Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* $Id: time.c,v 1.12 1999/06/13 16:30:34 ralf Exp $
 *
 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
 *  Copyright (C) 1996, 1997, 1998  Ralf Baechle
 *
 * This file contains the time handling details for PC-style clocks as
 * found in some MIPS systems.
 */
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>

#include <asm/bootinfo.h>
#include <asm/mipsregs.h>
#include <asm/io.h>
#include <asm/irq.h>

#include <linux/mc146818rtc.h>
#include <linux/timex.h>

extern volatile unsigned long lost_ticks;

/*
 * Change this if you have some constant time drift
 */
/* This is the value for the PC-style PICs. */
/* #define USECS_PER_JIFFY (1000020/HZ) */

/* This is for machines which generate the exact clock. */
#define USECS_PER_JIFFY (1000000/HZ)

/* Cycle counter value at the previous timer interrupt.. */

static unsigned int timerhi = 0, timerlo = 0;

/*
 * On MIPS only R4000 and better have a cycle counter.
 *
 * FIXME: Does playing with the RP bit in c0_status interfere with this code?
 */
static unsigned long do_fast_gettimeoffset(void)
{
	u32 count;
	unsigned long res, tmp;

	/* Last jiffy when do_fast_gettimeoffset() was called. */
	static unsigned long last_jiffies=0;
	unsigned long quotient;

	/*
	 * Cached "1/(clocks per usec)*2^32" value.
	 * It has to be recalculated once each jiffy.
	 */
	static unsigned long cached_quotient=0;

	tmp = jiffies;

	quotient = cached_quotient;

	if (tmp && last_jiffies != tmp) {
		last_jiffies = tmp;
		__asm__(".set\tnoreorder\n\t"
			".set\tnoat\n\t"
			".set\tmips3\n\t"
			"lwu\t%0,%2\n\t"
			"dsll32\t$1,%1,0\n\t"
			"or\t$1,$1,%0\n\t"
			"ddivu\t$0,$1,%3\n\t"
			"mflo\t$1\n\t"
			"dsll32\t%0,%4,0\n\t"
			"nop\n\t"
			"ddivu\t$0,%0,$1\n\t"
			"mflo\t%0\n\t"
			".set\tmips0\n\t"
			".set\tat\n\t"
			".set\treorder"
			:"=&r" (quotient)
			:"r" (timerhi),
			 "m" (timerlo),
			 "r" (tmp),
			 "r" (USECS_PER_JIFFY)
			:"$1");
		cached_quotient = quotient;
	}

	/* Get last timer tick in absolute kernel time */
	count = read_32bit_cp0_register(CP0_COUNT);

	/* .. relative to previous jiffy (32 bits is enough) */
	count -= timerlo;
//printk("count: %08lx, %08lx:%08lx\n", count, timerhi, timerlo);

	__asm__("multu\t%1,%2\n\t"
		"mfhi\t%0"
		:"=r" (res)
		:"r" (count),
		 "r" (quotient));

	/*
 	 * Due to possible jiffies inconsistencies, we need to check 
	 * the result so that we'll get a timer that is monotonic.
	 */
	if (res >= USECS_PER_JIFFY)
		res = USECS_PER_JIFFY-1;

	return res;
}

/* This function must be called with interrupts disabled 
 * It was inspired by Steve McCanne's microtime-i386 for BSD.  -- jrs
 * 
 * However, the pc-audio speaker driver changes the divisor so that
 * it gets interrupted rather more often - it loads 64 into the
 * counter rather than 11932! This has an adverse impact on
 * do_gettimeoffset() -- it stops working! What is also not
 * good is that the interval that our timer function gets called
 * is no longer 10.0002 ms, but 9.9767 ms. To get around this
 * would require using a different timing source. Maybe someone
 * could use the RTC - I know that this can interrupt at frequencies
 * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix
 * it so that at startup, the timer code in sched.c would select
 * using either the RTC or the 8253 timer. The decision would be
 * based on whether there was any other device around that needed
 * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz,
 * and then do some jiggery to have a version of do_timer that 
 * advanced the clock by 1/1024 s. Every time that reached over 1/100
 * of a second, then do all the old code. If the time was kept correct
 * then do_gettimeoffset could just return 0 - there is no low order
 * divider that can be accessed.
 *
 * Ideally, you would be able to use the RTC for the speaker driver,
 * but it appears that the speaker driver really needs interrupt more
 * often than every 120 us or so.
 *
 * Anyway, this needs more thought....		pjsg (1993-08-28)
 * 
 * If you are really that interested, you should be reading
 * comp.protocols.time.ntp!
 */

#define TICK_SIZE tick

static unsigned long do_slow_gettimeoffset(void)
{
	int count;

	static int count_p = LATCH;    /* for the first call after boot */
	static unsigned long jiffies_p = 0;

	/*
	 * cache volatile jiffies temporarily; we have IRQs turned off. 
	 */
	unsigned long jiffies_t;

	/* timer count may underflow right here */
	outb_p(0x00, 0x43);	/* latch the count ASAP */

	count = inb_p(0x40);	/* read the latched count */

	/*
	 * We do this guaranteed double memory access instead of a _p 
	 * postfix in the previous port access. Wheee, hackady hack
	 */
	jiffies_t = jiffies;

	count |= inb_p(0x40) << 8;

	/*
	 * avoiding timer inconsistencies (they are rare, but they happen)...
	 * there are two kinds of problems that must be avoided here:
	 *  1. the timer counter underflows
	 *  2. hardware problem with the timer, not giving us continuous time,
	 *     the counter does small "jumps" upwards on some Pentium systems,
	 *     (see c't 95/10 page 335 for Neptun bug.)
	 */

	if( jiffies_t == jiffies_p ) {
		if( count > count_p ) {
			/* the nutcase */

			outb_p(0x0A, 0x20);

			/* assumption about timer being IRQ1 */
			if (inb(0x20) & 0x01) {
				/*
				 * We cannot detect lost timer interrupts ... 
				 * well, that's why we call them lost, don't we? :)
				 * [hmm, on the Pentium and Alpha we can ... sort of]
				 */
				count -= LATCH;
			} else {
				printk("do_slow_gettimeoffset(): hardware timer problem?\n");
			}
		}
	} else
		jiffies_p = jiffies_t;

	count_p = count;

	count = ((LATCH-1) - count) * TICK_SIZE;
	count = (count + LATCH/2) / LATCH;

	return count;
}

static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset;

/*
 * This version of gettimeofday has near microsecond resolution.
 */
void do_gettimeofday(struct timeval *tv)
{
	unsigned long flags;

	save_and_cli(flags);
	*tv = xtime;
	tv->tv_usec += do_gettimeoffset();

	/*
	 * xtime is atomically updated in timer_bh. lost_ticks is
	 * nonzero if the timer bottom half hasnt executed yet.
	 */
	if (lost_ticks)
		tv->tv_usec += USECS_PER_JIFFY;

	restore_flags(flags);

	if (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
}

void do_settimeofday(struct timeval *tv)
{
	cli();
	/* This is revolting. We need to set the xtime.tv_usec
	 * correctly. However, the value in this location is
	 * is value at the last tick.
	 * Discover what correction gettimeofday
	 * would have done, and then undo it!
	 */
	tv->tv_usec -= do_gettimeoffset();

	if (tv->tv_usec < 0) {
		tv->tv_usec += 1000000;
		tv->tv_sec--;
	}

	xtime = *tv;
	time_adjust = 0;		/* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;
	sti();
}

/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 * called 500 ms after the second nowtime has started, because when
 * nowtime is written into the registers of the CMOS clock, it will
 * jump to the next second precisely 500 ms later. Check the Motorola
 * MC146818A or Dallas DS12887 data sheet for details.
 *
 * BUG: This routine does not handle hour overflow properly; it just
 *      sets the minutes. Usually you won't notice until after reboot!
 */
static int set_rtc_mmss(unsigned long nowtime)
{
	int retval = 0;
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char save_control, save_freq_select;

	save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);

	save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);
	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
		BCD_TO_BIN(cmos_minutes);

	/*
	 * since we're only adjusting minutes and seconds,
	 * don't interfere with hour overflow. This avoids
	 * messing with unknown time zones but requires your
	 * RTC not to be off by more than 15 minutes
	 */
	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
		real_minutes += 30;		/* correct for half hour time zone */
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) < 30) {
		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
			BIN_TO_BCD(real_seconds);
			BIN_TO_BCD(real_minutes);
		}
		CMOS_WRITE(real_seconds,RTC_SECONDS);
		CMOS_WRITE(real_minutes,RTC_MINUTES);
	} else {
		printk(KERN_WARNING
		       "set_rtc_mmss: can't update from %d to %d\n",
		       cmos_minutes, real_minutes);
 		retval = -1;
	}

	/* The following flags have to be released exactly in this order,
	 * otherwise the DS12887 (popular MC146818A clone with integrated
	 * battery and quartz) will not reset the oscillator and will not
	 * update precisely 500 ms later. You won't find this mentioned in
	 * the Dallas Semiconductor data sheets, but who believes data
	 * sheets anyway ...                           -- Markus Kuhn
	 */
	CMOS_WRITE(save_control, RTC_CONTROL);
	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);

	return retval;
}

/* last time the cmos clock got updated */
static long last_rtc_update = 0;

/*
 * timer_interrupt() needs to keep up the real-time clock,
 * as well as call the "do_timer()" routine every clocktick
 */
static void inline
timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
#ifdef CONFIG_PROFILE
	if(!user_mode(regs)) {
		if (prof_buffer && current->pid) {
			extern int _stext;
			unsigned long pc = regs->cp0_epc;

			pc -= (unsigned long) &_stext;
			pc >>= prof_shift;
			/*
			 * Dont ignore out-of-bounds pc values silently,
			 * put them into the last histogram slot, so if
			 * present, they will show up as a sharp peak.
			 */
			if (pc > prof_len-1)
				pc = prof_len-1;
			atomic_inc((atomic_t *)&prof_buffer[pc]);
		}
	}
#endif
	do_timer(regs);

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	if ((time_status & STA_UNSYNC) == 0 &&
	    xtime.tv_sec > last_rtc_update + 660 &&
	    xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 &&
	    xtime.tv_usec <= 500000 + ((unsigned) tick) / 2)
	  if (set_rtc_mmss(xtime.tv_sec) == 0)
	    last_rtc_update = xtime.tv_sec;
	  else
	    last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
	/* As we return to user mode fire off the other CPU schedulers.. this is 
	   basically because we don't yet share IRQ's around. This message is
	   rigged to be safe on the 386 - basically it's a hack, so don't look
	   closely for now.. */
	/*smp_message_pass(MSG_ALL_BUT_SELF, MSG_RESCHEDULE, 0L, 0); */
}

static void r4k_timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
	unsigned int count;

	/*
	 * The cycle counter is only 32 bit which is good for about
	 * a minute at current count rates of upto 150MHz or so.
	 */
	count = read_32bit_cp0_register(CP0_COUNT);
	timerhi += (count < timerlo);	/* Wrap around */
	timerlo = count;

	timer_interrupt(irq, dev_id, regs);

	if (!jiffies)
	{
		/*
		 * If jiffies has overflowed in this timer_interrupt we must
		 * update the timer[hi]/[lo] to make do_fast_gettimeoffset()
		 * quotient calc still valid. -arca
		 */
		timerhi = timerlo = 0;
	}
}

/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 * machines were long is 32-bit! (However, as time_t is signed, we
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
static inline unsigned long mktime(unsigned int year, unsigned int mon,
	unsigned int day, unsigned int hour,
	unsigned int min, unsigned int sec)
{
	if (0 >= (int) (mon -= 2)) {	/* 1..12 -> 11,12,1..10 */
		mon += 12;	/* Puts Feb last since it has leap day */
		year -= 1;
	}
	return (((
	    (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
	      year*365 - 719499
	    )*24 + hour /* now have hours */
	   )*60 + min /* now have minutes */
	  )*60 + sec; /* finally seconds */
}

char cyclecounter_available;

static inline void init_cycle_counter(void)
{
	switch(mips_cputype) {
	case CPU_UNKNOWN:
	case CPU_R2000:
	case CPU_R3000:
	case CPU_R3000A:
	case CPU_R3041:
	case CPU_R3051:
	case CPU_R3052:
	case CPU_R3081:
	case CPU_R3081E:
	case CPU_R6000:
	case CPU_R6000A:
	case CPU_R8000:		/* Not shure about that one, play safe */
		cyclecounter_available = 0;
		break;
	case CPU_R4000PC:
	case CPU_R4000SC:
	case CPU_R4000MC:
	case CPU_R4200:
	case CPU_R4400PC:
	case CPU_R4400SC:
	case CPU_R4400MC:
	case CPU_R4600:
	case CPU_R10000:
	case CPU_R4300:
	case CPU_R4650:
	case CPU_R4700:
	case CPU_R5000:
	case CPU_R5000A:
	case CPU_R4640:
	case CPU_NEVADA:
		cyclecounter_available = 1;
		break;
	}
}

struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0,
                                  "timer", NULL, NULL};


void (*board_time_init)(struct irqaction *irq);

__initfunc(void time_init(void))
{
	unsigned int epoch, year, mon, day, hour, min, sec;
	int i;

	/* The Linux interpretation of the CMOS clock register contents:
	 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
	 * RTC registers show the second which has precisely just started.
	 * Let's hope other operating systems interpret the RTC the same way.
	 */
	/* read RTC exactly on falling edge of update flag */
	for (i = 0 ; i < 1000000 ; i++)	/* may take up to 1 second... */
		if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
			break;
	for (i = 0 ; i < 1000000 ; i++)	/* must try at least 2.228 ms */
		if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
			break;
	do { /* Isn't this overkill ? UIP above should guarantee consistency */
		sec = CMOS_READ(RTC_SECONDS);
		min = CMOS_READ(RTC_MINUTES);
		hour = CMOS_READ(RTC_HOURS);
		day = CMOS_READ(RTC_DAY_OF_MONTH);
		mon = CMOS_READ(RTC_MONTH);
		year = CMOS_READ(RTC_YEAR);
	} while (sec != CMOS_READ(RTC_SECONDS));
	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	  {
	    BCD_TO_BIN(sec);
	    BCD_TO_BIN(min);
	    BCD_TO_BIN(hour);
	    BCD_TO_BIN(day);
	    BCD_TO_BIN(mon);
	    BCD_TO_BIN(year);
	  }

	/* Attempt to guess the epoch.  This is the same heuristic as in rtc.c so
	   no stupid things will happen to timekeeping.  Who knows, maybe Ultrix
  	   also uses 1952 as epoch ...  */
	if (year > 10 && year < 44) {
		epoch = 1980;
	} else if (year < 96) {
		epoch = 1952;
	}
	year += epoch;

	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
	xtime.tv_usec = 0;

	init_cycle_counter();

	if (cyclecounter_available) {
		write_32bit_cp0_register(CP0_COUNT, 0);
		do_gettimeoffset = do_fast_gettimeoffset;
		irq0.handler = r4k_timer_interrupt;
	}

	board_time_init(&irq0);
}