Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*
 * SMP Support
 *
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 * 
 * Lots of stuff stolen from arch/alpha/kernel/smp.c
 *
 *  99/10/05 davidm	Update to bring it in sync with new command-line processing scheme.
 */
#define __KERNEL_SYSCALLS__

#include <linux/config.h>

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>

#include <asm/atomic.h>
#include <asm/bitops.h>
#include <asm/current.h>
#include <asm/delay.h>

#ifdef CONFIG_KDB
#include <linux/kdb.h>
void smp_kdb_interrupt (struct pt_regs* regs);
void kdb_global(int cpuid);
extern unsigned long smp_kdb_wait;
extern int kdb_new_cpu;
#endif

#include <asm/io.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/unistd.h>

extern int cpu_idle(void * unused);
extern void _start(void);

extern int cpu_now_booting;                          /* Used by head.S to find idle task */
extern unsigned long cpu_initialized;                /* Bitmap of available cpu's */
extern struct cpuinfo_ia64 cpu_data[NR_CPUS];        /* Duh... */

spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED;

#ifdef CONFIG_KDB
unsigned long cpu_online_map = 1;
#endif

volatile int __cpu_number_map[NR_CPUS] = { -1, };    /* SAPIC ID -> Logical ID */
volatile int __cpu_logical_map[NR_CPUS] = { -1, };   /* logical ID -> SAPIC ID */
int smp_num_cpus = 1;		
int bootstrap_processor = -1;                        /* SAPIC ID of BSP */
int smp_threads_ready = 0;	                     /* Set when the idlers are all forked */
unsigned long ipi_base_addr = IPI_DEFAULT_BASE_ADDR; /* Base addr of IPI table */
cycles_t cacheflush_time = 0;
unsigned long ap_wakeup_vector = -1;                 /* External Int to use to wakeup AP's */
static int max_cpus = -1;	                     /* Command line */
static unsigned long ipi_op[NR_CPUS];
struct smp_call_struct {
	void (*func) (void *info);
	void *info;
	long wait;
	atomic_t unstarted_count;
	atomic_t unfinished_count;
};
static struct smp_call_struct *smp_call_function_data;

#ifdef CONFIG_KDB
unsigned long smp_kdb_wait = 0;                         /* Bitmask of waiters */
#endif

#ifdef	CONFIG_ITANIUM_ASTEP_SPECIFIC
extern spinlock_t ivr_read_lock;
#endif

int use_xtp = 0;		/* XXX */

#define IPI_RESCHEDULE	        0
#define IPI_CALL_FUNC	        1
#define IPI_CPU_STOP	        2
#define IPI_KDB_INTERRUPT	4

/*
 *	Setup routine for controlling SMP activation
 *
 *	Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 *      activation entirely (the MPS table probe still happens, though).
 *
 *	Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 *	greater than 0, limits the maximum number of CPUs activated in
 *	SMP mode to <NUM>.
 */

static int __init nosmp(char *str)
{
	max_cpus = 0;
	return 1;
}

__setup("nosmp", nosmp);

static int __init maxcpus(char *str)
{
	get_option(&str, &max_cpus);
	return 1;
}

__setup("maxcpus=", maxcpus);

/*
 * Yoink this CPU from the runnable list... 
 */
void
halt_processor(void) 
{
        clear_bit(smp_processor_id(), &cpu_initialized);
	max_xtp();
	__cli();
        for (;;)
		;

}

void
handle_IPI(int irq, void *dev_id, struct pt_regs *regs) 
{
	int this_cpu = smp_processor_id();
	unsigned long *pending_ipis = &ipi_op[this_cpu];
	unsigned long ops;

	/* Count this now; we may make a call that never returns. */
	cpu_data[this_cpu].ipi_count++;

	mb();	/* Order interrupt and bit testing. */
	while ((ops = xchg(pending_ipis, 0)) != 0) {
	  mb();	/* Order bit clearing and data access. */
	  do {
		unsigned long which;

		which = ffz(~ops);
		ops &= ~(1 << which);
		
		switch (which) {
		case IPI_RESCHEDULE:
			/* 
			 * Reschedule callback.  Everything to be done is done by the 
			 * interrupt return path.  
			 */
			break;
			
		case IPI_CALL_FUNC: 
			{
				struct smp_call_struct *data;
				void (*func)(void *info);
				void *info;
				int wait;

				data = smp_call_function_data;
				func = data->func;
				info = data->info;
				wait = data->wait;

				mb();
				atomic_dec (&data->unstarted_count);

				/* At this point the structure may be gone unless wait is true.  */
				(*func)(info);

				/* Notify the sending CPU that the task is done.  */
				mb();
				if (wait) 
					atomic_dec (&data->unfinished_count);
			}
			break;

		case IPI_CPU_STOP:
			halt_processor();
			break;

#ifdef CONFIG_KDB
		case IPI_KDB_INTERRUPT:
			smp_kdb_interrupt(regs);
			break;
#endif

		default:
			printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n", this_cpu, which);
			break;
		} /* Switch */
	  } while (ops);

	  mb();	/* Order data access and bit testing. */
	}
}

static inline void
send_IPI(int dest_cpu, unsigned char vector)
{
	unsigned long ipi_addr;
	unsigned long ipi_data;
#ifdef	CONFIG_ITANIUM_ASTEP_SPECIFIC
	unsigned long flags;
#endif

	ipi_data = vector;
	ipi_addr = ipi_base_addr | ((dest_cpu << 8) << 4); /* 16-bit SAPIC ID's; assume CPU bus 0 */
	mb();

#ifdef	CONFIG_ITANIUM_ASTEP_SPECIFIC
	/*
	 * Disable IVR reads
	 */
	spin_lock_irqsave(&ivr_read_lock, flags);
	writeq(ipi_data, ipi_addr);
	spin_unlock_irqrestore(&ivr_read_lock, flags);
#else
 	writeq(ipi_data, ipi_addr);
#endif	/* CONFIG_ITANIUM_ASTEP_SPECIFIC */

}

static inline void
send_IPI_single(int dest_cpu, int op) 
{
	
	if (dest_cpu == -1) 
                return;
        
        ipi_op[dest_cpu] |= (1 << op);
	send_IPI(dest_cpu, IPI_IRQ);
}

static inline void
send_IPI_allbutself(int op)
{
	int i;
	int cpu_id = 0;
	
	for (i = 0; i < smp_num_cpus; i++) {
		cpu_id = __cpu_logical_map[i];
		if (cpu_id != smp_processor_id())
			send_IPI_single(cpu_id, op);
	}
}

static inline void
send_IPI_all(int op)
{
	int i;

	for (i = 0; i < smp_num_cpus; i++)
		send_IPI_single(__cpu_logical_map[i], op);
}

static inline void
send_IPI_self(int op)
{
	send_IPI_single(smp_processor_id(), op);
}

void
smp_send_reschedule(int cpu)
{
	send_IPI_single(cpu, IPI_RESCHEDULE);
}

void
smp_send_stop(void)
{
	send_IPI_allbutself(IPI_CPU_STOP);
}

/*
 * Run a function on all other CPUs.
 *  <func>	The function to run. This must be fast and non-blocking.
 *  <info>	An arbitrary pointer to pass to the function.
 *  <retry>	If true, keep retrying until ready.
 *  <wait>	If true, wait until function has completed on other CPUs.
 *  [RETURNS]   0 on success, else a negative status code.
 *
 * Does not return until remote CPUs are nearly ready to execute <func>
 * or are or have executed.
 */

int
smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
{
	struct smp_call_struct data;
	long timeout;
	static spinlock_t lock = SPIN_LOCK_UNLOCKED;
	
	data.func = func;
	data.info = info;
	data.wait = wait;
	atomic_set(&data.unstarted_count, smp_num_cpus - 1);
	atomic_set(&data.unfinished_count, smp_num_cpus - 1);

	if (retry) {
		while (1) {
			if (smp_call_function_data) {
				schedule ();  /*  Give a mate a go  */
				continue;
			}
			spin_lock (&lock);
			if (smp_call_function_data) {
				spin_unlock (&lock);  /*  Bad luck  */
				continue;
			}
			/*  Mine, all mine!  */
			break;
		}
	}
	else {
		if (smp_call_function_data) 
			return -EBUSY;
		spin_lock (&lock);
		if (smp_call_function_data) {
			spin_unlock (&lock);
			return -EBUSY;
		}
	}

	smp_call_function_data = &data;
	spin_unlock (&lock);
	data.func = func;
	data.info = info;
	atomic_set (&data.unstarted_count, smp_num_cpus - 1);
	data.wait = wait;
	if (wait) 
		atomic_set (&data.unfinished_count, smp_num_cpus - 1);
	
	/*  Send a message to all other CPUs and wait for them to respond  */
	send_IPI_allbutself(IPI_CALL_FUNC);

	/*  Wait for response  */
	timeout = jiffies + HZ;
	while ( (atomic_read (&data.unstarted_count) > 0) &&
		time_before (jiffies, timeout) )
		barrier ();
	if (atomic_read (&data.unstarted_count) > 0) {
		smp_call_function_data = NULL;
		return -ETIMEDOUT;
	}
	if (wait)
		while (atomic_read (&data.unfinished_count) > 0)
			barrier ();
	smp_call_function_data = NULL;
	return 0;
}

/*
 * Flush all other CPU's tlb and then mine.  Do this with smp_call_function() as we
 * want to ensure all TLB's flushed before proceeding.
 *
 * XXX: Is it OK to use the same ptc.e info on all cpus?
 */
void
smp_flush_tlb_all(void)
{
	smp_call_function((void (*)(void *))__flush_tlb_all, NULL, 1, 1);
	__flush_tlb_all();
}

/*
 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
 */
static inline void __init
smp_setup_percpu_timer(int cpuid)
{
        cpu_data[cpuid].prof_counter = 1;
        cpu_data[cpuid].prof_multiplier = 1;
}

void 
smp_do_timer(struct pt_regs *regs)
{
        int cpu = smp_processor_id();
        int user = user_mode(regs);
	struct cpuinfo_ia64 *data = &cpu_data[cpu];

	extern void update_one_process(struct task_struct *, unsigned long, unsigned long, 
				       unsigned long, int);
        if (!--data->prof_counter) {
		irq_enter(cpu, TIMER_IRQ);

		update_one_process(current, 1, user, !user, cpu);
		if (current->pid) { 
			if (--current->counter < 0) {
				current->counter = 0;
				current->need_resched = 1;
			}

			if (user) {
				if (current->priority < DEF_PRIORITY) {
					kstat.cpu_nice++;
					kstat.per_cpu_nice[cpu]++;
				} else {
					kstat.cpu_user++;
					kstat.per_cpu_user[cpu]++;
				}
			} else {
				kstat.cpu_system++;
				kstat.per_cpu_system[cpu]++;
			}
		} 
		
		data->prof_counter = data->prof_multiplier;
		irq_exit(cpu, TIMER_IRQ);
	}
}


/*
 * Called by both boot and secondaries to move global data into
 * per-processor storage.
 */
static inline void __init
smp_store_cpu_info(int cpuid)
{
	struct cpuinfo_ia64 *c = &cpu_data[cpuid];

	identify_cpu(c);
}

/* 
 * SAL shoves the AP's here when we start them.  Physical mode, no kernel TR, 
 * no RRs set, better than even chance that psr is bogus.  Fix all that and 
 * call _start.  In effect, pretend to be lilo.
 *
 * Stolen from lilo_start.c.  Thanks David! 
 */
void
start_ap(void)
{
	unsigned long flags;

	/*
	 * Install a translation register that identity maps the
	 * kernel's 256MB page(s).
	 */
	ia64_clear_ic(flags);
	ia64_set_rr(          0, (0x1000 << 8) | (_PAGE_SIZE_1M << 2));
	ia64_set_rr(PAGE_OFFSET, (ia64_rid(0, PAGE_OFFSET) << 8) | (_PAGE_SIZE_256M << 2));
	ia64_itr(0x3, 1, PAGE_OFFSET,
		 pte_val(mk_pte_phys(0, __pgprot(__DIRTY_BITS|_PAGE_PL_0|_PAGE_AR_RWX))),
		 _PAGE_SIZE_256M);

	flags = (IA64_PSR_IT | IA64_PSR_IC | IA64_PSR_DT | IA64_PSR_RT | IA64_PSR_DFH | 
		 IA64_PSR_BN);
	
	asm volatile ("movl r8 = 1f\n"
		      ";;\n"
		      "mov cr.ipsr=%0\n"
		      "mov cr.iip=r8\n" 
		      "mov cr.ifs=r0\n"
		      ";;\n"
		      "rfi;;"
		      "1:\n"
		      "movl r1 = __gp" :: "r"(flags) : "r8");
	_start();
}


/*
 * AP's start using C here.
 */
void __init
smp_callin(void) 
{
	extern void ia64_rid_init(void);
	extern void ia64_init_itm(void);
	extern void ia64_cpu_local_tick(void);

	ia64_set_dcr(IA64_DCR_DR | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_PP);
	ia64_set_fpu_owner(0);	       
	ia64_rid_init();		/* initialize region ids */

	cpu_init();
	__flush_tlb_all();

	smp_store_cpu_info(smp_processor_id());
	smp_setup_percpu_timer(smp_processor_id());

	while (!smp_threads_ready) 
		mb();

	normal_xtp();

	/* setup the CPU local timer tick */
	ia64_cpu_local_tick();

	/* Disable all local interrupts */
	ia64_set_lrr0(0, 1);	
	ia64_set_lrr1(0, 1);	

	__sti();		/* Interrupts have been off till now. */
	cpu_idle(NULL);
}

/*
 * Create the idle task for a new AP.  DO NOT use kernel_thread() because
 * that could end up calling schedule() in the ia64_leave_kernel exit
 * path in which case the new idle task could get scheduled before we
 * had a chance to remove it from the run-queue...
 */
static int __init 
fork_by_hand(void)
{
	/*
	 * Don't care about the usp and regs settings since we'll never
	 * reschedule the forked task.
	 */
	return do_fork(CLONE_VM|CLONE_PID, 0, 0);
}

/*
 * Bring one cpu online.
 *
 * NB: cpuid is the CPU BUS-LOCAL ID, not the entire SAPIC ID.  See asm/smp.h.
 */
static int __init
smp_boot_one_cpu(int cpuid, int cpunum)
{
	struct task_struct *idle;
	long timeout;

	/* 
	 * Create an idle task for this CPU.  Note that the address we
	 * give to kernel_thread is irrelevant -- it's going to start
	 * where OS_BOOT_RENDEVZ vector in SAL says to start.  But
	 * this gets all the other task-y sort of data structures set
	 * up like we wish.   We need to pull the just created idle task 
	 * off the run queue and stuff it into the init_tasks[] array.  
	 * Sheesh . . .
	 */
	if (fork_by_hand() < 0) 
		panic("failed fork for CPU %d", cpuid);
	/*
	 * We remove it from the pidhash and the runqueue
	 * once we got the process:
	 */
	idle = init_task.prev_task;
	if (!idle)
		panic("No idle process for CPU %d", cpuid);
	init_tasks[cpunum] = idle;
	del_from_runqueue(idle);
        unhash_process(idle);

	/* Schedule the first task manually.  */
	idle->processor = cpuid;
	idle->has_cpu = 1;

	/* Let _start know what logical CPU we're booting (offset into init_tasks[] */
	cpu_now_booting = cpunum;
	
	/* Kick the AP in the butt */
	send_IPI(cpuid, ap_wakeup_vector);
	ia64_srlz_i();
	mb();

	/* 
	 * OK, wait a bit for that CPU to finish staggering about.  smp_callin() will
	 * call cpu_init() which will set a bit for this AP.  When that bit flips, the AP
	 * is waiting for smp_threads_ready to be 1 and we can move on.
	 */
	for (timeout = 0; timeout < 100000; timeout++) {
		if (test_bit(cpuid, &cpu_initialized))
			goto alive;
		udelay(10);
		barrier();
	}

	printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
	return -1;

alive:
	/* Remember the AP data */
	__cpu_number_map[cpuid] = cpunum;
#ifdef CONFIG_KDB
        cpu_online_map |= (1<<cpunum);
        printk ("DEBUGGER: cpu_online_map = 0x%08x\n", cpu_online_map);
#endif
	__cpu_logical_map[cpunum] = cpuid;
	return 0;
}



/*
 * Called by smp_init bring all the secondaries online and hold them.  
 * XXX: this is ACPI specific; it uses "magic" variables exported from acpi.c 
 *      to 'discover' the AP's.  Blech.
 */
void __init
smp_boot_cpus(void)
{
	int i, cpu_count = 1;
	unsigned long bogosum;
	int sapic_id;
	extern int acpi_cpus;
	extern int acpi_apic_map[32];

	/* Take care of some initial bookkeeping.  */
	memset(&__cpu_number_map, -1, sizeof(__cpu_number_map));
	memset(&__cpu_logical_map, -1, sizeof(__cpu_logical_map));
	memset(&ipi_op, 0, sizeof(ipi_op));

	/* Setup BSP mappings */
	__cpu_number_map[bootstrap_processor] = 0;
	__cpu_logical_map[0] = bootstrap_processor;
	current->processor = bootstrap_processor;

	/* Mark BSP booted and get active_mm context */
	cpu_init();

	/* reset XTP for interrupt routing */
	normal_xtp();

	/* And generate an entry in cpu_data */
	smp_store_cpu_info(bootstrap_processor);
#if 0
	smp_tune_scheduling();
#endif
 	smp_setup_percpu_timer(bootstrap_processor);

	init_idle();

	/* Nothing to do when told not to.  */
	if (max_cpus == 0) {
	        printk(KERN_INFO "SMP mode deactivated.\n");
		return;
	}

	if (acpi_cpus > 1) {
		printk(KERN_INFO "SMP: starting up secondaries.\n");

		for (i = 0; i < NR_CPUS; i++) {
			if (acpi_apic_map[i] == -1 || 
			    acpi_apic_map[i] == bootstrap_processor << 8) /* XXX Fix me Walt */
				continue;

			/*
			 * IA64 SAPIC ID's are 16-bits.  See asm/smp.h for more info 
			 */
			sapic_id = acpi_apic_map[i] >> 8;
			if (smp_boot_one_cpu(sapic_id, cpu_count))
				continue;

			cpu_count++; /* Count good CPUs only... */
		}
	}

	if (cpu_count == 1) {
		printk(KERN_ERR "SMP: Bootstrap processor only.\n");
		return;
	}

	bogosum = 0;
        for (i = 0; i < NR_CPUS; i++) {
		if (cpu_initialized & (1L << i))
			bogosum += cpu_data[i].loops_per_sec;
        }

	printk(KERN_INFO "SMP: Total of %d processors activated "
	       "(%lu.%02lu BogoMIPS).\n",
	       cpu_count, (bogosum + 2500) / 500000,
	       ((bogosum + 2500) / 5000) % 100);

	smp_num_cpus = cpu_count;
}

/* 
 * Called from main.c by each AP.
 */
void __init 
smp_commence(void)
{
	mb();
}

/*
 * Not used; part of the i386 bringup
 */
void __init 
initialize_secondary(void)
{
}

int __init
setup_profiling_timer(unsigned int multiplier)
{
        return -EINVAL;
}

/*
 * Assume that CPU's have been discovered by some platform-dependant
 * interface.  For SoftSDV/Lion, that would be ACPI.
 *
 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
 *
 * So this just gets the BSP SAPIC ID and print's it out.  Dull, huh?
 *
 * Not anymore.  This also registers the AP OS_MC_REDVEZ address with SAL.
 */
void __init
init_smp_config(void)
{
	struct fptr {
		unsigned long fp;
		unsigned long gp;
	} *ap_startup;
	long sal_ret;

	/* Grab the BSP ID */
	bootstrap_processor = hard_smp_processor_id();

	/* Tell SAL where to drop the AP's.  */
	ap_startup = (struct fptr *) start_ap;
	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
				       __pa(ap_startup->fp), __pa(ap_startup->gp), 0, 
				       0, 0, 0);
	if (sal_ret < 0) {
		printk("SMP: Can't set SAL AP Boot Rendezvous: %s\n", ia64_sal_strerror(sal_ret));
		printk("     Forcing UP mode\n");
		smp_num_cpus = 1; 
	}

}

#ifdef CONFIG_KDB
void smp_kdb_stop (int all, struct pt_regs* regs)
{
        if (all)
      {
              printk ("Sending IPI to all on CPU %i\n", smp_processor_id ());
                smp_kdb_wait = 0xffffffff;
                clear_bit (smp_processor_id(), &smp_kdb_wait);
                send_IPI_allbutself (IPI_KDB_INTERRUPT);
        }
      else
      {
              printk ("Sending IPI to self on CPU %i\n",
                      smp_processor_id ());
                set_bit (smp_processor_id(), &smp_kdb_wait);
              clear_bit (__cpu_logical_map[kdb_new_cpu], &smp_kdb_wait);
                smp_kdb_interrupt (regs);
        }
}

void smp_kdb_interrupt (struct pt_regs* regs)
{
        printk ("kdb: IPI on CPU %i with mask 0x%08x\n",
              smp_processor_id (), smp_kdb_wait);

      /* All CPUs spin here forever */
        while (test_bit (smp_processor_id(), &smp_kdb_wait));

      /* Enter KDB on CPU selected by KDB on the last CPU */
        if (__cpu_logical_map[kdb_new_cpu] == smp_processor_id ())
      {
                kdb (KDB_REASON_SWITCH, 0, regs);
        }
}

#endif