Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*
 *	Real Time Clock interface for Linux	
 *
 *	Copyright (C) 1996 Paul Gortmaker
 *
 *	This driver allows use of the real time clock (built into
 *	nearly all computers) from user space. It exports the /dev/rtc
 *	interface supporting various ioctl() and also the /proc/rtc
 *	pseudo-file for status information.
 *
 *	The ioctls can be used to set the interrupt behaviour and
 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
 *	interface can be used to make use of these timer interrupts,
 *	be they interval or alarm based.
 *
 *	The /dev/rtc interface will block on reads until an interrupt
 *	has been received. If a RTC interrupt has already happened,
 *	it will output an unsigned long and then block. The output value
 *	contains the interrupt status in the low byte and the number of
 *	interrupts since the last read in the remaining high bytes. The 
 *	/dev/rtc interface can also be used with the select(2) call.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Based on other minimal char device drivers, like Alan's
 *	watchdog, Ted's random, etc. etc.
 *
 */

#define RTC_VERSION		"1.07"

#define RTC_IRQ 	8	/* Can't see this changing soon.	*/
#define RTC_IO_EXTENT	0x10	/* Only really two ports, but...	*/

/*
 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
 *	design of the RTC, we don't want two different things trying to
 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
 *	this driver.)
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/malloc.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/poll.h>

#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>

/* Adjust starting epoch if ARC console time is being used */
#ifdef CONFIG_RTC_ARC
#define ARCFUDGE 20 
#else
#define ARCFUDGE 0
#endif

/*
 *	We sponge a minor off of the misc major. No need slurping
 *	up another valuable major dev number for this. If you add
 *	an ioctl, make sure you don't conflict with SPARC's RTC
 *	ioctls.
 */

static struct wait_queue *rtc_wait;

static struct timer_list rtc_irq_timer;

static long long rtc_llseek(struct file *file, loff_t offset, int origin);

static ssize_t rtc_read(struct file *file, char *buf,
			size_t count, loff_t *ppos);

static int rtc_ioctl(struct inode *inode, struct file *file,
			unsigned int cmd, unsigned long arg);

static unsigned int rtc_poll(struct file *file, poll_table *wait);

void get_rtc_time (struct rtc_time *rtc_tm);
void get_rtc_alm_time (struct rtc_time *alm_tm);
void rtc_dropped_irq(unsigned long data);

void set_rtc_irq_bit(unsigned char bit);
void mask_rtc_irq_bit(unsigned char bit);

static inline unsigned char rtc_is_updating(void);

/*
 *	Bits in rtc_status. (7 bits of room for future expansion)
 */

#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/

unsigned char rtc_status = 0;		/* bitmapped status byte.	*/
unsigned long rtc_freq = 0;		/* Current periodic IRQ rate	*/
unsigned long rtc_irq_data = 0;		/* our output to the world	*/

unsigned char days_in_mo[] = 
		{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

/*
 *	A very tiny interrupt handler. It runs with SA_INTERRUPT set,
 *	so that there is no possibility of conflicting with the
 *	set_rtc_mmss() call that happens during some timer interrupts.
 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 */

static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	/*
	 *	Can be an alarm interrupt, update complete interrupt,
	 *	or a periodic interrupt. We store the status in the
	 *	low byte and the number of interrupts received since
	 *	the last read in the remainder of rtc_irq_data.
	 */

	rtc_irq_data += 0x100;
	rtc_irq_data &= ~0xff;
	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
	wake_up_interruptible(&rtc_wait);	

	if (rtc_status & RTC_TIMER_ON) {
		del_timer(&rtc_irq_timer);
		rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
		add_timer(&rtc_irq_timer);
	}
}

/*
 *	Now all the various file operations that we export.
 */

static long long rtc_llseek(struct file *file, loff_t offset, int origin)
{
	return -ESPIPE;
}

static ssize_t rtc_read(struct file *file, char *buf,
			size_t count, loff_t *ppos)
{
	struct wait_queue wait = { current, NULL };
	unsigned long data;
	ssize_t retval;
	
	if (count < sizeof(unsigned long))
		return -EINVAL;

	add_wait_queue(&rtc_wait, &wait);

	current->state = TASK_INTERRUPTIBLE;
		
	while ((data = xchg(&rtc_irq_data, 0)) == 0) {
		if (file->f_flags & O_NONBLOCK) {
			retval = -EAGAIN;
			goto out;
		}
		if (signal_pending(current)) {
			retval = -ERESTARTSYS;
			goto out;
		}
		schedule();
	}

	retval = put_user(data, (unsigned long *)buf); 
	if (!retval)
		retval = sizeof(unsigned long); 
out:
	current->state = TASK_RUNNING;
	remove_wait_queue(&rtc_wait, &wait);

	return retval;
}

static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
	unsigned long arg)
{

	unsigned long flags;
	struct rtc_time wtime; 

	switch (cmd) {
		case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
		{
			mask_rtc_irq_bit(RTC_AIE);
			return 0;
		}
		case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
		{
			set_rtc_irq_bit(RTC_AIE);
			return 0;
		}
		case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
		{
			mask_rtc_irq_bit(RTC_PIE);
			if (rtc_status & RTC_TIMER_ON) {
				del_timer(&rtc_irq_timer);
				rtc_status &= ~RTC_TIMER_ON;
			}
			return 0;
		}
		case RTC_PIE_ON:	/* Allow periodic ints		*/
		{

			/*
			 * We don't really want Joe User enabling more
			 * than 64Hz of interrupts on a multi-user machine.
			 */
			if ((rtc_freq > 64) && (!suser()))
				return -EACCES;

			if (!(rtc_status & RTC_TIMER_ON)) {
				rtc_status |= RTC_TIMER_ON;
				rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
				add_timer(&rtc_irq_timer);
			}
			set_rtc_irq_bit(RTC_PIE);
			return 0;
		}
		case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
		{
			mask_rtc_irq_bit(RTC_UIE);
			return 0;
		}
		case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
		{
			set_rtc_irq_bit(RTC_UIE);
			return 0;
		}
		case RTC_ALM_READ:	/* Read the present alarm time */
		{
			/*
			 * This returns a struct rtc_time. Reading >= 0xc0
			 * means "don't care" or "match all". Only the tm_hour,
			 * tm_min, and tm_sec values are filled in.
			 */

			get_rtc_alm_time(&wtime);
			break; 
		}
		case RTC_ALM_SET:	/* Store a time into the alarm */
		{
			/*
			 * This expects a struct rtc_time. Writing 0xff means
			 * "don't care" or "match all". Only the tm_hour,
			 * tm_min and tm_sec are used.
			 */
			unsigned char hrs, min, sec;
			struct rtc_time alm_tm;

			if (copy_from_user(&alm_tm, (struct rtc_time*)arg, sizeof(struct rtc_time)))
				return -EFAULT;

			hrs = alm_tm.tm_hour;
			min = alm_tm.tm_min;
			sec = alm_tm.tm_sec;

			if (hrs >= 24)
				hrs = 0xff;

			if (min >= 60)
				min = 0xff;

			if (sec >= 60)
				sec = 0xff;

			save_flags(flags);
			cli();
			if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
							RTC_ALWAYS_BCD)
			{
				BIN_TO_BCD(sec);
				BIN_TO_BCD(min);
				BIN_TO_BCD(hrs);
			}
			CMOS_WRITE(hrs, RTC_HOURS_ALARM);
			CMOS_WRITE(min, RTC_MINUTES_ALARM);
			CMOS_WRITE(sec, RTC_SECONDS_ALARM);
			restore_flags(flags);

			return 0;
		}
		case RTC_RD_TIME:	/* Read the time/date from RTC	*/
		{
			get_rtc_time(&wtime);
			break;
		}
		case RTC_SET_TIME:	/* Set the RTC */
		{
			struct rtc_time rtc_tm;
			unsigned char mon, day, hrs, min, sec, leap_yr;
			unsigned char save_control, save_freq_select;
			unsigned int yrs;
			unsigned long flags;
			
			if (!suser())
				return -EACCES;

			if (copy_from_user(&rtc_tm, (struct rtc_time*)arg, sizeof(struct rtc_time)))
				return -EFAULT;

			yrs = rtc_tm.tm_year + 1900 + ARCFUDGE;
			mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
			day = rtc_tm.tm_mday;
			hrs = rtc_tm.tm_hour;
			min = rtc_tm.tm_min;
			sec = rtc_tm.tm_sec;

			if ((yrs < 1970) || (yrs > 2069))
				return -EINVAL;

			leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));

			if ((mon > 12) || (day == 0))
				return -EINVAL;

			if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
				return -EINVAL;
			
			if ((hrs >= 24) || (min >= 60) || (sec >= 60))
				return -EINVAL;

			if (yrs >= 2000)
				yrs -= 2000;	/* RTC (0, 1, ... 69) */
			else
				yrs -= 1900;	/* RTC (70, 71, ... 99) */

			save_flags(flags);
			cli();
			if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
							RTC_ALWAYS_BCD)
			{
				BIN_TO_BCD(sec);
				BIN_TO_BCD(min);
				BIN_TO_BCD(hrs);
				BIN_TO_BCD(day);
				BIN_TO_BCD(mon);
				BIN_TO_BCD(yrs);
			}

			save_control = CMOS_READ(RTC_CONTROL);
			CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
			save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
			CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

			CMOS_WRITE(yrs, RTC_YEAR);
			CMOS_WRITE(mon, RTC_MONTH);
			CMOS_WRITE(day, RTC_DAY_OF_MONTH);
			CMOS_WRITE(hrs, RTC_HOURS);
			CMOS_WRITE(min, RTC_MINUTES);
			CMOS_WRITE(sec, RTC_SECONDS);

			CMOS_WRITE(save_control, RTC_CONTROL);
			CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);

			restore_flags(flags);
			return 0;
		}
		case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
		{
			return put_user(rtc_freq, (unsigned long *)arg);
		}
		case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
		{
			int tmp = 0;
			unsigned char val;

			/* 
			 * The max we can do is 8192Hz.
			 */
			if ((arg < 2) || (arg > 8192))
				return -EINVAL;
			/*
			 * We don't really want Joe User generating more
			 * than 64Hz of interrupts on a multi-user machine.
			 */
			if ((arg > 64) && (!suser()))
				return -EACCES;

			while (arg > (1<<tmp))
				tmp++;

			/*
			 * Check that the input was really a power of 2.
			 */
			if (arg != (1<<tmp))
				return -EINVAL;

			rtc_freq = arg;

			save_flags(flags);
			cli();
			val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
			val |= (16 - tmp);
			CMOS_WRITE(val, RTC_FREQ_SELECT);
			restore_flags(flags);
			return 0;
		}
		default:
			return -EINVAL;
	}
	return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
}

/*
 *	We enforce only one user at a time here with the open/close.
 *	Also clear the previous interrupt data on an open, and clean
 *	up things on a close.
 */

static int rtc_open(struct inode *inode, struct file *file)
{

	if(rtc_status & RTC_IS_OPEN)
		return -EBUSY;

	rtc_status |= RTC_IS_OPEN;
	rtc_irq_data = 0;
	return 0;
}

static int rtc_release(struct inode *inode, struct file *file)
{

	/*
	 * Turn off all interrupts once the device is no longer
	 * in use, and clear the data.
	 */

	unsigned char tmp;
	unsigned long flags;

	save_flags(flags);
	cli();
	tmp = CMOS_READ(RTC_CONTROL);
	tmp &=  ~RTC_PIE;
	tmp &=  ~RTC_AIE;
	tmp &=  ~RTC_UIE;
	CMOS_WRITE(tmp, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
	restore_flags(flags);

	if (rtc_status & RTC_TIMER_ON) {
		rtc_status &= ~RTC_TIMER_ON;
		del_timer(&rtc_irq_timer);
	}

	rtc_irq_data = 0;
	rtc_status &= ~RTC_IS_OPEN;
	return 0;
}

static unsigned int rtc_poll(struct file *file, poll_table *wait)
{
	poll_wait(&rtc_wait, wait);
	if (rtc_irq_data != 0)
		return POLLIN | POLLRDNORM;
	return 0;
}

/*
 *	The various file operations we support.
 */

static struct file_operations rtc_fops = {
	rtc_llseek,
	rtc_read,
	NULL,		/* No write */
	NULL,		/* No readdir */
	rtc_poll,
	rtc_ioctl,
	NULL,		/* No mmap */
	rtc_open,
	rtc_release
};

static struct miscdevice rtc_dev=
{
	RTC_MINOR,
	"rtc",
	&rtc_fops
};

__initfunc(int rtc_init(void))
{
	unsigned long flags;

	printk(KERN_INFO "Real Time Clock Driver v%s\n", RTC_VERSION);
	if(request_irq(RTC_IRQ, rtc_interrupt, SA_INTERRUPT, "rtc", NULL))
	{
		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
		return -EIO;
	}
	misc_register(&rtc_dev);
	/* Check region? Naaah! Just snarf it up. */
	request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
	init_timer(&rtc_irq_timer);
	rtc_irq_timer.function = rtc_dropped_irq;
	rtc_wait = NULL;
	save_flags(flags);
	cli();
	/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
	CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
	restore_flags(flags);
	rtc_freq = 1024;
	return 0;
}

/*
 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
 *	Since the interrupt handler doesn't get called, the IRQ status
 *	byte doesn't get read, and the RTC stops generating interrupts.
 *	A timer is set, and will call this function if/when that happens.
 *	To get it out of this stalled state, we just read the status.
 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
 *	(You *really* shouldn't be trying to use a non-realtime system 
 *	for something that requires a steady > 1KHz signal anyways.)
 */

void rtc_dropped_irq(unsigned long data)
{
	unsigned long flags;

	printk(KERN_INFO "rtc: lost some interrupts at %ldHz.\n", rtc_freq);
	del_timer(&rtc_irq_timer);
	rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
	add_timer(&rtc_irq_timer);

	save_flags(flags);
	cli();
	rtc_irq_data += ((rtc_freq/HZ)<<8);
	rtc_irq_data &= ~0xff;
	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
	restore_flags(flags);
}

/*
 *	Info exported via "/proc/rtc".
 */

int get_rtc_status(char *buf)
{
	char *p;
	struct rtc_time tm;
	unsigned char batt, ctrl;
	unsigned long flags;

	save_flags(flags);
	cli();
	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
	ctrl = CMOS_READ(RTC_CONTROL);
	restore_flags(flags);

	p = buf;

	get_rtc_time(&tm);

	/*
	 * There is no way to tell if the luser has the RTC set for local
	 * time or for Universal Standard Time (GMT). Probably local though.
	 */
	p += sprintf(p,
		"rtc_time\t: %02d:%02d:%02d\n"
		"rtc_date\t: %04d-%02d-%02d\n",
		tm.tm_hour, tm.tm_min, tm.tm_sec,
		tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday);

	get_rtc_alm_time(&tm);

	/*
	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
	 * match any value for that particular field. Values that are
	 * greater than a valid time, but less than 0xc0 shouldn't appear.
	 */
	p += sprintf(p, "alarm\t\t: ");
	if (tm.tm_hour <= 24)
		p += sprintf(p, "%02d:", tm.tm_hour);
	else
		p += sprintf(p, "**:");

	if (tm.tm_min <= 59)
		p += sprintf(p, "%02d:", tm.tm_min);
	else
		p += sprintf(p, "**:");

	if (tm.tm_sec <= 59)
		p += sprintf(p, "%02d\n", tm.tm_sec);
	else
		p += sprintf(p, "**\n");

	p += sprintf(p,
		"DST_enable\t: %s\n"
		"BCD\t\t: %s\n"
		"24hr\t\t: %s\n"
		"square_wave\t: %s\n"
		"alarm_IRQ\t: %s\n"
		"update_IRQ\t: %s\n"
		"periodic_IRQ\t: %s\n"
		"periodic_freq\t: %ld\n"
		"batt_status\t: %s\n",
		(ctrl & RTC_DST_EN) ? "yes" : "no",
		(ctrl & RTC_DM_BINARY) ? "no" : "yes",
		(ctrl & RTC_24H) ? "yes" : "no",
		(ctrl & RTC_SQWE) ? "yes" : "no",
		(ctrl & RTC_AIE) ? "yes" : "no",
		(ctrl & RTC_UIE) ? "yes" : "no",
		(ctrl & RTC_PIE) ? "yes" : "no",
		rtc_freq,
		batt ? "okay" : "dead");

	return  p - buf;
}

/*
 * Returns true if a clock update is in progress
 */
static inline unsigned char rtc_is_updating(void)
{
	unsigned long flags;
	unsigned char uip;

	save_flags(flags);
	cli();
	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
	restore_flags(flags);
	return uip;
}

void get_rtc_time(struct rtc_time *rtc_tm)
{

	unsigned long flags, uip_watchdog = jiffies;
	unsigned char ctrl;

	/*
	 * read RTC once any update in progress is done. The update
	 * can take just over 2ms. We wait 10 to 20ms. There is no need to
	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
	 * If you need to know *exactly* when a second has started, enable
	 * periodic update complete interrupts, (via ioctl) and then 
	 * immediately read /dev/rtc which will block until you get the IRQ.
	 * Once the read clears, read the RTC time (again via ioctl). Easy.
	 */

	if (rtc_is_updating() != 0)
		while (jiffies - uip_watchdog < 2*HZ/100)
			barrier();

	/*
	 * Only the values that we read from the RTC are set. We leave
	 * tm_wday, tm_yday and tm_isdst untouched. Even though the
	 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
	 * by the RTC when initially set to a non-zero value.
	 */
	save_flags(flags);
	cli();
	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
	ctrl = CMOS_READ(RTC_CONTROL);
	restore_flags(flags);

	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(rtc_tm->tm_sec);
		BCD_TO_BIN(rtc_tm->tm_min);
		BCD_TO_BIN(rtc_tm->tm_hour);
		BCD_TO_BIN(rtc_tm->tm_mday);
		BCD_TO_BIN(rtc_tm->tm_mon);
		BCD_TO_BIN(rtc_tm->tm_year);
	}

	/*
	 * Account for differences between how the RTC uses the values
	 * and how they are defined in a struct rtc_time;
	 */
	if (rtc_tm->tm_year <= 69)
		rtc_tm->tm_year += 100;

	/* if ARCFUDGE == 0, the optimizer should do away with this */
	rtc_tm->tm_year -= ARCFUDGE;

	rtc_tm->tm_mon--;
}

void get_rtc_alm_time(struct rtc_time *alm_tm)
{
	unsigned long flags;
	unsigned char ctrl;

	/*
	 * Only the values that we read from the RTC are set. That
	 * means only tm_hour, tm_min, and tm_sec.
	 */
	save_flags(flags);
	cli();
	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
	ctrl = CMOS_READ(RTC_CONTROL);
	restore_flags(flags);

	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(alm_tm->tm_sec);
		BCD_TO_BIN(alm_tm->tm_min);
		BCD_TO_BIN(alm_tm->tm_hour);
	}
}

/*
 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
 * Rumour has it that if you frob the interrupt enable/disable
 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
 * ensure you actually start getting interrupts. Probably for
 * compatibility with older/broken chipset RTC implementations.
 * We also clear out any old irq data after an ioctl() that
 * meddles with the interrupt enable/disable bits.
 */
void mask_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;
	unsigned long flags;

	save_flags(flags);
	cli();
	val = CMOS_READ(RTC_CONTROL);
	val &=  ~bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
	restore_flags(flags);
	rtc_irq_data = 0;
}

void set_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;
	unsigned long flags;

	save_flags(flags);
	cli();
	val = CMOS_READ(RTC_CONTROL);
	val |= bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);
	rtc_irq_data = 0;
	restore_flags(flags);
}