Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/*****************************************************************************/

/*
 *	sm_sbc.c  -- soundcard radio modem driver soundblaster hardware driver
 *
 *	Copyright (C) 1996  Thomas Sailer (sailer@ife.ee.ethz.ch)
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 *	This program is distributed in the hope that it will be useful,
 *	but WITHOUT ANY WARRANTY; without even the implied warranty of
 *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *	GNU General Public License for more details.
 *
 *	You should have received a copy of the GNU General Public License
 *	along with this program; if not, write to the Free Software
 *	Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *  Please note that the GPL allows you to use the driver, NOT the radio.
 *  In order to use the radio, you need a license from the communications
 *  authority of your country.
 *
 */

#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/ioport.h>
#include <linux/soundmodem.h>
#include <linux/delay.h>
#include "sm.h"
#include "smdma.h"

/* --------------------------------------------------------------------- */

/*
 * currently this module is supposed to support both module styles, i.e.
 * the old one present up to about 2.1.9, and the new one functioning
 * starting with 2.1.21. The reason is I have a kit allowing to compile
 * this module also under 2.0.x which was requested by several people.
 * This will go in 2.2
 */
#include <linux/version.h>

#if LINUX_VERSION_CODE >= 0x20100
#include <asm/uaccess.h>
#else
#include <asm/segment.h>
#include <linux/mm.h>

#undef put_user
#undef get_user

#define put_user(x,ptr) ({ __put_user((unsigned long)(x),(ptr),sizeof(*(ptr))); 0; })
#define get_user(x,ptr) ({ x = ((__typeof__(*(ptr)))__get_user((ptr),sizeof(*(ptr)))); 0; })

extern inline int copy_from_user(void *to, const void *from, unsigned long n)
{
        int i = verify_area(VERIFY_READ, from, n);
        if (i)
                return i;
        memcpy_fromfs(to, from, n);
        return 0;
}

extern inline int copy_to_user(void *to, const void *from, unsigned long n)
{
        int i = verify_area(VERIFY_WRITE, to, n);
        if (i)
                return i;
        memcpy_tofs(to, from, n);
        return 0;
}
#endif

/* --------------------------------------------------------------------- */

struct sc_state_sbc {
	unsigned char revhi, revlo;
	unsigned char fmt[2];
	unsigned int sr[2];
};

#define SCSTATE ((struct sc_state_sbc *)(&sm->hw))

/* --------------------------------------------------------------------- */
/* 
 * the sbc converter's registers 
 */
#define DSP_RESET(iobase)        (iobase+0x6)
#define DSP_READ_DATA(iobase)    (iobase+0xa)
#define DSP_WRITE_DATA(iobase)   (iobase+0xc)
#define DSP_WRITE_STATUS(iobase) (iobase+0xc)
#define DSP_DATA_AVAIL(iobase)   (iobase+0xe)
#define DSP_MIXER_ADDR(iobase)   (iobase+0x4)
#define DSP_MIXER_DATA(iobase)   (iobase+0x5)
#define DSP_INTACK_16BIT(iobase) (iobase+0xf)
#define SBC_EXTENT               16

/* --------------------------------------------------------------------- */
/*
 * SBC commands
 */
#define SBC_OUTPUT             0x14
#define SBC_INPUT              0x24
#define SBC_BLOCKSIZE          0x48
#define SBC_HI_OUTPUT          0x91 
#define SBC_HI_INPUT           0x99 
#define SBC_LO_OUTPUT_AUTOINIT 0x1c
#define SBC_LO_INPUT_AUTOINIT  0x2c
#define SBC_HI_OUTPUT_AUTOINIT 0x90 
#define SBC_HI_INPUT_AUTOINIT  0x98
#define SBC_IMMED_INT          0xf2
#define SBC_GET_REVISION       0xe1
#define ESS_GET_REVISION       0xe7
#define SBC_SPEAKER_ON         0xd1
#define SBC_SPEAKER_OFF        0xd3
#define SBC_DMA_ON             0xd0
#define SBC_DMA_OFF            0xd4
#define SBC_SAMPLE_RATE        0x40
#define SBC_SAMPLE_RATE_OUT    0x41
#define SBC_SAMPLE_RATE_IN     0x42
#define SBC_MONO_8BIT          0xa0
#define SBC_MONO_16BIT         0xa4
#define SBC_STEREO_8BIT        0xa8
#define SBC_STEREO_16BIT       0xac

#define SBC4_OUT8_AI           0xc6
#define SBC4_IN8_AI            0xce
#define SBC4_MODE_UNS_MONO     0x00
#define SBC4_MODE_SIGN_MONO    0x10

#define SBC4_OUT16_AI          0xb6
#define SBC4_IN16_AI           0xbe

/* --------------------------------------------------------------------- */

static int inline reset_dsp(struct device *dev)
{
	int i;

	outb(1, DSP_RESET(dev->base_addr));
	udelay(300);
	outb(0, DSP_RESET(dev->base_addr));
	for (i = 0; i < 0xffff; i++)
		if (inb(DSP_DATA_AVAIL(dev->base_addr)) & 0x80)
			if (inb(DSP_READ_DATA(dev->base_addr)) == 0xaa)
				return 1;
	return 0;
}

/* --------------------------------------------------------------------- */

static void inline write_dsp(struct device *dev, unsigned char data)
{
	int i;
	
	for (i = 0; i < 0xffff; i++)
		if (!(inb(DSP_WRITE_STATUS(dev->base_addr)) & 0x80)) {
			outb(data, DSP_WRITE_DATA(dev->base_addr));
			return;
		}
}

/* --------------------------------------------------------------------- */

static int inline read_dsp(struct device *dev, unsigned char *data)
{
	int i;

	if (!data)
		return 0;
	for (i = 0; i < 0xffff; i++) 
		if (inb(DSP_DATA_AVAIL(dev->base_addr)) & 0x80) {
			*data = inb(DSP_READ_DATA(dev->base_addr));
			return 1;
		}
	return 0;
}

/* --------------------------------------------------------------------- */

static int config_resources(struct device *dev, struct sm_state *sm, int fdx)
{
	unsigned char irqreg = 0, dmareg = 0, realirq, realdma;
	unsigned long flags;

	switch (dev->irq) {
	case 2:
	case 9:
		irqreg |= 0x01;
		break;

	case 5:
		irqreg |= 0x02;
		break;

	case 7:
		irqreg |= 0x04;
		break;

	case 10:
		irqreg |= 0x08;
		break;
		
	default:
		return -ENODEV;
	}

	switch (dev->dma) {
	case 0:
		dmareg |= 0x01;
		break;

	case 1:
		dmareg |= 0x02;
		break;

	case 3:
		dmareg |= 0x08;
		break;

	default:
		return -ENODEV;
	}
		
	if (fdx) {
		switch (sm->hdrv.ptt_out.dma2) {
		case 5:
			dmareg |= 0x20;
			break;
			
		case 6:
			dmareg |= 0x40;
			break;
			
		case 7:
			dmareg |= 0x80;
			break;
			
		default:
			return -ENODEV;
		}
	}
	save_flags(flags);
	cli();
	outb(0x80, DSP_MIXER_ADDR(dev->base_addr));
	outb(irqreg, DSP_MIXER_DATA(dev->base_addr));
	realirq = inb(DSP_MIXER_DATA(dev->base_addr));
	outb(0x81, DSP_MIXER_ADDR(dev->base_addr));
	outb(dmareg, DSP_MIXER_DATA(dev->base_addr));
	realdma = inb(DSP_MIXER_DATA(dev->base_addr));
	restore_flags(flags);
	if ((~realirq) & irqreg || (~realdma) & dmareg) {
		printk(KERN_ERR "%s: sbc resource registers cannot be set; PnP device "
		       "and IRQ/DMA specified wrongly?\n", sm_drvname);
		return -EINVAL;
	}
	return 0;
}

/* --------------------------------------------------------------------- */

static void inline sbc_int_ack_8bit(struct device *dev)
{
	inb(DSP_DATA_AVAIL(dev->base_addr));
}

/* --------------------------------------------------------------------- */

static void inline sbc_int_ack_16bit(struct device *dev)
{
	inb(DSP_INTACK_16BIT(dev->base_addr));
}

/* --------------------------------------------------------------------- */

static void setup_dma_dsp(struct device *dev, struct sm_state *sm, int send)
{
        unsigned long flags;
        static const unsigned char sbcmode[2][2] = {
		{ SBC_LO_INPUT_AUTOINIT, SBC_LO_OUTPUT_AUTOINIT }, 
		{ SBC_HI_INPUT_AUTOINIT, SBC_HI_OUTPUT_AUTOINIT }
	};
	static const unsigned char sbc4mode[2] = { SBC4_IN8_AI, SBC4_OUT8_AI };
	static const unsigned char sbcskr[2] = { SBC_SPEAKER_OFF, SBC_SPEAKER_ON };
	unsigned int nsamps;

	send = !!send;
        if (!reset_dsp(dev)) {
                printk(KERN_ERR "%s: sbc: cannot reset sb dsp\n", sm_drvname);
                return;
        }
        save_flags(flags);
        cli();
        sbc_int_ack_8bit(dev);
        write_dsp(dev, SBC_SAMPLE_RATE); /* set sampling rate */
        write_dsp(dev, SCSTATE->fmt[send]);
        write_dsp(dev, sbcskr[send]); 
	nsamps = dma_setup(sm, send, dev->dma) - 1;
        sbc_int_ack_8bit(dev);
	if (SCSTATE->revhi >= 4) {
		write_dsp(dev, sbc4mode[send]);
		write_dsp(dev, SBC4_MODE_UNS_MONO);
		write_dsp(dev, nsamps & 0xff);
		write_dsp(dev, nsamps >> 8);
	} else {
		write_dsp(dev, SBC_BLOCKSIZE);
		write_dsp(dev, nsamps & 0xff);
		write_dsp(dev, nsamps >> 8);
		write_dsp(dev, sbcmode[SCSTATE->fmt[send] >= 180][send]);
		/* hispeed mode if sample rate > 13kHz */
	}
        restore_flags(flags);
}

/* --------------------------------------------------------------------- */

static void sbc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev = (struct device *)dev_id;
	struct sm_state *sm = (struct sm_state *)dev->priv;
	unsigned int curfrag;

	if (!dev || !sm || sm->hdrv.magic != HDLCDRV_MAGIC)
		return;
	cli();
 	sbc_int_ack_8bit(dev);
	disable_dma(dev->dma);
	clear_dma_ff(dev->dma);
	dma_ptr(sm, sm->dma.ptt_cnt > 0, dev->dma, &curfrag);
	enable_dma(dev->dma);
	sm_int_freq(sm);
	sti();
	if (sm->dma.ptt_cnt <= 0) {
		dma_receive(sm, curfrag);
		hdlcdrv_arbitrate(dev, &sm->hdrv);
		if (hdlcdrv_ptt(&sm->hdrv)) {
			/* starting to transmit */
			disable_dma(dev->dma);
			hdlcdrv_transmitter(dev, &sm->hdrv); /* prefill HDLC buffer */
			dma_start_transmit(sm);
			setup_dma_dsp(dev, sm, 1);
			dma_transmit(sm);
		}
	} else if (dma_end_transmit(sm, curfrag)) {
		/* stopping transmission */
		disable_dma(dev->dma);
		sti();
		dma_init_receive(sm);
		setup_dma_dsp(dev, sm, 0);
        } else
		dma_transmit(sm);
	sm_output_status(sm);
	hdlcdrv_transmitter(dev, &sm->hdrv);
	hdlcdrv_receiver(dev, &sm->hdrv);

}

/* --------------------------------------------------------------------- */

static int sbc_open(struct device *dev, struct sm_state *sm) 
{
	int err;
	unsigned int dmasz, u;

	if (sizeof(sm->m) < sizeof(struct sc_state_sbc)) {
		printk(KERN_ERR "sm sbc: sbc state too big: %d > %d\n", 
		       sizeof(struct sc_state_sbc), sizeof(sm->m));
		return -ENODEV;
	}
	if (!dev || !sm)
		return -ENXIO;
	if (dev->base_addr <= 0 || dev->base_addr > 0x1000-SBC_EXTENT || 
	    dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
		return -ENXIO;
	if (check_region(dev->base_addr, SBC_EXTENT))
		return -EACCES;
	/*
	 * check if a card is available
	 */
	if (!reset_dsp(dev)) {
		printk(KERN_ERR "%s: sbc: no card at io address 0x%lx\n",
		       sm_drvname, dev->base_addr);
		return -ENODEV;
	}
	write_dsp(dev, SBC_GET_REVISION);
	if (!read_dsp(dev, &SCSTATE->revhi) || 
	    !read_dsp(dev, &SCSTATE->revlo))
		return -ENODEV;
	printk(KERN_INFO "%s: SoundBlaster DSP revision %d.%d\n", sm_drvname, 
	       SCSTATE->revhi, SCSTATE->revlo);
	if (SCSTATE->revhi < 2) {
		printk(KERN_ERR "%s: your card is an antiquity, at least DSP "
		       "rev 2.00 required\n", sm_drvname);
		return -ENODEV;
	}
	if (SCSTATE->revhi < 3 && 
	    (SCSTATE->fmt[0] >= 180 || SCSTATE->fmt[1] >= 180)) {
		printk(KERN_ERR "%s: sbc io 0x%lx: DSP rev %d.%02d too "
		       "old, at least 3.00 required\n", sm_drvname,
		       dev->base_addr, SCSTATE->revhi, SCSTATE->revlo);
		return -ENODEV;
	}
	if (SCSTATE->revhi >= 4 && 
	    (err = config_resources(dev, sm, 0))) {
		printk(KERN_ERR "%s: invalid IRQ and/or DMA specified\n", sm_drvname);
		return err;
	}
	/*
	 * initialize some variables
	 */
	dma_init_receive(sm);
	dmasz = (NUM_FRAGMENTS + 1) * sm->dma.ifragsz;
	u = NUM_FRAGMENTS * sm->dma.ofragsz;
	if (u > dmasz)
		dmasz = u;
	if (!(sm->dma.ibuf = sm->dma.obuf = kmalloc(dmasz, GFP_KERNEL | GFP_DMA)))
		return -ENOMEM;
	dma_init_transmit(sm);
	dma_init_receive(sm);

	memset(&sm->m, 0, sizeof(sm->m));
	memset(&sm->d, 0, sizeof(sm->d));
	if (sm->mode_tx->init)
		sm->mode_tx->init(sm);
	if (sm->mode_rx->init)
		sm->mode_rx->init(sm);

	if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
		kfree_s(sm->dma.obuf, dmasz);
		return -EBUSY;
	}
	if (request_irq(dev->irq, sbc_interrupt, SA_INTERRUPT, 
			sm->hwdrv->hw_name, dev)) {
		free_dma(dev->dma);
		kfree_s(sm->dma.obuf, dmasz);
		return -EBUSY;
	}
	request_region(dev->base_addr, SBC_EXTENT, sm->hwdrv->hw_name);
	setup_dma_dsp(dev, sm, 0);
	return 0;
}

/* --------------------------------------------------------------------- */

static int sbc_close(struct device *dev, struct sm_state *sm) 
{
	if (!dev || !sm)
		return -EINVAL;
	/*
	 * disable interrupts
	 */
	disable_dma(dev->dma);
	reset_dsp(dev);	
	free_irq(dev->irq, dev);	
	free_dma(dev->dma);	
	release_region(dev->base_addr, SBC_EXTENT);
	kfree(sm->dma.obuf);
	return 0;
}

/* --------------------------------------------------------------------- */

static int sbc_sethw(struct device *dev, struct sm_state *sm, char *mode)
{
	char *cp = strchr(mode, '.');
	const struct modem_tx_info **mtp = sm_modem_tx_table;
	const struct modem_rx_info **mrp;

	if (!strcmp(mode, "off")) {
		sm->mode_tx = NULL;
		sm->mode_rx = NULL;
		return 0;
	}
	if (cp)
		*cp++ = '\0';
	else
		cp = mode;
	for (; *mtp; mtp++) {
		if ((*mtp)->loc_storage > sizeof(sm->m)) {
			printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
			       sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
			continue;
		}
		if (!(*mtp)->name || strcmp((*mtp)->name, mode))
			continue;
		if ((*mtp)->srate < 5000 || (*mtp)->srate > 44100)
			continue;
		if (!(*mtp)->modulator_u8)
			continue;
		for (mrp = sm_modem_rx_table; *mrp; mrp++) {
			if ((*mrp)->loc_storage > sizeof(sm->d)) {
				printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
				       sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
				continue;
			}
			if (!(*mrp)->demodulator_u8)
				continue;
			if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
			    (*mrp)->srate >= 5000 && (*mrp)->srate <= 44100) {
				sm->mode_tx = *mtp;
				sm->mode_rx = *mrp;
				SCSTATE->fmt[0] = 256-((1000000L+sm->mode_rx->srate/2)/
							 sm->mode_rx->srate);
				SCSTATE->fmt[1] = 256-((1000000L+sm->mode_tx->srate/2)/
							 sm->mode_tx->srate);
				sm->dma.ifragsz = (sm->mode_rx->srate + 50)/100;
				sm->dma.ofragsz = (sm->mode_tx->srate + 50)/100;
				if (sm->dma.ifragsz < sm->mode_rx->overlap)
					sm->dma.ifragsz = sm->mode_rx->overlap;
				sm->dma.i16bit = sm->dma.o16bit = 0;
				return 0;
			}
		}
	}
	return -EINVAL;
}

/* --------------------------------------------------------------------- */

static int sbc_ioctl(struct device *dev, struct sm_state *sm, struct ifreq *ifr, 
		     struct hdlcdrv_ioctl *hi, int cmd)
{
	struct sm_ioctl bi;
	unsigned long flags;
	int i;
	
	if (cmd != SIOCDEVPRIVATE)
		return -ENOIOCTLCMD;

	if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
		return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ | 
			HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_SERIOBASE | 
			HDLCDRV_PARMASK_PARIOBASE | HDLCDRV_PARMASK_MIDIIOBASE;

	if (copy_from_user(&bi, ifr->ifr_data, sizeof(bi)))
		return -EFAULT;

	switch (bi.cmd) {
	default:
		return -ENOIOCTLCMD;

	case SMCTL_GETMIXER:
		i = 0;
		bi.data.mix.sample_rate = sm->mode_rx->srate;
		bi.data.mix.bit_rate = sm->hdrv.par.bitrate;
		bi.data.mix.mixer_type = SM_MIXER_INVALID;
		switch (SCSTATE->revhi) {
		case 2:
			bi.data.mix.mixer_type = SM_MIXER_CT1335;
			break;
		case 3:
			bi.data.mix.mixer_type = SM_MIXER_CT1345;
			break;
		case 4:
			bi.data.mix.mixer_type = SM_MIXER_CT1745;
			break;
		}
		if (bi.data.mix.mixer_type != SM_MIXER_INVALID &&
		    bi.data.mix.reg < 0x80) {
			save_flags(flags);
			cli();
			outb(bi.data.mix.reg, DSP_MIXER_ADDR(dev->base_addr));
			bi.data.mix.data = inb(DSP_MIXER_DATA(dev->base_addr));
			restore_flags(flags);
			i = 1;
		}
		if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
			return -EFAULT;
		return i;
		
	case SMCTL_SETMIXER:
		if (!suser())
			return -EACCES;
		switch (SCSTATE->revhi) {
		case 2:
			if (bi.data.mix.mixer_type != SM_MIXER_CT1335)
				return -EINVAL;
			break;
		case 3:
			if (bi.data.mix.mixer_type != SM_MIXER_CT1345)
				return -EINVAL;
			break;
		case 4:
			if (bi.data.mix.mixer_type != SM_MIXER_CT1745)
				return -EINVAL;
			break;
		default:
			return -ENODEV;
		}
		if (bi.data.mix.reg >= 0x80)
			return -EACCES;
		save_flags(flags);
		cli();
		outb(bi.data.mix.reg, DSP_MIXER_ADDR(dev->base_addr));
		outb(bi.data.mix.data, DSP_MIXER_DATA(dev->base_addr));
		restore_flags(flags);
		return 0;
		
	}
	if (copy_to_user(ifr->ifr_data, &bi, sizeof(bi)))
		return -EFAULT;
	return 0;

}

/* --------------------------------------------------------------------- */

const struct hardware_info sm_hw_sbc = {
	"sbc", sizeof(struct sc_state_sbc), 
	sbc_open, sbc_close, sbc_ioctl, sbc_sethw
};

/* --------------------------------------------------------------------- */

static void setup_dma_fdx_dsp(struct device *dev, struct sm_state *sm)
{
        unsigned long flags;
	unsigned int isamps, osamps;

        if (!reset_dsp(dev)) {
                printk(KERN_ERR "%s: sbc: cannot reset sb dsp\n", sm_drvname);
                return;
        }
        save_flags(flags);
        cli();
        sbc_int_ack_8bit(dev);
        sbc_int_ack_16bit(dev);
	/* should eventually change to set rates individually by SBC_SAMPLE_RATE_{IN/OUT} */
	write_dsp(dev, SBC_SAMPLE_RATE_IN);
	write_dsp(dev, SCSTATE->sr[0] >> 8);
	write_dsp(dev, SCSTATE->sr[0] & 0xff);
	write_dsp(dev, SBC_SAMPLE_RATE_OUT);
	write_dsp(dev, SCSTATE->sr[1] >> 8);
	write_dsp(dev, SCSTATE->sr[1] & 0xff);
        write_dsp(dev, SBC_SPEAKER_ON);
	if (sm->dma.o16bit) {
		/*
		 * DMA channel 1 (8bit) does input (capture),
		 * DMA channel 2 (16bit) does output (playback)
		 */
		isamps = dma_setup(sm, 0, dev->dma) - 1;
		osamps = dma_setup(sm, 1, sm->hdrv.ptt_out.dma2) - 1;
		sbc_int_ack_8bit(dev);
		sbc_int_ack_16bit(dev);
		write_dsp(dev, SBC4_IN8_AI);
		write_dsp(dev, SBC4_MODE_UNS_MONO);
		write_dsp(dev, isamps & 0xff);
		write_dsp(dev, isamps >> 8);
		write_dsp(dev, SBC4_OUT16_AI);
		write_dsp(dev, SBC4_MODE_SIGN_MONO);
		write_dsp(dev, osamps & 0xff);
		write_dsp(dev, osamps >> 8);
	} else {
		/*
		 * DMA channel 1 (8bit) does output (playback),
		 * DMA channel 2 (16bit) does input (capture)
		 */
		isamps = dma_setup(sm, 0, sm->hdrv.ptt_out.dma2) - 1;
		osamps = dma_setup(sm, 1, dev->dma) - 1;
		sbc_int_ack_8bit(dev);
		sbc_int_ack_16bit(dev);
		write_dsp(dev, SBC4_OUT8_AI);
		write_dsp(dev, SBC4_MODE_UNS_MONO);
		write_dsp(dev, osamps & 0xff);
		write_dsp(dev, osamps >> 8);
		write_dsp(dev, SBC4_IN16_AI);
		write_dsp(dev, SBC4_MODE_SIGN_MONO);
		write_dsp(dev, isamps & 0xff);
		write_dsp(dev, isamps >> 8);
	}
	dma_init_receive(sm);
	dma_init_transmit(sm);
        restore_flags(flags);
}

/* --------------------------------------------------------------------- */

static void sbcfdx_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev = (struct device *)dev_id;
	struct sm_state *sm = (struct sm_state *)dev->priv;
	unsigned char intsrc, pbint = 0, captint = 0;
	unsigned int ocfrag, icfrag;
	unsigned long flags;

	if (!dev || !sm || sm->hdrv.magic != HDLCDRV_MAGIC)
		return;
	save_flags(flags);
	cli();
	outb(0x82, DSP_MIXER_ADDR(dev->base_addr));
	intsrc = inb(DSP_MIXER_DATA(dev->base_addr));
	if (intsrc & 0x01) {
		sbc_int_ack_8bit(dev);
		if (sm->dma.o16bit) {
			captint = 1;
			disable_dma(dev->dma);
			clear_dma_ff(dev->dma);
			dma_ptr(sm, 0, dev->dma, &icfrag);
			enable_dma(dev->dma);
		} else {     
			pbint = 1;
			disable_dma(dev->dma);
			clear_dma_ff(dev->dma);
			dma_ptr(sm, 1, dev->dma, &ocfrag);
			enable_dma(dev->dma);
		}
	}
	if (intsrc & 0x02) {
		sbc_int_ack_16bit(dev);
		if (sm->dma.o16bit) {
			pbint = 1;
			disable_dma(sm->hdrv.ptt_out.dma2);
			clear_dma_ff(sm->hdrv.ptt_out.dma2);
			dma_ptr(sm, 1, sm->hdrv.ptt_out.dma2, &ocfrag);
			enable_dma(sm->hdrv.ptt_out.dma2);
		} else {
			captint = 1;
			disable_dma(sm->hdrv.ptt_out.dma2);
			clear_dma_ff(sm->hdrv.ptt_out.dma2);
			dma_ptr(sm, 0, sm->hdrv.ptt_out.dma2, &icfrag);
			enable_dma(sm->hdrv.ptt_out.dma2);
		}
	}
	restore_flags(flags);
	sm_int_freq(sm);
	sti();
	if (pbint) {
		if (dma_end_transmit(sm, ocfrag))
			dma_clear_transmit(sm);
		dma_transmit(sm);
	}
	if (captint) { 
		dma_receive(sm, icfrag);
		hdlcdrv_arbitrate(dev, &sm->hdrv);
	}
	sm_output_status(sm);
	hdlcdrv_transmitter(dev, &sm->hdrv);
	hdlcdrv_receiver(dev, &sm->hdrv);
}

/* --------------------------------------------------------------------- */

static int sbcfdx_open(struct device *dev, struct sm_state *sm) 
{
	int err;

	if (sizeof(sm->m) < sizeof(struct sc_state_sbc)) {
		printk(KERN_ERR "sm sbc: sbc state too big: %d > %d\n", 
		       sizeof(struct sc_state_sbc), sizeof(sm->m));
		return -ENODEV;
	}
	if (!dev || !sm)
		return -ENXIO;
	if (dev->base_addr <= 0 || dev->base_addr > 0x1000-SBC_EXTENT || 
	    dev->irq < 2 || dev->irq > 15 || dev->dma > 3)
		return -ENXIO;
	if (check_region(dev->base_addr, SBC_EXTENT))
		return -EACCES;
	/*
	 * check if a card is available
	 */
	if (!reset_dsp(dev)) {
		printk(KERN_ERR "%s: sbc: no card at io address 0x%lx\n",
		       sm_drvname, dev->base_addr);
		return -ENODEV;
	}
	write_dsp(dev, SBC_GET_REVISION);
	if (!read_dsp(dev, &SCSTATE->revhi) || 
	    !read_dsp(dev, &SCSTATE->revlo))
		return -ENODEV;
	printk(KERN_INFO "%s: SoundBlaster DSP revision %d.%d\n", sm_drvname, 
	       SCSTATE->revhi, SCSTATE->revlo);
	if (SCSTATE->revhi < 4) {
		printk(KERN_ERR "%s: at least DSP rev 4.00 required\n", sm_drvname);
		return -ENODEV;
	}
	if ((err = config_resources(dev, sm, 1))) {
		printk(KERN_ERR "%s: invalid IRQ and/or DMA specified\n", sm_drvname);
		return err;
	}
	/*
	 * initialize some variables
	 */
	if (!(sm->dma.ibuf = kmalloc(sm->dma.ifragsz * (NUM_FRAGMENTS+1), GFP_KERNEL | GFP_DMA)))
		return -ENOMEM;
	if (!(sm->dma.obuf = kmalloc(sm->dma.ofragsz * NUM_FRAGMENTS, GFP_KERNEL | GFP_DMA))) {
		kfree(sm->dma.ibuf);
		return -ENOMEM;
	}
	dma_init_transmit(sm);
	dma_init_receive(sm);

	memset(&sm->m, 0, sizeof(sm->m));
	memset(&sm->d, 0, sizeof(sm->d));
	if (sm->mode_tx->init)
		sm->mode_tx->init(sm);
	if (sm->mode_rx->init)
		sm->mode_rx->init(sm);

	if (request_dma(dev->dma, sm->hwdrv->hw_name)) {
		kfree(sm->dma.ibuf);
		kfree(sm->dma.obuf);
		return -EBUSY;
	}
	if (request_dma(sm->hdrv.ptt_out.dma2, sm->hwdrv->hw_name)) {
		kfree(sm->dma.ibuf);
		kfree(sm->dma.obuf);
		free_dma(dev->dma);
		return -EBUSY;
	}
	if (request_irq(dev->irq, sbcfdx_interrupt, SA_INTERRUPT, 
			sm->hwdrv->hw_name, dev)) {
		kfree(sm->dma.ibuf);
		kfree(sm->dma.obuf);
		free_dma(dev->dma);
		free_dma(sm->hdrv.ptt_out.dma2);
		return -EBUSY;
	}
	request_region(dev->base_addr, SBC_EXTENT, sm->hwdrv->hw_name);
	setup_dma_fdx_dsp(dev, sm);
	return 0;
}

/* --------------------------------------------------------------------- */

static int sbcfdx_close(struct device *dev, struct sm_state *sm) 
{
	if (!dev || !sm)
		return -EINVAL;
	/*
	 * disable interrupts
	 */
	disable_dma(dev->dma);
	disable_dma(sm->hdrv.ptt_out.dma2);
	reset_dsp(dev);	
	free_irq(dev->irq, dev);	
	free_dma(dev->dma);	
	free_dma(sm->hdrv.ptt_out.dma2);	
	release_region(dev->base_addr, SBC_EXTENT);
	kfree(sm->dma.ibuf);
	kfree(sm->dma.obuf);
	return 0;
}

/* --------------------------------------------------------------------- */

static int sbcfdx_sethw(struct device *dev, struct sm_state *sm, char *mode)
{
	char *cp = strchr(mode, '.');
	const struct modem_tx_info **mtp = sm_modem_tx_table;
	const struct modem_rx_info **mrp;

	if (!strcmp(mode, "off")) {
		sm->mode_tx = NULL;
		sm->mode_rx = NULL;
		return 0;
	}
	if (cp)
		*cp++ = '\0';
	else
		cp = mode;
	for (; *mtp; mtp++) {
		if ((*mtp)->loc_storage > sizeof(sm->m)) {
			printk(KERN_ERR "%s: insufficient storage for modulator %s (%d)\n",
			       sm_drvname, (*mtp)->name, (*mtp)->loc_storage);
			continue;
		}
		if (!(*mtp)->name || strcmp((*mtp)->name, mode))
			continue;
		if ((*mtp)->srate < 5000 || (*mtp)->srate > 44100)
			continue;
		for (mrp = sm_modem_rx_table; *mrp; mrp++) {
			if ((*mrp)->loc_storage > sizeof(sm->d)) {
				printk(KERN_ERR "%s: insufficient storage for demodulator %s (%d)\n",
				       sm_drvname, (*mrp)->name, (*mrp)->loc_storage);
				continue;
			}
			if ((*mrp)->name && !strcmp((*mrp)->name, cp) &&
			    (*mtp)->srate >= 5000 && (*mtp)->srate <= 44100 &&
			    (*mrp)->srate == (*mtp)->srate) {
				sm->mode_tx = *mtp;
				sm->mode_rx = *mrp;
				SCSTATE->sr[0] = sm->mode_rx->srate;
				SCSTATE->sr[1] = sm->mode_tx->srate;
				sm->dma.ifragsz = (sm->mode_rx->srate + 50)/100;
				sm->dma.ofragsz = (sm->mode_tx->srate + 50)/100;
				if (sm->dma.ifragsz < sm->mode_rx->overlap)
					sm->dma.ifragsz = sm->mode_rx->overlap;
				if (sm->mode_rx->demodulator_s16 && sm->mode_tx->modulator_u8) {
					sm->dma.i16bit = 1;
					sm->dma.o16bit = 0;
					sm->dma.ifragsz <<= 1;
				} else if (sm->mode_rx->demodulator_u8 && sm->mode_tx->modulator_s16) {
					sm->dma.i16bit = 0;
					sm->dma.o16bit = 1;
					sm->dma.ofragsz <<= 1;
				} else {
					printk(KERN_INFO "%s: mode %s or %s unusable\n", sm_drvname, 
					       sm->mode_rx->name, sm->mode_tx->name);
					sm->mode_tx = NULL;
					sm->mode_rx = NULL;
					return -EINVAL;
				}
				return 0;
			}
		}
	}
	return -EINVAL;
}

/* --------------------------------------------------------------------- */

static int sbcfdx_ioctl(struct device *dev, struct sm_state *sm, struct ifreq *ifr, 
			struct hdlcdrv_ioctl *hi, int cmd)
{
	if (cmd != SIOCDEVPRIVATE)
		return -ENOIOCTLCMD;

	if (hi->cmd == HDLCDRVCTL_MODEMPARMASK)
		return HDLCDRV_PARMASK_IOBASE | HDLCDRV_PARMASK_IRQ | 
			HDLCDRV_PARMASK_DMA | HDLCDRV_PARMASK_DMA2 | HDLCDRV_PARMASK_SERIOBASE | 
			HDLCDRV_PARMASK_PARIOBASE | HDLCDRV_PARMASK_MIDIIOBASE;

	return sbc_ioctl(dev, sm, ifr, hi, cmd);
}

/* --------------------------------------------------------------------- */

const struct hardware_info sm_hw_sbcfdx = {
	"sbcfdx", sizeof(struct sc_state_sbc), 
	sbcfdx_open, sbcfdx_close, sbcfdx_ioctl, sbcfdx_sethw
};

/* --------------------------------------------------------------------- */