explicitly flush cache lines here. */

	if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1) {
		/* do nothing */
	} else {
		np->tx_full = 1;
		netif_stop_queue(dev);
	}
	/* Side effect: The read wakes the potentially-idle transmit channel. */
	if (readl(dev->base_addr + TxListPtr) == 0)
		writel(virt_to_bus(&np->tx_ring[entry]), dev->base_addr + TxListPtr);

	dev->trans_start = jiffies;

	if (debug > 4) {
		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
			   dev->name, np->cur_tx, entry);
	}
	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = (struct net_device *)dev_instance;
	struct netdev_private *np;
	long ioaddr;
	int boguscnt = max_interrupt_work;

	ioaddr = dev->base_addr;
	np = (struct netdev_private *)dev->priv;
	spin_lock(&np->lock);

	do {
		int intr_status = readw(ioaddr + IntrStatus);
		writew(intr_status & (IntrRxDone | IntrRxDMADone | IntrPCIErr |
							  IntrDrvRqst |IntrTxDone|IntrTxDMADone |
							  StatsMax | LinkChange),
							  ioaddr + IntrStatus);

		if (debug > 4)
			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
				   dev->name, intr_status);

		if (intr_status == 0)
			break;

		if (intr_status & (IntrRxDone|IntrRxDMADone))
			netdev_rx(dev);

		if (intr_status & IntrTxDone) {
			int boguscnt = 32;
			int tx_status = readw(ioaddr + TxStatus);
			while (tx_status & 0x80) {
				if (debug > 4)
					printk("%s: Transmit status is %2.2x.\n",
						   dev->name, tx_status);
				if (tx_status & 0x1e) {
					np->stats.tx_errors++;
					if (tx_status & 0x10)  np->stats.tx_fifo_errors++;
#ifdef ETHER_STATS
					if (tx_status & 0x08)  np->stats.collisions16++;
#else
					if (tx_status & 0x08)  np->stats.collisions++;
#endif
					if (tx_status & 0x04)  np->stats.tx_fifo_errors++;
					if (tx_status & 0x02)  np->stats.tx_window_errors++;
					/* This reset has not been verified!. */
					if (tx_status & 0x10) {			/* Reset the Tx. */
						writew(0x001c, ioaddr + ASICCtrl + 2);
#if 0					/* Do we need to reset the Tx pointer here? */
						writel(virt_to_bus(&np->tx_ring[np->dirty_tx]),
							   dev->base_addr + TxListPtr);
#endif
					}
					if (tx_status & 0x1e) 		/* Restart the Tx. */
						writew(TxEnable, ioaddr + MACCtrl1);
				}
				/* Yup, this is a documentation bug.  It cost me *hours*. */
				writew(0, ioaddr + TxStatus);
				tx_status = readb(ioaddr + TxStatus);
				if (--boguscnt < 0)
					break;
			}
		}
		for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
			int entry = np->dirty_tx % TX_RING_SIZE;
			if ( ! (np->tx_ring[entry].status & 0x00010000))
				break;
			/* Free the original skb. */
			dev_kfree_skb_irq(np->tx_skbuff[entry]);
			np->tx_skbuff[entry] = 0;
		}
		if (np->tx_full
			&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
			/* The ring is no longer full, clear tbusy. */
			np->tx_full = 0;
			netif_wake_queue(dev);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & (IntrDrvRqst | IntrPCIErr | LinkChange | StatsMax))
			netdev_error(dev, intr_status);

		if (--boguscnt < 0) {
			get_stats(dev);
			printk(KERN_WARNING "%s: Too much work at interrupt, "
				   "status=0x%4.4x / 0x%4.4x.\n",
				   dev->name, intr_status, readw(ioaddr + IntrClear));
			/* Re-enable us in 3.2msec. */
			writew(1000, ioaddr + DownCounter);
			writew(IntrDrvRqst, ioaddr + IntrEnable);
			break;
		}
	} while (1);

	if (debug > 3)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
			   dev->name, readw(ioaddr + IntrStatus));

	spin_unlock(&np->lock);
}

/* This routine is logically part of the interrupt handler, but separated
   for clarity and better register allocation. */
static int netdev_rx(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int entry = np->cur_rx % RX_RING_SIZE;
	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;

	if (debug > 4) {
		printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n",
			   entry, np->rx_ring[entry].status);
	}

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while (np->rx_head_desc->status & DescOwn) {
		struct netdev_desc *desc = np->rx_head_desc;
		u32 frame_status = le32_to_cpu(desc->status);
		int pkt_len = frame_status & 0x1fff;		/* Chip omits the CRC. */

		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n",
				   frame_status);
		if (--boguscnt < 0)
			break;
		if (frame_status & 0x001f4000) {
			/* There was a error. */
			if (debug > 2)
				printk(KERN_DEBUG "  netdev_rx() Rx error was %8.8x.\n",
					   frame_status);
			np->stats.rx_errors++;
			if (frame_status & 0x00100000) np->stats.rx_length_errors++;
			if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
			if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
			if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
			if (frame_status & 0x00100000) {
				printk(KERN_WARNING "%s: Oversized Ethernet frame,"
					   " status %8.8x.\n",
					   dev->name, frame_status);
			}
		} else {
			struct sk_buff *skb;

#ifndef final_version
			if (debug > 4)
				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
					   ", bogus_cnt %d.\n",
					   pkt_len, boguscnt);
#endif
			/* Check if the packet is long enough to accept without copying
			   to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak
				&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
				eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
				skb_put(skb, pkt_len);
			} else {
				skb_put(skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			/* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
			netif_rx(skb);
			dev->last_rx = jiffies;
		}
		entry = (++np->cur_rx) % RX_RING_SIZE;
		np->rx_head_desc = &np->rx_ring[entry];
	}

	/* Refill the Rx ring buffers. */
	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
		struct sk_buff *skb;
		entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(np->rx_buf_sz);
			np->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;				/* Better luck next round. */
			skb->dev = dev;			/* Mark as being used by this device. */
			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
			np->rx_ring[entry].frag[0].addr = virt_to_le32desc(skb->tail);
		}
		/* Perhaps we need not reset this field. */
		np->rx_ring[entry].frag[0].length =
			cpu_to_le32(np->rx_buf_sz | LastFrag);
		np->rx_ring[entry].status = 0;
	}

	/* No need to restart Rx engine, it will poll. */
	return 0;
}

static void netdev_error(struct net_device *dev, int intr_status)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = (struct netdev_private *)dev->priv;

	if (intr_status & IntrDrvRqst) {
		/* Stop the down counter and turn interrupts back on. */
		printk("%s: Turning interrupts back on.\n", dev->name);
		writew(0, ioaddr + DownCounter);
		writew(IntrRxDone | IntrRxDMADone | IntrPCIErr | IntrDrvRqst |
			   IntrTxDone | StatsMax | LinkChange, ioaddr + IntrEnable);
	}
	if (intr_status & LinkChange) {
		printk(KERN_ERR "%s: Link changed: Autonegotiation advertising"
			   " %4.4x  partner %4.4x.\n", dev->name,
			   mdio_read(dev, np->phys[0], 4),
			   mdio_read(dev, np->phys[0], 5));
		check_duplex(dev);
	}
	if (intr_status & StatsMax) {
		get_stats(dev);
	}
	if (intr_status & IntrPCIErr) {
		printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
			   dev->name, intr_status);
		/* We must do a global reset of DMA to continue. */
	}
}

static struct net_device_stats *get_stats(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int i;

	/* We should lock this segment of code for SMP eventually, although
	   the vulnerability window is very small and statistics are
	   non-critical. */
	/* The chip only need report frame silently dropped. */
	np->stats.rx_missed_errors	+= readb(ioaddr + RxMissed);
	np->stats.tx_packets += readw(ioaddr + TxFramesOK);
	np->stats.rx_packets += readw(ioaddr + RxFramesOK);
	np->stats.collisions += readb(ioaddr + StatsLateColl);
	np->stats.collisions += readb(ioaddr + StatsMultiColl);
	np->stats.collisions += readb(ioaddr + StatsOneColl);
	readb(ioaddr + StatsCarrierError);
	readb(ioaddr + StatsTxDefer);
	for (i = StatsTxDefer; i <= StatsMcastRx; i++)
		readb(ioaddr + i);
	np->stats.tx_bytes += readw(ioaddr + TxOctetsLow);
	np->stats.tx_bytes += readw(ioaddr + TxOctetsHigh) << 16;
	np->stats.rx_bytes += readw(ioaddr + RxOctetsLow);
	np->stats.rx_bytes += readw(ioaddr + RxOctetsHigh) << 16;

	return &np->stats;
}

/* The little-endian AUTODIN II ethernet CRC calculations.
   A big-endian version is also available.
   This is slow but compact code.  Do not use this routine for bulk data,
   use a table-based routine instead.
   This is common code and should be moved to net/core/crc.c.
   Chips may use the upper or lower CRC bits, and may reverse and/or invert
   them.  Select the endian-ness that results in minimal calculations.
*/
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline unsigned ether_crc_le(int length, unsigned char *data)
{
	unsigned int crc = 0xffffffff;	/* Initial value. */
	while(--length >= 0) {
		unsigned char current_octet = *data++;
		int bit;
		for (bit = 8; --bit >= 0; current_octet >>= 1) {
			if ((crc ^ current_octet) & 1) {
				crc >>= 1;
				crc ^= ethernet_polynomial_le;
			} else
				crc >>= 1;
		}
	}
	return crc;
}

static void set_rx_mode(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	u16 mc_filter[4];			/* Multicast hash filter */
	u32 rx_mode;
	int i;

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		/* Unconditionally log net taps. */
		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
	} else if ((dev->mc_count > multicast_filter_limit)
			   ||  (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		memset(mc_filter, 0xff, sizeof(mc_filter));
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
	} else if (dev->mc_count) {
		struct dev_mc_list *mclist;
		memset(mc_filter, 0, sizeof(mc_filter));
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f,
					mc_filter);
		}
		rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
	} else {
		writeb(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
		return;
	}
	for (i = 0; i < 4; i++)
		writew(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
	writeb(rx_mode, ioaddr + RxMode);
}

static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	u16 *data = (u16 *)&rq->ifr_data;

	switch(cmd) {
	case SIOCDEVPRIVATE:		/* Get the address of the PHY in use. */
		data[0] = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f;
		/* Fall Through */
	case SIOCDEVPRIVATE+1:		/* Read the specified MII register. */
		data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
		return 0;
	case SIOCDEVPRIVATE+2:		/* Write the specified MII register */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int netdev_close(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int i;

	netif_stop_queue(dev);

	if (debug > 1) {
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
			   "Rx %4.4x Int %2.2x.\n",
			   dev->name, readb(ioaddr + TxStatus),
			   readl(ioaddr + RxStatus), readw(ioaddr + IntrStatus));
		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
			   dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
	}

	/* Disable interrupts by clearing the interrupt mask. */
	writew(0x0000, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */
	writew(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);

#ifdef __i386__
	if (debug > 2) {
		printk("\n"KERN_DEBUG"  Tx ring at %8.8x:\n",
			   (int)virt_to_bus(np->tx_ring));
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
				   i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
				   np->tx_ring[i].frag[0].length);
		printk("\n"KERN_DEBUG "  Rx ring %8.8x:\n",
			   (int)virt_to_bus(np->rx_ring));
		for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
			printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
				   i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
				   np->rx_ring[i].frag[0].length);
		}
	}
#endif /* __i386__ debugging only */

	free_irq(dev->irq, dev);

	del_timer_sync(&np->timer);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].status = 0;
		np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
		if (np->rx_skbuff[i]) {
			dev_kfree_skb(np->rx_skbuff[i]);
		}
		np->rx_skbuff[i] = 0;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (np->tx_skbuff[i])
			dev_kfree_skb(np->tx_skbuff[i]);
		np->tx_skbuff[i] = 0;
	}

	MOD_DEC_USE_COUNT;

	return 0;
}

static void __devexit sundance_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pdev->driver_data;
	
	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
	while (dev) {
		struct netdev_private *np = (void *)(dev->priv);
		unregister_netdev(dev);
#ifdef USE_IO_OPS
		release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size);
#else
		release_mem_region(pci_resource_start(pdev, 1),
				   pci_id_tbl[np->chip_id].io_size);
		iounmap((char *)(dev->base_addr));
#endif
		kfree(dev);
	}

	pdev->driver_data = NULL;
}

static struct pci_driver sundance_driver = {
	name:		"sundance",
	id_table:	sundance_pci_tbl,
	probe:		sundance_probe1,
	remove:		sundance_remove1,
};

static int __init sundance_init(void)
{
	return pci_module_init(&sundance_driver);
}

static void __exit sundance_exit(void)
{
	pci_unregister_driver(&sundance_driver);
}

module_init(sundance_init);
module_exit(sundance_exit);