Linux preempt-rt

Check our new training course

Real-Time Linux with PREEMPT_RT

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/*
 *	linux/arch/i386/kernel/irq.c
 *
 *	Copyright (C) 1992 Linus Torvalds
 *
 * This file contains the code used by various IRQ handling routines:
 * asking for different IRQ's should be done through these routines
 * instead of just grabbing them. Thus setups with different IRQ numbers
 * shouldn't result in any weird surprises, and installing new handlers
 * should be easier.
 */

/*
 * IRQ's are in fact implemented a bit like signal handlers for the kernel.
 * Naturally it's not a 1:1 relation, but there are similarities.
 */

#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/malloc.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/init.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/smp.h>
#include <asm/pgtable.h>

#include "irq.h"

#ifdef __SMP_PROF__
extern volatile unsigned long smp_local_timer_ticks[1+NR_CPUS];
#endif

unsigned int local_irq_count[NR_CPUS];
#ifdef __SMP__
atomic_t __intel_bh_counter;
#else
int __intel_bh_counter;
#endif

#ifdef __SMP_PROF__
static unsigned int int_count[NR_CPUS][NR_IRQS] = {{0},};
#endif

atomic_t nmi_counter;

/*
 * This contains the irq mask for both irq controllers
 */
static unsigned int cached_irq_mask = 0xffff;

#define cached_21	(((char *)(&cached_irq_mask))[0])
#define cached_A1	(((char *)(&cached_irq_mask))[1])

spinlock_t irq_controller_lock;

/*
 * This is always called from an interrupt context
 * with local interrupts disabled. Don't worry about
 * irq-safe locks.
 *
 * Note that we always ack the primary irq controller,
 * even if the interrupt came from the secondary, as
 * the primary will still have routed it. Oh, the joys
 * of PC hardware.
 */
static inline void mask_and_ack_irq(int irq_nr)
{
	spin_lock(&irq_controller_lock);
	cached_irq_mask |= 1 << irq_nr;
	if (irq_nr & 8) {
		inb(0xA1);	/* DUMMY */
		outb(cached_A1,0xA1);
		outb(0x62,0x20);	/* Specific EOI to cascade */
		outb(0x20,0xA0);
	} else {
		inb(0x21);	/* DUMMY */
		outb(cached_21,0x21);
		outb(0x20,0x20);
	}
	spin_unlock(&irq_controller_lock);
}

static inline void set_irq_mask(int irq_nr)
{
	if (irq_nr & 8) {
		outb(cached_A1,0xA1);
	} else {
		outb(cached_21,0x21);
	}
}

/*
 * These have to be protected by the spinlock
 * before being called.
 */
static inline void mask_irq(unsigned int irq_nr)
{
	cached_irq_mask |= 1 << irq_nr;
	set_irq_mask(irq_nr);
}

static inline void unmask_irq(unsigned int irq_nr)
{
	cached_irq_mask &= ~(1 << irq_nr);
	set_irq_mask(irq_nr);
}

void disable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	spin_lock_irqsave(&irq_controller_lock, flags);
	mask_irq(irq_nr);
	spin_unlock_irqrestore(&irq_controller_lock, flags);
	synchronize_irq();
}

void enable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	spin_lock_irqsave(&irq_controller_lock, flags);
	unmask_irq(irq_nr);
	spin_unlock_irqrestore(&irq_controller_lock, flags);
}

/*
 * This builds up the IRQ handler stubs using some ugly macros in irq.h
 *
 * These macros create the low-level assembly IRQ routines that do all
 * the operations that are needed to keep the AT interrupt-controller
 * happy. They are also written to be fast - and to disable interrupts
 * as little as humanly possible.
 */

#if NR_IRQS != 16
#error make irq stub building NR_IRQS dependent and remove me.
#endif

BUILD_COMMON_IRQ()
BUILD_IRQ(FIRST,0,0x01)
BUILD_IRQ(FIRST,1,0x02)
BUILD_IRQ(FIRST,2,0x04)
BUILD_IRQ(FIRST,3,0x08)
BUILD_IRQ(FIRST,4,0x10)
BUILD_IRQ(FIRST,5,0x20)
BUILD_IRQ(FIRST,6,0x40)
BUILD_IRQ(FIRST,7,0x80)
BUILD_IRQ(SECOND,8,0x01)
BUILD_IRQ(SECOND,9,0x02)
BUILD_IRQ(SECOND,10,0x04)
BUILD_IRQ(SECOND,11,0x08)
BUILD_IRQ(SECOND,12,0x10)
BUILD_IRQ(SECOND,13,0x20)
BUILD_IRQ(SECOND,14,0x40)
BUILD_IRQ(SECOND,15,0x80)

#ifdef __SMP__
BUILD_SMP_INTERRUPT(reschedule_interrupt)
BUILD_SMP_INTERRUPT(invalidate_interrupt)
BUILD_SMP_INTERRUPT(stop_cpu_interrupt)
BUILD_SMP_TIMER_INTERRUPT(apic_timer_interrupt)
#endif

static void (*interrupt[17])(void) = {
	IRQ0_interrupt, IRQ1_interrupt, IRQ2_interrupt, IRQ3_interrupt,
	IRQ4_interrupt, IRQ5_interrupt, IRQ6_interrupt, IRQ7_interrupt,
	IRQ8_interrupt, IRQ9_interrupt, IRQ10_interrupt, IRQ11_interrupt,
	IRQ12_interrupt, IRQ13_interrupt, IRQ14_interrupt, IRQ15_interrupt	
};

/*
 * Initial irq handlers.
 */

static void no_action(int cpl, void *dev_id, struct pt_regs *regs) { }

/*
 * Note that on a 486, we don't want to do a SIGFPE on an irq13
 * as the irq is unreliable, and exception 16 works correctly
 * (ie as explained in the intel literature). On a 386, you
 * can't use exception 16 due to bad IBM design, so we have to
 * rely on the less exact irq13.
 *
 * Careful.. Not only is IRQ13 unreliable, but it is also
 * leads to races. IBM designers who came up with it should
 * be shot.
 */
 
static void math_error_irq(int cpl, void *dev_id, struct pt_regs *regs)
{
	outb(0,0xF0);
	if (ignore_irq13 || !hard_math)
		return;
	math_error();
}

static struct irqaction irq13 = { math_error_irq, 0, 0, "fpu", NULL, NULL };

/*
 * IRQ2 is cascade interrupt to second interrupt controller
 */
static struct irqaction irq2  = { no_action, 0, 0, "cascade", NULL, NULL};

static struct irqaction *irq_action[16] = {
	NULL, NULL, NULL, NULL,
	NULL, NULL, NULL, NULL,
	NULL, NULL, NULL, NULL,
	NULL, NULL, NULL, NULL
};

int get_irq_list(char *buf)
{
	int i;
	struct irqaction * action;
	char *p = buf;

	for (i = 0 ; i < NR_IRQS ; i++) {
		action = irq_action[i];
		if (!action) 
			continue;
		p += sprintf(p, "%3d: %10u   %s",
			i, kstat.interrupts[i], action->name);
		for (action=action->next; action; action = action->next) {
			p += sprintf(p, ", %s", action->name);
		}
		*p++ = '\n';
	}
	p += sprintf(p, "NMI: %10u\n", atomic_read(&nmi_counter));
#ifdef __SMP_PROF__
	p += sprintf(p, "IPI: %10lu\n", ipi_count);
#endif		
	return p - buf;
}

#ifdef __SMP_PROF__

extern unsigned int prof_multiplier[NR_CPUS];
extern unsigned int prof_counter[NR_CPUS];

int get_smp_prof_list(char *buf) {
	int i,j, len = 0;
	struct irqaction * action;
	unsigned long sum_spins = 0;
	unsigned long sum_spins_syscall = 0;
	unsigned long sum_spins_sys_idle = 0;
	unsigned long sum_smp_idle_count = 0;
	unsigned long sum_local_timer_ticks = 0;

	for (i=0;i<smp_num_cpus;i++) {
		int cpunum = cpu_logical_map[i];
		sum_spins+=smp_spins[cpunum];
		sum_spins_syscall+=smp_spins_syscall[cpunum];
		sum_spins_sys_idle+=smp_spins_sys_idle[cpunum];
		sum_smp_idle_count+=smp_idle_count[cpunum];
		sum_local_timer_ticks+=smp_local_timer_ticks[cpunum];
	}

	len += sprintf(buf+len,"CPUS: %10i \n", smp_num_cpus);
	len += sprintf(buf+len,"            SUM ");
	for (i=0;i<smp_num_cpus;i++)
		len += sprintf(buf+len,"        P%1d ",cpu_logical_map[i]);
	len += sprintf(buf+len,"\n");
	for (i = 0 ; i < NR_IRQS ; i++) {
		action = *(i + irq_action);
		if (!action || !action->handler)
			continue;
		len += sprintf(buf+len, "%3d: %10d ",
			i, kstat.interrupts[i]);
		for (j=0;j<smp_num_cpus;j++)
			len+=sprintf(buf+len, "%10d ",
				int_count[cpu_logical_map[j]][i]);
		len += sprintf(buf+len, "  %s", action->name);
		for (action=action->next; action; action = action->next) {
			len += sprintf(buf+len, ", %s", action->name);
		}
		len += sprintf(buf+len, "\n");
	}
	len+=sprintf(buf+len, "LCK: %10lu",
		sum_spins);

	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10lu",smp_spins[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   spins from int\n");

	len+=sprintf(buf+len, "LCK: %10lu",
		sum_spins_syscall);

	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10lu",smp_spins_syscall[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   spins from syscall\n");

	len+=sprintf(buf+len, "LCK: %10lu",
		sum_spins_sys_idle);

	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10lu",smp_spins_sys_idle[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   spins from sysidle\n");
	len+=sprintf(buf+len,"IDLE %10lu",sum_smp_idle_count);

	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10lu",smp_idle_count[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   idle ticks\n");

	len+=sprintf(buf+len,"TICK %10lu",sum_local_timer_ticks);
	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10lu",smp_local_timer_ticks[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   local APIC timer ticks\n");

	len+=sprintf(buf+len,"MULT:          ");
	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10u",prof_multiplier[cpu_logical_map[i]]);
	len +=sprintf(buf+len,"   profiling multiplier\n");

	len+=sprintf(buf+len,"COUNT:         ");
	for (i=0;i<smp_num_cpus;i++)
		len+=sprintf(buf+len," %10u",prof_counter[cpu_logical_map[i]]);

	len +=sprintf(buf+len,"   profiling counter\n");

	len+=sprintf(buf+len, "IPI: %10lu   received\n",
		ipi_count);

	return len;
}
#endif 


/*
 * Global interrupt locks for SMP. Allow interrupts to come in on any
 * CPU, yet make cli/sti act globally to protect critical regions..
 */
#ifdef __SMP__
unsigned char global_irq_holder = NO_PROC_ID;
unsigned volatile int global_irq_lock;
atomic_t global_irq_count;

#define irq_active(cpu) \
	(global_irq_count != local_irq_count[cpu])

/*
 * "global_cli()" is a special case, in that it can hold the
 * interrupts disabled for a longish time, and also because
 * we may be doing TLB invalidates when holding the global
 * IRQ lock for historical reasons. Thus we may need to check
 * SMP invalidate events specially by hand here (but not in
 * any normal spinlocks)
 */
static inline void check_smp_invalidate(int cpu)
{
	if (test_bit(cpu, &smp_invalidate_needed)) {
		clear_bit(cpu, &smp_invalidate_needed);
		local_flush_tlb();
	}
}

static unsigned long previous_irqholder;

static inline void wait_on_irq(int cpu, unsigned long where)
{
	int local_count = local_irq_count[cpu];

	/* Are we the only one in an interrupt context? */
	while (local_count != atomic_read(&global_irq_count)) {
		/*
		 * No such luck. Now we need to release the lock,
		 * _and_ release our interrupt context, because
		 * otherwise we'd have dead-locks and live-locks
		 * and other fun things.
		 */
		atomic_sub(local_count, &global_irq_count);
		global_irq_lock = 0;

		/*
		 * Wait for everybody else to go away and release
		 * their things before trying to get the lock again.
		 */
		for (;;) {
			check_smp_invalidate(cpu);
			if (atomic_read(&global_irq_count))
				continue;
			if (global_irq_lock)
				continue;
			if (!test_and_set_bit(0,&global_irq_lock))
				break;
		}
		atomic_add(local_count, &global_irq_count);
	}
}

/*
 * This is called when we want to synchronize with
 * interrupts. We may for example tell a device to
 * stop sending interrupts: but to make sure there
 * are no interrupts that are executing on another
 * CPU we need to call this function.
 *
 * On UP this is a no-op.
 */
void synchronize_irq(void)
{
	int cpu = smp_processor_id();
	int local_count = local_irq_count[cpu];

	/* Do we need to wait? */
	if (local_count != atomic_read(&global_irq_count)) {
		/* The stupid way to do this */
		cli();
		sti();
	}
}

static inline void get_irqlock(int cpu, unsigned long where)
{
	if (test_and_set_bit(0,&global_irq_lock)) {
		/* do we already hold the lock? */
		if ((unsigned char) cpu == global_irq_holder)
			return;
		/* Uhhuh.. Somebody else got it. Wait.. */
		do {
			do {
				check_smp_invalidate(cpu);
			} while (test_bit(0,&global_irq_lock));
		} while (test_and_set_bit(0,&global_irq_lock));		
	}
	/*
	 * Ok, we got the lock bit.
	 * But that's actually just the easy part.. Now
	 * we need to make sure that nobody else is running
	 * in an interrupt context. 
	 */
	wait_on_irq(cpu, where);

	/*
	 * Finally.
	 */
	global_irq_holder = cpu;
	previous_irqholder = where;
}

void __global_cli(void)
{
	int cpu = smp_processor_id();
	unsigned long where;

	__asm__("movl 16(%%esp),%0":"=r" (where));
	__cli();
	get_irqlock(cpu, where);
}

void __global_sti(void)
{
	release_irqlock(smp_processor_id());
	__sti();
}

unsigned long __global_save_flags(void)
{
	return global_irq_holder == (unsigned char) smp_processor_id();
}

void __global_restore_flags(unsigned long flags)
{
	switch (flags) {
	case 0:
		release_irqlock(smp_processor_id());
		__sti();
		break;
	case 1:
		__global_cli();
		break;
	default:
		printk("global_restore_flags: %08lx (%08lx)\n",
			flags, (&flags)[-1]);
	}
}

#endif

/*
 * do_IRQ handles all normal device IRQ's (the special
 * SMP cross-CPU interrupts have their own specific
 * handlers).
 */
asmlinkage void do_IRQ(struct pt_regs regs)
{
	int irq = regs.orig_eax & 0xff;
	struct irqaction * action;
	int status, cpu;

	/* 
	 * mask and ack quickly, we don't want the irq controller
	 * thinking we're snobs just because some other CPU has
	 * disabled global interrupts (we have already done the
	 * INT_ACK cycles, it's too late to try to pretend to the
	 * controller that we aren't taking the interrupt).
	 */
	mask_and_ack_irq(irq);

	cpu = smp_processor_id();
	irq_enter(cpu, irq);
	kstat.interrupts[irq]++;

	/* Return with this interrupt masked if no action */
	status = 0;
	action = *(irq + irq_action);
	if (action) {
		if (!(action->flags & SA_INTERRUPT))
			__sti();

		do {
			status |= action->flags;
			action->handler(irq, action->dev_id, &regs);
			action = action->next;
		} while (action);
		if (status & SA_SAMPLE_RANDOM)
			add_interrupt_randomness(irq);
		__cli();
		spin_lock(&irq_controller_lock);
		unmask_irq(irq);
		spin_unlock(&irq_controller_lock);
	}

	irq_exit(cpu, irq);
	/*
	 * This should be conditional: we should really get
	 * a return code from the irq handler to tell us
	 * whether the handler wants us to do software bottom
	 * half handling or not..
	 */
	if (1) {
		if (bh_active & bh_mask)
			do_bottom_half();
	}
}

int setup_x86_irq(int irq, struct irqaction * new)
{
	int shared = 0;
	struct irqaction *old, **p;
	unsigned long flags;

	p = irq_action + irq;
	if ((old = *p) != NULL) {
		/* Can't share interrupts unless both agree to */
		if (!(old->flags & new->flags & SA_SHIRQ))
			return -EBUSY;

		/* add new interrupt at end of irq queue */
		do {
			p = &old->next;
			old = *p;
		} while (old);
		shared = 1;
	}

	if (new->flags & SA_SAMPLE_RANDOM)
		rand_initialize_irq(irq);

	save_flags(flags);
	cli();
	*p = new;

	if (!shared) {
		spin_lock(&irq_controller_lock);
		unmask_irq(irq);
		spin_unlock(&irq_controller_lock);
	}
	restore_flags(flags);
	return 0;
}

int request_irq(unsigned int irq, 
		void (*handler)(int, void *, struct pt_regs *),
		unsigned long irqflags, 
		const char * devname,
		void *dev_id)
{
	int retval;
	struct irqaction * action;

	if (irq > 15)
		return -EINVAL;
	if (!handler)
		return -EINVAL;

	action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_KERNEL);
	if (!action)
		return -ENOMEM;

	action->handler = handler;
	action->flags = irqflags;
	action->mask = 0;
	action->name = devname;
	action->next = NULL;
	action->dev_id = dev_id;

	retval = setup_x86_irq(irq, action);

	if (retval)
		kfree(action);
	return retval;
}
		
void free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq > 15) {
		printk("Trying to free IRQ%d\n",irq);
		return;
	}
	for (p = irq + irq_action; (action = *p) != NULL; p = &action->next) {
		if (action->dev_id != dev_id)
			continue;

		/* Found it - now free it */
		save_flags(flags);
		cli();
		*p = action->next;
		restore_flags(flags);
		kfree(action);
		return;
	}
	printk("Trying to free free IRQ%d\n",irq);
}

unsigned long probe_irq_on (void)
{
	unsigned int i, irqs = 0;
	unsigned long delay;

	/* first, enable any unassigned irqs */
	for (i = 15; i > 0; i--) {
		if (!irq_action[i]) {
			enable_irq(i);
			irqs |= (1 << i);
		}
	}

	/* wait for spurious interrupts to mask themselves out again */
	for (delay = jiffies + HZ/10; delay > jiffies; )
		/* about 100ms delay */;

	/* now filter out any obviously spurious interrupts */
	return irqs & ~cached_irq_mask;
}

int probe_irq_off (unsigned long irqs)
{
	unsigned int i;

#ifdef DEBUG
	printk("probe_irq_off: irqs=0x%04lx irqmask=0x%04x\n", irqs, cached_irq_mask);
#endif
	irqs &= cached_irq_mask;
	if (!irqs)
		return 0;
	i = ffz(~irqs);
	if (irqs != (irqs & (1 << i)))
		i = -i;
	return i;
}

__initfunc(void init_IRQ(void))
{
	int i;

	/* set the clock to 100 Hz */
	outb_p(0x34,0x43);		/* binary, mode 2, LSB/MSB, ch 0 */
	outb_p(LATCH & 0xff , 0x40);	/* LSB */
	outb(LATCH >> 8 , 0x40);	/* MSB */

	for (i = 0; i < NR_IRQS ; i++)
		set_intr_gate(0x20+i,interrupt[i]);

#ifdef __SMP__	
	/*
	 * NOTE! The local APIC isn't very good at handling
	 * multiple interrupts at the same interrupt level.
	 * As the interrupt level is determined by taking the
	 * vector number and shifting that right by 4, we
	 * want to spread these out a bit so that they don't
	 * all fall in the same interrupt level
	 */

	/*
	 * The reschedule interrupt slowly changes it's functionality,
	 * while so far it was a kind of broadcasted timer interrupt,
	 * in the future it should become a CPU-to-CPU rescheduling IPI,
	 * driven by schedule() ?
	 *
	 * [ It has to be here .. it doesn't work if you put
	 *   it down the bottom - assembler explodes 8) ]
	 */
	/* IRQ '16' (trap 0x30) - IPI for rescheduling */
	set_intr_gate(0x20+i, reschedule_interrupt);


	/* IRQ '17' (trap 0x31) - IPI for invalidation */
	set_intr_gate(0x21+i, invalidate_interrupt);

	/* IRQ '18' (trap 0x40) - IPI for CPU halt */
	set_intr_gate(0x30+i, stop_cpu_interrupt);

	/* IRQ '19' (trap 0x41) - self generated IPI for local APIC timer */
	set_intr_gate(0x31+i, apic_timer_interrupt);
#endif	
	request_region(0x20,0x20,"pic1");
	request_region(0xa0,0x20,"pic2");
	setup_x86_irq(2, &irq2);
	setup_x86_irq(13, &irq13);
}