Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <asm/param.h>	/* for HZ */

extern unsigned long event;

#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/tasks.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/times.h>

#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>

#include <linux/smp.h>
#include <linux/tty.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/capability.h>
#include <linux/securebits.h>

/*
 * cloning flags:
 */
#define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
#define CLONE_VM	0x00000100	/* set if VM shared between processes */
#define CLONE_FS	0x00000200	/* set if fs info shared between processes */
#define CLONE_FILES	0x00000400	/* set if open files shared between processes */
#define CLONE_SIGHAND	0x00000800	/* set if signal handlers shared */
#define CLONE_PID	0x00001000	/* set if pid shared */
#define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */

/*
 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
 */
extern unsigned long avenrun[];		/* Load averages */

#define FSHIFT		11		/* nr of bits of precision */
#define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
#define LOAD_FREQ	(5*HZ)		/* 5 sec intervals */
#define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
#define EXP_5		2014		/* 1/exp(5sec/5min) */
#define EXP_15		2037		/* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
	load *= exp; \
	load += n*(FIXED_1-exp); \
	load >>= FSHIFT;

#define CT_TO_SECS(x)	((x) / HZ)
#define CT_TO_USECS(x)	(((x) % HZ) * 1000000/HZ)

extern int nr_running, nr_tasks;
extern int last_pid;

#include <linux/fs.h>
#include <linux/signal.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/ptrace.h>
#include <linux/timer.h>

#include <asm/processor.h>

#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define TASK_ZOMBIE		4
#define TASK_STOPPED		8
#define TASK_SWAPPING		16

/*
 * Scheduling policies
 */
#define SCHED_OTHER		0
#define SCHED_FIFO		1
#define SCHED_RR		2

/*
 * This is an additional bit set when we want to
 * yield the CPU for one re-schedule..
 */
#define SCHED_YIELD		0x10

struct sched_param {
	int sched_priority;
};

#ifndef NULL
#define NULL ((void *) 0)
#endif

#ifdef __KERNEL__

#include <asm/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t scheduler_lock;

extern void sched_init(void);
extern void show_state(void);
extern void trap_init(void);

asmlinkage void schedule(void);


/*
 * Open file table structure
 */
struct files_struct {
	atomic_t count;
	int max_fds;
	struct file ** fd;	/* current fd array */
	fd_set close_on_exec;
	fd_set open_fds;
};

#define INIT_FILES { \
	ATOMIC_INIT(1), \
	NR_OPEN, \
	&init_fd_array[0], \
	{ { 0, } }, \
	{ { 0, } } \
}

struct fs_struct {
	atomic_t count;
	int umask;
	struct dentry * root, * pwd;
};

#define INIT_FS { \
	ATOMIC_INIT(1), \
	0022, \
	NULL, NULL \
}

/* Maximum number of active map areas.. This is a random (large) number */
#define MAX_MAP_COUNT	(65536)

struct mm_struct {
	struct vm_area_struct *mmap, *mmap_cache;
	pgd_t * pgd;
	atomic_t count;
	int map_count;
	struct semaphore mmap_sem;
	unsigned long context;
	unsigned long start_code, end_code, start_data, end_data;
	unsigned long start_brk, brk, start_stack;
	unsigned long arg_start, arg_end, env_start, env_end;
	unsigned long rss, total_vm, locked_vm;
	unsigned long def_flags;
	unsigned long cpu_vm_mask;
	/*
	 * This is an architecture-specific pointer: the portable
	 * part of Linux does not know about any segments.
	 */
	void * segments;
};

#define INIT_MM {					\
		&init_mmap, NULL, swapper_pg_dir, 	\
		ATOMIC_INIT(1), 1,			\
		MUTEX,					\
		0,					\
		0, 0, 0, 0,				\
		0, 0, 0, 				\
		0, 0, 0, 0,				\
		0, 0, 0,				\
		0, 0, NULL }

struct signal_struct {
	atomic_t		count;
	struct k_sigaction	action[_NSIG];
	spinlock_t		siglock;
};


#define INIT_SIGNALS { \
		ATOMIC_INIT(1), \
		{ {{0,}}, }, \
		SPIN_LOCK_UNLOCKED }

/*
 * Some day this will be a full-fledged user tracking system..
 * Right now it is only used to track how many processes a
 * user has, but it has the potential to track memory usage etc.
 */
struct user_struct;

struct task_struct {
/* these are hardcoded - don't touch */
	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
	unsigned long flags;	/* per process flags, defined below */
	int sigpending;
	mm_segment_t addr_limit;	/* thread address space:
					 	0-0xBFFFFFFF for user-thead
						0-0xFFFFFFFF for kernel-thread
					 */
	struct exec_domain *exec_domain;
	long need_resched;

/* various fields */
	long counter;
	long priority;
/* SMP and runqueue state */
	int has_cpu;
	int processor;
	int last_processor;
	int lock_depth;		/* Lock depth. We can context switch in and out of holding a syscall kernel lock... */	
	struct task_struct *next_task, *prev_task;
	struct task_struct *next_run,  *prev_run;

/* task state */
	struct linux_binfmt *binfmt;
	int exit_code, exit_signal;
	int pdeath_signal;  /*  The signal sent when the parent dies  */
	/* ??? */
	unsigned long personality;
	int dumpable:1;
	int did_exec:1;
	pid_t pid;
	pid_t pgrp;
	pid_t tty_old_pgrp;
	pid_t session;
	/* boolean value for session group leader */
	int leader;
	/* 
	 * pointers to (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with 
	 * p->p_pptr->pid)
	 */
	struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

	/* PID hash table linkage. */
	struct task_struct *pidhash_next;
	struct task_struct **pidhash_pprev;

	/* Pointer to task[] array linkage. */
	struct task_struct **tarray_ptr;

	struct wait_queue *wait_chldexit;	/* for wait4() */
	unsigned long timeout, policy, rt_priority;
	unsigned long it_real_value, it_prof_value, it_virt_value;
	unsigned long it_real_incr, it_prof_incr, it_virt_incr;
	struct timer_list real_timer;
	struct tms times;
	unsigned long start_time;
	long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
	unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
	int swappable:1;
	unsigned long swap_address;
	unsigned long old_maj_flt;	/* old value of maj_flt */
	unsigned long dec_flt;		/* page fault count of the last time */
	unsigned long swap_cnt;		/* number of pages to swap on next pass */
/* process credentials */
	uid_t uid,euid,suid,fsuid;
	gid_t gid,egid,sgid,fsgid;
	int ngroups;
	gid_t	groups[NGROUPS];
        kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
	struct user_struct *user;
/* limits */
	struct rlimit rlim[RLIM_NLIMITS];
	unsigned short used_math;
	char comm[16];
/* file system info */
	int link_count;
	struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
	struct sem_undo *semundo;
	struct sem_queue *semsleeping;
/* tss for this task */
	struct thread_struct tss;
/* filesystem information */
	struct fs_struct *fs;
/* open file information */
	struct files_struct *files;
/* memory management info */
	struct mm_struct *mm;
/* signal handlers */
	spinlock_t sigmask_lock;	/* Protects signal and blocked */
	struct signal_struct *sig;
	sigset_t signal, blocked;
	struct signal_queue *sigqueue, **sigqueue_tail;
	unsigned long sas_ss_sp;
	size_t sas_ss_size;
};

/*
 * Per process flags
 */
#define PF_ALIGNWARN	0x00000001	/* Print alignment warning msgs */
					/* Not implemented yet, only for 486*/
#define PF_STARTING	0x00000002	/* being created */
#define PF_EXITING	0x00000004	/* getting shut down */
#define PF_PTRACED	0x00000010	/* set if ptrace (0) has been called */
#define PF_TRACESYS	0x00000020	/* tracing system calls */
#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
#define PF_DUMPCORE	0x00000200	/* dumped core */
#define PF_SIGNALED	0x00000400	/* killed by a signal */
#define PF_MEMALLOC	0x00000800	/* Allocating memory */

#define PF_USEDFPU	0x00100000	/* task used FPU this quantum (SMP) */
#define PF_DTRACE	0x00200000	/* delayed trace (used on m68k, i386) */

/*
 * Limit the stack by to some sane default: root can always
 * increase this limit if needed..  8MB seems reasonable.
 */
#define _STK_LIM	(8*1024*1024)

#define DEF_PRIORITY	(20*HZ/100)	/* 200 ms time slices */

/*
 *  INIT_TASK is used to set up the first task table, touch at
 * your own risk!. Base=0, limit=0x1fffff (=2MB)
 */
#define INIT_TASK \
/* state etc */	{ 0,0,0,KERNEL_DS,&default_exec_domain,0, \
/* counter */	DEF_PRIORITY,DEF_PRIORITY, \
/* SMP */	0,0,0,-1, \
/* schedlink */	&init_task,&init_task, &init_task, &init_task, \
/* binfmt */	NULL, \
/* ec,brk... */	0,0,0,0,0,0, \
/* pid etc.. */	0,0,0,0,0, \
/* proc links*/ &init_task,&init_task,NULL,NULL,NULL, \
/* pidhash */	NULL, NULL, \
/* tarray */	&task[0], \
/* chld wait */	NULL, \
/* timeout */	0,SCHED_OTHER,0,0,0,0,0,0,0, \
/* timer */	{ NULL, NULL, 0, 0, it_real_fn }, \
/* utime */	{0,0,0,0},0, \
/* per CPU times */ {0, }, {0, }, \
/* flt */	0,0,0,0,0,0, \
/* swp */	0,0,0,0,0, \
/* process credentials */					\
/* uid etc */	0,0,0,0,0,0,0,0,				\
/* suppl grps*/ 0, {0,},					\
/* caps */      CAP_INIT_EFF_SET,CAP_INIT_INH_SET,CAP_FULL_SET, \
/* user */	NULL,						\
/* rlimits */   INIT_RLIMITS, \
/* math */	0, \
/* comm */	"swapper", \
/* fs info */	0,NULL, \
/* ipc */	NULL, NULL, \
/* tss */	INIT_TSS, \
/* fs */	&init_fs, \
/* files */	&init_files, \
/* mm */	&init_mm, \
/* signals */	SPIN_LOCK_UNLOCKED, &init_signals, {{0}}, {{0}}, NULL, &init_task.sigqueue, 0, 0, \
}

union task_union {
	struct task_struct task;
	unsigned long stack[2048];
};

extern union task_union init_task_union;

extern struct   mm_struct init_mm;
extern struct task_struct *task[NR_TASKS];

extern struct task_struct **tarray_freelist;
extern spinlock_t taskslot_lock;

extern __inline__ void add_free_taskslot(struct task_struct **t)
{
	spin_lock(&taskslot_lock);
	*t = (struct task_struct *) tarray_freelist;
	tarray_freelist = t;
	spin_unlock(&taskslot_lock);
}

extern __inline__ struct task_struct **get_free_taskslot(void)
{
	struct task_struct **tslot;

	spin_lock(&taskslot_lock);
	if((tslot = tarray_freelist) != NULL)
		tarray_freelist = (struct task_struct **) *tslot;
	spin_unlock(&taskslot_lock);

	return tslot;
}

/* PID hashing. */
#define PIDHASH_SZ (NR_TASKS >> 2)
extern struct task_struct *pidhash[PIDHASH_SZ];

#define pid_hashfn(x)	((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

extern __inline__ void hash_pid(struct task_struct *p)
{
	struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];

	if((p->pidhash_next = *htable) != NULL)
		(*htable)->pidhash_pprev = &p->pidhash_next;
	*htable = p;
	p->pidhash_pprev = htable;
}

extern __inline__ void unhash_pid(struct task_struct *p)
{
	if(p->pidhash_next)
		p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
	*p->pidhash_pprev = p->pidhash_next;
}

extern __inline__ struct task_struct *find_task_by_pid(int pid)
{
	struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];

	for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
		;

	return p;
}

/* per-UID process charging. */
extern int alloc_uid(struct task_struct *p);
void free_uid(struct task_struct *p);

#include <asm/current.h>

extern unsigned long volatile jiffies;
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern struct timeval xtime;
extern void do_timer(struct pt_regs *);

extern unsigned int * prof_buffer;
extern unsigned long prof_len;
extern unsigned long prof_shift;

#define CURRENT_TIME (xtime.tv_sec)

extern void FASTCALL(__wake_up(struct wait_queue ** p, unsigned int mode));
extern void FASTCALL(sleep_on(struct wait_queue ** p));
extern void FASTCALL(interruptible_sleep_on(struct wait_queue ** p));
extern void FASTCALL(wake_up_process(struct task_struct * tsk));

#define wake_up(x)			__wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE)
#define wake_up_interruptible(x)	__wake_up((x),TASK_INTERRUPTIBLE)

extern int in_group_p(gid_t grp);

extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *);
extern int dequeue_signal(sigset_t *block, siginfo_t *);
extern int send_sig_info(int, struct siginfo *info, struct task_struct *);
extern int force_sig_info(int, struct siginfo *info, struct task_struct *);
extern int kill_pg_info(int, struct siginfo *info, pid_t);
extern int kill_sl_info(int, struct siginfo *info, pid_t);
extern int kill_proc_info(int, struct siginfo *info, pid_t);
extern int kill_something_info(int, struct siginfo *info, int);
extern void notify_parent(struct task_struct * tsk, int);
extern void force_sig(int sig, struct task_struct * p);
extern int send_sig(int sig, struct task_struct * p, int priv);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int sig, const struct k_sigaction *act,
			struct k_sigaction *oact);
extern int do_sigaltstack(const stack_t *ss, stack_t *oss, unsigned long sp);

extern inline int signal_pending(struct task_struct *p)
{
	return (p->sigpending != 0);
}

/* Reevaluate whether the task has signals pending delivery.
   This is required every time the blocked sigset_t changes.
   All callers should have t->sigmask_lock.  */

static inline void recalc_sigpending(struct task_struct *t)
{
	unsigned long ready;
	long i;

	switch (_NSIG_WORDS) {
	default:
		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
			ready |= t->signal.sig[i] &~ t->blocked.sig[i];
		break;

	case 4: ready  = t->signal.sig[3] &~ t->blocked.sig[3];
		ready |= t->signal.sig[2] &~ t->blocked.sig[2];
		ready |= t->signal.sig[1] &~ t->blocked.sig[1];
		ready |= t->signal.sig[0] &~ t->blocked.sig[0];
		break;

	case 2: ready  = t->signal.sig[1] &~ t->blocked.sig[1];
		ready |= t->signal.sig[0] &~ t->blocked.sig[0];
		break;

	case 1: ready  = t->signal.sig[0] &~ t->blocked.sig[0];
	}

	t->sigpending = (ready != 0);
}

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
{
	return (sp >= current->sas_ss_sp
		&& sp < current->sas_ss_sp + current->sas_ss_size);
}

static inline int sas_ss_flags(unsigned long sp)
{
	return (current->sas_ss_size == 0 ? SS_DISABLE
		: on_sig_stack(sp) ? SS_ONSTACK : 0);
}

extern int request_irq(unsigned int irq,
		       void (*handler)(int, void *, struct pt_regs *),
		       unsigned long flags, 
		       const char *device,
		       void *dev_id);
extern void free_irq(unsigned int irq, void *dev_id);

/*
 * This has now become a routine instead of a macro, it sets a flag if
 * it returns true (to do BSD-style accounting where the process is flagged
 * if it uses root privs). The implication of this is that you should do
 * normal permissions checks first, and check suser() last.
 *
 * [Dec 1997 -- Chris Evans]
 * For correctness, the above considerations need to be extended to
 * fsuser(). This is done, along with moving fsuser() checks to be
 * last.
 *
 * These will be removed, but in the mean time, when the SECURE_NOROOT 
 * flag is set, uids don't grant privilege.
 */
extern inline int suser(void)
{
	if (!issecure(SECURE_NOROOT) && current->euid == 0) { 
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

extern inline int fsuser(void)
{
	if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

/*
 * capable() checks for a particular capability.  
 * New privilege checks should use this interface, rather than suser() or
 * fsuser(). See include/linux/capability.h for defined capabilities.
 */

extern inline int capable(int cap)
{
#if 1 /* ok now */
	if (cap_raised(current->cap_effective, cap))
#else
	if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
#endif
        {
		current->flags |= PF_SUPERPRIV;
		return 1;
	}
	return 0;
}

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct * mm_alloc(void);
static inline void mmget(struct mm_struct * mm)
{
	atomic_inc(&mm->count);
}
extern void mmput(struct mm_struct *);

extern int  copy_thread(int, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_mm(struct task_struct *);
extern void exit_fs(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_sighand(struct task_struct *);

extern int do_execve(char *, char **, char **, struct pt_regs *);
extern int do_fork(unsigned long, unsigned long, struct pt_regs *);

/*
 * The wait-queues are circular lists, and you have to be *very* sure
 * to keep them correct. Use only these two functions to add/remove
 * entries in the queues.
 */
extern inline void __add_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
	wait->next = *p ? : WAIT_QUEUE_HEAD(p);
	*p = wait;
}

extern rwlock_t waitqueue_lock;

extern inline void add_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
	unsigned long flags;

	write_lock_irqsave(&waitqueue_lock, flags);
	__add_wait_queue(p, wait);
	write_unlock_irqrestore(&waitqueue_lock, flags);
}

extern inline void __remove_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
	struct wait_queue * next = wait->next;
	struct wait_queue * head = next;
	struct wait_queue * tmp;

	while ((tmp = head->next) != wait) {
		head = tmp;
	}
	head->next = next;
}

extern inline void remove_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
	unsigned long flags;

	write_lock_irqsave(&waitqueue_lock, flags);
	__remove_wait_queue(p, wait);
	write_unlock_irqrestore(&waitqueue_lock, flags); 
}

#define REMOVE_LINKS(p) do { \
	(p)->next_task->prev_task = (p)->prev_task; \
	(p)->prev_task->next_task = (p)->next_task; \
	if ((p)->p_osptr) \
		(p)->p_osptr->p_ysptr = (p)->p_ysptr; \
	if ((p)->p_ysptr) \
		(p)->p_ysptr->p_osptr = (p)->p_osptr; \
	else \
		(p)->p_pptr->p_cptr = (p)->p_osptr; \
	} while (0)

#define SET_LINKS(p) do { \
	(p)->next_task = &init_task; \
	(p)->prev_task = init_task.prev_task; \
	init_task.prev_task->next_task = (p); \
	init_task.prev_task = (p); \
	(p)->p_ysptr = NULL; \
	if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
		(p)->p_osptr->p_ysptr = p; \
	(p)->p_pptr->p_cptr = p; \
	} while (0)

#define for_each_task(p) \
	for (p = &init_task ; (p = p->next_task) != &init_task ; )

#endif /* __KERNEL__ */

#endif