Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
 *	linux/arch/alpha/kernel/irq.c
 *
 *	Copyright (C) 1995 Linus Torvalds
 *
 * This file contains the code used by various IRQ handling routines:
 * asking for different IRQ's should be done through these routines
 * instead of just grabbing them. Thus setups with different IRQ numbers
 * shouldn't result in any weird surprises, and installing new handlers
 * should be easier.
 */

#include <linux/config.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/malloc.h>
#include <linux/random.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/dma.h>

#define RTC_IRQ    8
#ifdef CONFIG_RTC
#define TIMER_IRQ  0        /* timer is the pit */
#else
#define TIMER_IRQ  RTC_IRQ  /* the timer is, in fact, the rtc */
#endif

#if NR_IRQS > 64
#  error Unable to handle more than 64 irq levels.
#endif

/* PROBE_MASK is the bitset of irqs that we consider for autoprobing: */
#if defined(CONFIG_ALPHA_P2K)
  /* always mask out unused timer irq 0 and RTC irq 8 */
# define PROBE_MASK (((1UL << NR_IRQS) - 1) & ~0x101UL)
#elif defined(CONFIG_ALPHA_ALCOR)
  /* always mask out unused timer irq 0, "irqs" 20-30, and the EISA cascade: */
# define PROBE_MASK (((1UL << NR_IRQS) - 1) & ~0xfff000000001UL)
#else
  /* always mask out unused timer irq 0: */
# define PROBE_MASK (((1UL << NR_IRQS) - 1) & ~1UL)
#endif

/* Reserved interrupts.  These must NEVER be requested by any driver!
 */
#define	IS_RESERVED_IRQ(irq)	((irq)==2)	/* IRQ 2 used by hw cascade */

/*
 * Shadow-copy of masked interrupts.
 *  The bits are used as follows:
 *	 0.. 7	first (E)ISA PIC (irq level 0..7)
 *	 8..15	second (E)ISA PIC (irq level 8..15)
 *   Systems with PCI interrupt lines managed by GRU (e.g., Alcor, XLT):
 *	16..47	PCI interrupts 0..31 (int at GRU_INT_MASK)
 *   Mikasa:
 *	16..31	PCI interrupts 0..15 (short at I/O port 536)
 *   Other systems (not Mikasa) with 16 PCI interrupt lines:
 *	16..23	PCI interrupts 0.. 7 (char at I/O port 26)
 *	24..31	PCI interrupts 8..15 (char at I/O port 27)
 *   Systems with 17 PCI interrupt lines (e.g., Cabriolet and eb164):
 *	16..32	PCI interrupts 0..31 (int at I/O port 804)
 */
static unsigned long irq_mask = ~0UL;

/*
 * Update the hardware with the irq mask passed in MASK.  The function
 * exploits the fact that it is known that only bit IRQ has changed.
 */
static void update_hw(unsigned long irq, unsigned long mask)
{
	switch (irq) {
#if NR_IRQS == 48
	      default:
		/* note inverted sense of mask bits: */
		*(unsigned int *)GRU_INT_MASK = ~(mask >> 16); mb();
		break;

#elif NR_IRQS == 33
	      default:
		outl(mask >> 16, 0x804);
		break;

#elif defined(CONFIG_ALPHA_MIKASA)
	      default:
		outw(~(mask >> 16), 0x536); /* note invert */
		break;

#elif NR_IRQS == 32
	      case 16 ... 23:
		outb(mask >> 16, 0x26);
		break;

	      default:
		outb(mask >> 24, 0x27);
		break;
#endif
		/* handle ISA irqs last---fast devices belong on PCI... */

	      case  0 ... 7:	/* ISA PIC1 */
		outb(mask, 0x21);
		break;

	      case  8 ...15:	/* ISA PIC2 */
		outb(mask >> 8, 0xA1);
		break;
	}
}

static inline void mask_irq(unsigned long irq)
{
	irq_mask |= (1UL << irq);
	update_hw(irq, irq_mask);
}

static inline void unmask_irq(unsigned long irq)
{
	irq_mask &= ~(1UL << irq);
	update_hw(irq, irq_mask);
}

void disable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	save_flags(flags);
	cli();
	mask_irq(irq_nr);
	restore_flags(flags);
}

void enable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	save_flags(flags);
	cli();
	unmask_irq(irq_nr);
	restore_flags(flags);
}

/*
 * Initial irq handlers.
 */
static struct irqaction timer_irq = { NULL, 0, 0, NULL, NULL, NULL};
static struct irqaction *irq_action[NR_IRQS];

int get_irq_list(char *buf)
{
	int i, len = 0;
	struct irqaction * action;

	for (i = 0 ; i < NR_IRQS ; i++) {
		action = irq_action[i];
		if (!action) 
			continue;
		len += sprintf(buf+len, "%2d: %10u %c %s",
			i, kstat.interrupts[i],
			(action->flags & SA_INTERRUPT) ? '+' : ' ',
			action->name);
		for (action=action->next; action; action = action->next) {
			len += sprintf(buf+len, ",%s %s",
				(action->flags & SA_INTERRUPT) ? " +" : "",
				action->name);
		}
		len += sprintf(buf+len, "\n");
	}
	return len;
}

static inline void ack_irq(int irq)
{
	if (irq < 16) {
		/* ACK the interrupt making it the lowest priority */
		/*  First the slave .. */
		if (irq > 7) {
			outb(0xE0 | (irq - 8), 0xa0);
			irq = 2;
		}
		/* .. then the master */
		outb(0xE0 | irq, 0x20);
#if defined(CONFIG_ALPHA_ALCOR) || defined(CONFIG_ALPHA_XLT)
		/* on ALCOR/XLT, need to dismiss interrupt via GRU */
		*(int *)GRU_INT_CLEAR = 0x80000000; mb();
		*(int *)GRU_INT_CLEAR = 0x00000000; mb();
#endif /* ALCOR || XLT */
	}
}

int request_irq(unsigned int irq, 
		void (*handler)(int, void *, struct pt_regs *),
		unsigned long irqflags, 
		const char * devname,
		void *dev_id)
{
	int shared = 0;
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= NR_IRQS)
		return -EINVAL;
	if (IS_RESERVED_IRQ(irq))
		return -EINVAL;
	if (!handler)
		return -EINVAL;
	p = irq_action + irq;
	action = *p;
	if (action) {
		/* Can't share interrupts unless both agree to */
		if (!(action->flags & irqflags & SA_SHIRQ))
			return -EBUSY;

		/* Can't share interrupts unless both are same type */
		if ((action->flags ^ irqflags) & SA_INTERRUPT)
			return -EBUSY;

		/* add new interrupt at end of irq queue */
		do {
			p = &action->next;
			action = *p;
		} while (action);
		shared = 1;
	}

        if (irq == TIMER_IRQ)
 		action = &timer_irq;
        else
		action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
					     GFP_KERNEL);
	if (!action)
		return -ENOMEM;

	if (irqflags & SA_SAMPLE_RANDOM)
		rand_initialize_irq(irq);

	action->handler = handler;
	action->flags = irqflags;
	action->mask = 0;
	action->name = devname;
	action->next = NULL;
	action->dev_id = dev_id;

	save_flags(flags);
	cli();
	*p = action;

	if (!shared)
		unmask_irq(irq);

	restore_flags(flags);
	return 0;
}
		
void free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= NR_IRQS) {
		printk("Trying to free IRQ%d\n",irq);
		return;
	}
	if (IS_RESERVED_IRQ(irq)) {
		printk("Trying to free reserved IRQ %d\n", irq);
		return;
	}
	for (p = irq + irq_action; (action = *p) != NULL; p = &action->next) {
		if (action->dev_id != dev_id)
			continue;

		/* Found it - now free it */
		save_flags(flags);
		cli();
		*p = action->next;
		if (!irq[irq_action])
			mask_irq(irq);
		restore_flags(flags);
		kfree(action);
		return;
	}
	printk("Trying to free free IRQ%d\n",irq);
}

static inline void handle_nmi(struct pt_regs * regs)
{
	printk("Whee.. NMI received. Probable hardware error\n");
	printk("61=%02x, 461=%02x\n", inb(0x61), inb(0x461));
}

unsigned int local_irq_count[NR_CPUS];
atomic_t __alpha_bh_counter;

#ifdef __SMP__
#error Me no hablo Alpha SMP
#else
#define irq_enter(cpu, irq)	(++local_irq_count[cpu])
#define irq_exit(cpu, irq)	(--local_irq_count[cpu])
#endif

static void unexpected_irq(int irq, struct pt_regs * regs)
{
	struct irqaction *action;
	int i;

	printk("IO device interrupt, irq = %d\n", irq);
	printk("PC = %016lx PS=%04lx\n", regs->pc, regs->ps);
	printk("Expecting: ");
	for (i = 0; i < 16; i++)
		if ((action = irq_action[i]))
			while (action->handler) {
				printk("[%s:%d] ", action->name, i);
				action = action->next;
			}
	printk("\n");
#if defined(CONFIG_ALPHA_JENSEN)
	printk("64=%02x, 60=%02x, 3fa=%02x 2fa=%02x\n",
		inb(0x64), inb(0x60), inb(0x3fa), inb(0x2fa));
	outb(0x0c, 0x3fc);
	outb(0x0c, 0x2fc);
	outb(0,0x61);
	outb(0,0x461);
#endif
}

static inline void handle_irq(int irq, struct pt_regs * regs)
{
	struct irqaction * action = irq_action[irq];
	int cpu = smp_processor_id();

	irq_enter(cpu, irq);
	kstat.interrupts[irq]++;
	if (!action) {
		unexpected_irq(irq, regs);
	} else {
		do {
			action->handler(irq, action->dev_id, regs);
			action = action->next;
		} while (action);
	}
	irq_exit(cpu, irq);
}

static inline void device_interrupt(int irq, int ack, struct pt_regs * regs)
{
	struct irqaction * action;
	int cpu = smp_processor_id();

	if ((unsigned) irq > NR_IRQS) {
		printk("device_interrupt: unexpected interrupt %d\n", irq);
		return;
	}

	irq_enter(cpu, irq);
	kstat.interrupts[irq]++;
	action = irq_action[irq];
	/*
	 * For normal interrupts, we mask it out, and then ACK it.
	 * This way another (more timing-critical) interrupt can
	 * come through while we're doing this one.
	 *
	 * Note! A irq without a handler gets masked and acked, but
	 * never unmasked. The autoirq stuff depends on this (it looks
	 * at the masks before and after doing the probing).
	 */
	mask_irq(ack);
	ack_irq(ack);
	if (action) {
		if (action->flags & SA_SAMPLE_RANDOM)
			add_interrupt_randomness(irq);
		do {
			action->handler(irq, action->dev_id, regs);
			action = action->next;
		} while (action);
		unmask_irq(ack);
	}
	irq_exit(cpu, irq);
}

#ifdef CONFIG_PCI

/*
 * Handle ISA interrupt via the PICs.
 */
static inline void isa_device_interrupt(unsigned long vector,
					struct pt_regs * regs)
{
#if defined(CONFIG_ALPHA_APECS)
#	define IACK_SC	APECS_IACK_SC
#elif defined(CONFIG_ALPHA_LCA)
#	define IACK_SC	LCA_IACK_SC
#elif defined(CONFIG_ALPHA_CIA)
#	define IACK_SC	CIA_IACK_SC
#else
	/*
	 * This is bogus but necessary to get it to compile
	 * on all platforms.  If you try to use this on any
	 * other than the intended platforms, you'll notice
	 * real fast...
	 */
#	define IACK_SC	1L
#endif
	int j;

#if 1
	/*
	 * Generate a PCI interrupt acknowledge cycle.  The PIC will
	 * respond with the interrupt vector of the highest priority
	 * interrupt that is pending.  The PALcode sets up the
	 * interrupts vectors such that irq level L generates vector
	 * L.
	 */
	j = *(volatile int *) IACK_SC;
	j &= 0xff;
	if (j == 7) {
		if (!(inb(0x20) & 0x80)) {
			/* it's only a passive release... */
			return;
		}
	}
	device_interrupt(j, j, regs);
#else
	unsigned long pic;

	/*
	 * It seems to me that the probability of two or more *device*
	 * interrupts occurring at almost exactly the same time is
	 * pretty low.  So why pay the price of checking for
	 * additional interrupts here if the common case can be
	 * handled so much easier?
	 */
	/* 
	 *  The first read of gives you *all* interrupting lines.
	 *  Therefore, read the mask register and and out those lines
	 *  not enabled.  Note that some documentation has 21 and a1 
	 *  write only.  This is not true.
	 */
	pic = inb(0x20) | (inb(0xA0) << 8);	/* read isr */
	pic &= ~irq_mask;			/* apply mask */
	pic &= 0xFFFB;				/* mask out cascade & hibits */

	while (pic) {
		j = ffz(~pic);
		pic &= pic - 1;
		device_interrupt(j, j, regs);
	}
#endif
}

#if defined(CONFIG_ALPHA_ALCOR) || defined(CONFIG_ALPHA_XLT)
/* we have to conditionally compile this because of GRU_xxx symbols */
static inline void alcor_and_xlt_device_interrupt(unsigned long vector,
                                                  struct pt_regs * regs)
{
        unsigned long pld;
        unsigned int i;
        unsigned long flags;

        save_flags(flags);
        cli();

        /* read the interrupt summary register of the GRU */
        pld = (*(unsigned int *)GRU_INT_REQ) & GRU_INT_REQ_BITS;

#if 0
        printk("[0x%08lx/0x%04x]", pld, inb(0x20) | (inb(0xA0) << 8));
#endif

        /*
         * Now for every possible bit set, work through them and call
         * the appropriate interrupt handler.
         */
        while (pld) {
                i = ffz(~pld);
                pld &= pld - 1; /* clear least bit set */
                if (i == 31) {
                        isa_device_interrupt(vector, regs);
                } else {
                        device_interrupt(16 + i, 16 + i, regs);
                }
        }
        restore_flags(flags);
}
#endif /* ALCOR || XLT */

static inline void cabriolet_and_eb66p_device_interrupt(unsigned long vector,
							struct pt_regs * regs)
{
	unsigned long pld;
	unsigned int i;
	unsigned long flags;

	save_flags(flags);
	cli();

	/* read the interrupt summary registers */
	pld = inb(0x804) | (inb(0x805) << 8) | (inb(0x806) << 16);

#if 0
	printk("[0x%04X/0x%04X]", pld, inb(0x20) | (inb(0xA0) << 8));
#endif

	/*
	 * Now for every possible bit set, work through them and call
	 * the appropriate interrupt handler.
	 */
	while (pld) {
		i = ffz(~pld);
		pld &= pld - 1;	/* clear least bit set */
		if (i == 4) {
			isa_device_interrupt(vector, regs);
		} else {
			device_interrupt(16 + i, 16 + i, regs);
		}
	}
	restore_flags(flags);
}

static inline void mikasa_device_interrupt(unsigned long vector,
					   struct pt_regs * regs)
{
	unsigned long pld;
	unsigned int i;
	unsigned long flags;

	save_flags(flags);
	cli();

        /* read the interrupt summary registers */
        pld = (((unsigned long) (~inw(0x534)) & 0x0000ffffUL) << 16) |
	       (((unsigned long) inb(0xa0))  <<  8) |
	       ((unsigned long) inb(0x20));

#if 0
        printk("[0x%08lx]", pld);
#endif

        /*
         * Now for every possible bit set, work through them and call
         * the appropriate interrupt handler.
         */
        while (pld) {
		i = ffz(~pld);
		pld &= pld - 1; /* clear least bit set */
		if (i < 16) {
			isa_device_interrupt(vector, regs);
		} else {
			device_interrupt(i, i, regs);
		}
        }
	restore_flags(flags);
}

static inline void eb66_and_eb64p_device_interrupt(unsigned long vector,
						   struct pt_regs * regs)
{
	unsigned long pld;
	unsigned int i;
	unsigned long flags;

	save_flags(flags);
	cli();

	/* read the interrupt summary registers */
	pld = inb(0x26) | (inb(0x27) << 8);
	/*
	 * Now, for every possible bit set, work through
	 * them and call the appropriate interrupt handler.
	 */
	while (pld) {
		i = ffz(~pld);
		pld &= pld - 1;	/* clear least bit set */

		if (i == 5) {
			isa_device_interrupt(vector, regs);
		} else {
			device_interrupt(16 + i, 16 + i, regs);
		}
	}
	restore_flags(flags);
}

#endif /* CONFIG_PCI */

/*
 * Jensen is special: the vector is 0x8X0 for EISA interrupt X, and
 * 0x9X0 for the local motherboard interrupts..
 *
 *	0x660 - NMI
 *
 *	0x800 - IRQ0  interval timer (not used, as we use the RTC timer)
 *	0x810 - IRQ1  line printer (duh..)
 *	0x860 - IRQ6  floppy disk
 *	0x8E0 - IRQ14 SCSI controller
 *
 *	0x900 - COM1
 *	0x920 - COM2
 *	0x980 - keyboard
 *	0x990 - mouse
 *
 * PCI-based systems are more sane: they don't have the local
 * interrupts at all, and have only normal PCI interrupts from
 * devices.  Happily it's easy enough to do a sane mapping from the
 * Jensen..  Note that this means that we may have to do a hardware
 * "ack" to a different interrupt than we report to the rest of the
 * world.
 */
static inline void srm_device_interrupt(unsigned long vector, struct pt_regs * regs)
{
	int irq, ack;
	unsigned long flags;

	save_flags(flags);
	cli();


	ack = irq = (vector - 0x800) >> 4;

#ifdef CONFIG_ALPHA_JENSEN
	switch (vector) {
	      case 0x660: handle_nmi(regs); return;
		/* local device interrupts: */
	      case 0x900: handle_irq(4, regs); return;	/* com1 -> irq 4 */
	      case 0x920: handle_irq(3, regs); return;	/* com2 -> irq 3 */
	      case 0x980: handle_irq(1, regs); return;	/* kbd -> irq 1 */
	      case 0x990: handle_irq(9, regs); return;	/* mouse -> irq 9 */
	      default:
		if (vector > 0x900) {
			printk("Unknown local interrupt %lx\n", vector);
		}
	}
	/* irq1 is supposed to be the keyboard, silly Jensen (is this really needed??) */
	if (irq == 1)
		irq = 7;
#endif /* CONFIG_ALPHA_JENSEN */

	device_interrupt(irq, ack, regs);

	restore_flags(flags) ;
}

/*
 * Start listening for interrupts..
 */
unsigned long probe_irq_on(void)
{
	struct irqaction * action;
	unsigned long irqs = 0;
	unsigned long delay;
	unsigned int i;

	for (i = NR_IRQS - 1; i > 0; i--) {
		if (!(PROBE_MASK & (1UL << i))) {
			continue;
		}
		action = irq_action[i];
		if (!action) {
			enable_irq(i);
			irqs |= (1UL << i);
		}
	}
	/*
	 * Wait about 100ms for spurious interrupts to mask themselves
	 * out again...
	 */
	for (delay = jiffies + HZ/10; delay > jiffies; )
		barrier();

	/* now filter out any obviously spurious interrupts */
	return irqs & ~irq_mask;
}

/*
 * Get the result of the IRQ probe.. A negative result means that
 * we have several candidates (but we return the lowest-numbered
 * one).
 */
int probe_irq_off(unsigned long irqs)
{
	unsigned long delay;
	int i;
	
        irqs &= irq_mask;
	if (!irqs)
		return 0;
	i = ffz(~irqs);
	if (irqs != (1UL << i))
		i = -i;
	return i;
}

static void machine_check(unsigned long vector, unsigned long la, struct pt_regs * regs)
{
#if defined(CONFIG_ALPHA_LCA)
	extern void lca_machine_check (unsigned long vector, unsigned long la,
				       struct pt_regs *regs);
	lca_machine_check(vector, la, regs);
#elif defined(CONFIG_ALPHA_APECS)
	extern void apecs_machine_check(unsigned long vector, unsigned long la,
					struct pt_regs * regs);
	apecs_machine_check(vector, la, regs);
#elif defined(CONFIG_ALPHA_CIA)
	extern void cia_machine_check(unsigned long vector, unsigned long la,
					struct pt_regs * regs);
	cia_machine_check(vector, la, regs);
#else
	printk("Machine check\n");
#endif
}

asmlinkage void do_entInt(unsigned long type, unsigned long vector, unsigned long la_ptr,
	unsigned long a3, unsigned long a4, unsigned long a5,
	struct pt_regs regs)
{
	switch (type) {
		case 0:
			printk("Interprocessor interrupt? You must be kidding\n");
			break;
		case 1:
		        handle_irq(RTC_IRQ, &regs);
			return;
		case 2:
			machine_check(vector, la_ptr, &regs);
			return;
		case 3:
#if defined(CONFIG_ALPHA_JENSEN) || defined(CONFIG_ALPHA_NONAME) || \
    defined(CONFIG_ALPHA_P2K) || defined(CONFIG_ALPHA_SRM)
			srm_device_interrupt(vector, &regs);
#elif NR_IRQS == 48
			alcor_and_xlt_device_interrupt(vector, &regs);
#elif NR_IRQS == 33
			cabriolet_and_eb66p_device_interrupt(vector, &regs);
#elif defined(CONFIG_ALPHA_MIKASA)
			mikasa_device_interrupt(vector, &regs);
#elif NR_IRQS == 32
			eb66_and_eb64p_device_interrupt(vector, &regs);
#elif NR_IRQS == 16
			isa_device_interrupt(vector, &regs);
#endif
			return;
		case 4:
			printk("Performance counter interrupt\n");
			break;;
		default:
			printk("Hardware intr %ld %lx? Huh?\n", type, vector);
	}
	printk("PC = %016lx PS=%04lx\n", regs.pc, regs.ps);
}

extern asmlinkage void entInt(void);

void init_IRQ(void)
{
	wrent(entInt, 0);
	dma_outb(0, DMA1_RESET_REG);
	dma_outb(0, DMA2_RESET_REG);
	dma_outb(0, DMA1_CLR_MASK_REG);
	dma_outb(0, DMA2_CLR_MASK_REG);
#if NR_IRQS == 48
	*(unsigned int *)GRU_INT_MASK  = ~(irq_mask >> 16); mb();/* invert */
	*(unsigned int *)GRU_INT_EDGE  = 0UL; mb();/* all are level */
	*(unsigned int *)GRU_INT_HILO  = 0x80000000UL; mb();/* ISA only HI */
	*(unsigned int *)GRU_INT_CLEAR = 0UL; mb();/* all clear */
	enable_irq(16 + 31);	/* enable (E)ISA PIC cascade */
#elif NR_IRQS == 33
	outl(irq_mask >> 16, 0x804);
	enable_irq(16 +  4);	/* enable SIO cascade */
#elif defined(CONFIG_ALPHA_MIKASA)
	outw(~(irq_mask >> 16), 0x536); /* note invert */
#elif NR_IRQS == 32
	outb(irq_mask >> 16, 0x26);
	outb(irq_mask >> 24, 0x27);
	enable_irq(16 +  5);	/* enable SIO cascade */
#endif
	enable_irq(2);		/* enable cascade */
}