Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/*
 *  linux/atari/config.c
 *
 *  Copyright (C) 1994 Bj”rn Brauel
 *
 *  5/2/94 Roman Hodek:
 *    Added setting of time_adj to get a better clock.
 *
 *  5/14/94 Roman Hodek:
 *    gettod() for TT 
 *
 *  5/15/94 Roman Hodek:
 *    hard_reset_now() for Atari (and others?)
 *
 *  94/12/30 Andreas Schwab:
 *    atari_sched_init fixed to get precise clock.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 */

/*
 * Miscellaneous atari stuff
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <asm/bootinfo.h>
#include <linux/mc146818rtc.h>
#include <linux/kd.h>
#include <linux/tty.h>
#include <linux/console.h>

#include <asm/atarihw.h>
#include <asm/atarihdreg.h>
#include <asm/atariints.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/machdep.h>

extern void atari_sched_init(isrfunc);
extern int atari_keyb_init(void);
extern int atari_kbdrate (struct kbd_repeat *);
extern void atari_kbd_leds (unsigned int);
extern void atari_init_INTS (void);
extern int atari_add_isr (unsigned long, isrfunc, int, void *, char *);
extern int atari_remove_isr (unsigned long, isrfunc, void *);
extern void atari_enable_irq (unsigned);
extern void atari_disable_irq (unsigned);
extern int atari_get_irq_list (char *buf, int len);
extern unsigned long atari_gettimeoffset (void);
extern void atari_mste_gettod (int *, int *, int *, int *, int *, int *);
extern void atari_gettod (int *, int *, int *, int *, int *, int *);
extern int atari_mste_hwclk (int, struct hwclk_time *);
extern int atari_hwclk (int, struct hwclk_time *);
extern int atari_mste_set_clock_mmss (unsigned long);
extern int atari_set_clock_mmss (unsigned long);
extern void atari_mksound( unsigned int count, unsigned int ticks );
extern void atari_reset( void );
#ifdef CONFIG_BLK_DEV_FD
extern int atari_floppy_init (void);
extern void atari_floppy_setup(char *, int *);
#endif
extern void atari_waitbut (void);
extern struct consw fb_con;
extern struct fb_info *atari_fb_init(long *);
extern void atari_debug_init (void);
extern void atari_video_setup(char *, int *);

extern void (*kd_mksound)(unsigned int, unsigned int);

/* This function tests for the presence of an address, specially a
 * hardware register address. It is called very early in the kernel
 * initialization process, when the VBR register isn't set up yet. On
 * an Atari, it still points to address 0, which is unmapped. So a bus
 * error would cause another bus error while fetching the exception
 * vector, and the CPU would do nothing at all. So we needed to set up
 * a temporary VBR and a vector table for the duration of the test.
 */

static int hwreg_present( volatile void *regp )
{
    int	ret = 0;
    long	save_sp, save_vbr;
    long	tmp_vectors[3];

    __asm__ __volatile__
	(	"movec	%/vbr,%2\n\t"
		"movel	#Lberr1,%4@(8)\n\t"
                "movec	%4,%/vbr\n\t"
		"movel	%/sp,%1\n\t"
		"moveq	#0,%0\n\t"
		"tstb	%3@\n\t"  
		"nop\n\t"
		"moveq	#1,%0\n"
                "Lberr1:\n\t"
		"movel	%1,%/sp\n\t"
		"movec	%2,%/vbr"
		: "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
		: "a" (regp), "a" (tmp_vectors)
                );

    return( ret );
}
  
#if 0
static int hwreg_present_bywrite( volatile void *regp,
				 unsigned char val )

{
    int		ret;
    long	save_sp, save_vbr;
    static long tmp_vectors[3] = { 0, 0, (long)&&after_test };
	
    __asm__ __volatile__
	(	"movec	%/vbr,%2\n\t"	/* save vbr value            */
                "movec	%4,%/vbr\n\t"	/* set up temporary vectors  */
		"movel	%/sp,%1\n\t"	/* save sp                   */
		"moveq	#0,%0\n\t"	/* assume not present        */
		"moveb	%5,%3@\n\t"	/* write the hardware reg    */
		"cmpb	%3@,%5\n\t"	/* compare it                */
		"seq	%0"		/* comes here only if reg    */
                                        /* is present                */
		: "=d&" (ret), "=r&" (save_sp), "=r&" (save_vbr)
		: "a" (regp), "r" (tmp_vectors), "d" (val)
                );
  after_test:
    __asm__ __volatile__
      (	"movel	%0,%/sp\n\t"		/* restore sp                */
        "movec	%1,%/vbr"			/* restore vbr               */
        : : "r" (save_sp), "r" (save_vbr) : "sp"
	);

    return( ret );
}
#endif

/* Basically the same, but writes a value into a word register, protected
 * by a bus error handler */

static int hwreg_write( volatile void *regp, unsigned short val )
{
	int		ret;
	long	save_sp, save_vbr;
	long	tmp_vectors[3];

	__asm__ __volatile__
	(	"movec	%/vbr,%2\n\t"
		"movel	#Lberr2,%4@(8)\n\t"
		"movec	%4,%/vbr\n\t"
		"movel	%/sp,%1\n\t"
		"moveq	#0,%0\n\t"
		"movew	%5,%3@\n\t"  
		"nop	\n\t"	/* If this nop isn't present, 'ret' may already be
				 * loaded with 1 at the time the bus error
				 * happens! */
		"moveq	#1,%0\n"
	"Lberr2:\n\t"
		"movel	%1,%/sp\n\t"
		"movec	%2,%/vbr"
		: "=&d" (ret), "=&r" (save_sp), "=&r" (save_vbr)
		: "a" (regp), "a" (tmp_vectors), "g" (val)
	);

	return( ret );
}

/* ++roman: This is a more elaborate test for an SCC chip, since the plain
 * Medusa board generates DTACK at the SCC's standard addresses, but a SCC
 * board in the Medusa is possible. Also, the addresses where the ST_ESCC
 * resides generate DTACK without the chip, too.
 * The method is to write values into the interrupt vector register, that
 * should be readable without trouble (from channel A!).
 */

static int scc_test( volatile char *ctla )
{
	if (!hwreg_present( ctla ))
		return( 0 );
	MFPDELAY();

	*ctla = 2; MFPDELAY();
	*ctla = 0x40; MFPDELAY();
	
	*ctla = 2; MFPDELAY();
	if (*ctla != 0x40) return( 0 );
	MFPDELAY();

	*ctla = 2; MFPDELAY();
	*ctla = 0x60; MFPDELAY();
	
	*ctla = 2; MFPDELAY();
	if (*ctla != 0x60) return( 0 );

	return( 1 );
}

void config_atari(void)
{
    mach_sched_init      = atari_sched_init;
    mach_keyb_init       = atari_keyb_init;
    mach_kbdrate         = atari_kbdrate;
    mach_kbd_leds        = atari_kbd_leds;
    mach_init_INTS       = atari_init_INTS;
    mach_add_isr         = atari_add_isr;
    mach_remove_isr      = atari_remove_isr;
    mach_enable_irq      = atari_enable_irq;
    mach_disable_irq     = atari_disable_irq;
    mach_get_irq_list	 = atari_get_irq_list;
    mach_gettimeoffset   = atari_gettimeoffset;
    mach_mksound         = atari_mksound;
    mach_reset           = atari_reset;
#ifdef CONFIG_BLK_DEV_FD
    mach_floppy_init	 = atari_floppy_init;
    mach_floppy_setup	 = atari_floppy_setup;
#endif
    conswitchp	         = &fb_con;
    waitbut		 = atari_waitbut;
    mach_fb_init         = atari_fb_init;
    mach_max_dma_address = 0xffffff;
    mach_debug_init	 = atari_debug_init;
    mach_video_setup	 = atari_video_setup;
    kd_mksound		 = atari_mksound;

    /* ++bjoern: 
     * Determine hardware present
     */

    printk( "Atari hardware found: " );
    if (is_medusa) {
        /* There's no Atari video hardware on the Medusa, but all the
         * addresses below generate a DTACK so no bus error occurs! */
    }
    else if (hwreg_present( f030_xreg )) {
	ATARIHW_SET(VIDEL_SHIFTER);
        printk( "VIDEL " );
        /* This is a temporary hack: If there is Falcon video
         * hardware, we assume that the ST-DMA serves SCSI instead of
         * ACSI. In the future, there should be a better method for
         * this...
         */
	ATARIHW_SET(ST_SCSI);
        printk( "STDMA-SCSI " );
    }
    else if (hwreg_present( tt_palette )) {
	ATARIHW_SET(TT_SHIFTER);
        printk( "TT_SHIFTER " );
    }
    else if (hwreg_present( &shifter.bas_hi )) {
        if (hwreg_present( &shifter.bas_lo ) &&
	    (shifter.bas_lo = 0x0aau, shifter.bas_lo == 0x0aau)) {
	    ATARIHW_SET(EXTD_SHIFTER);
            printk( "EXTD_SHIFTER " );
        }
        else {
	    ATARIHW_SET(STND_SHIFTER);
            printk( "STND_SHIFTER " );
        }
    }
    if (hwreg_present( &mfp.par_dt_reg )) {
	ATARIHW_SET(ST_MFP);
        printk( "ST_MFP " );
    }
    if (hwreg_present( &tt_mfp.par_dt_reg )) {
	ATARIHW_SET(TT_MFP);
        printk( "TT_MFP " );
    }
    if (hwreg_present( &tt_scsi_dma.dma_addr_hi )) {
	ATARIHW_SET(SCSI_DMA);
        printk( "TT_SCSI_DMA " );
    }
    if (hwreg_present( &st_dma.dma_hi )) {
	ATARIHW_SET(STND_DMA);
        printk( "STND_DMA " );
    }
    if (is_medusa || /* The ST-DMA address registers aren't readable
                      * on all Medusas, so the test below may fail */
        (hwreg_present( &st_dma.dma_vhi ) &&
         (st_dma.dma_vhi = 0x55) && (st_dma.dma_hi = 0xaa) &&
         st_dma.dma_vhi == 0x55 && st_dma.dma_hi == 0xaa &&
         (st_dma.dma_vhi = 0xaa) && (st_dma.dma_hi = 0x55) &&
         st_dma.dma_vhi == 0xaa && st_dma.dma_hi == 0x55)) {
	ATARIHW_SET(EXTD_DMA);
        printk( "EXTD_DMA " );
    }
    if (hwreg_present( &tt_scsi.scsi_data )) {
	ATARIHW_SET(TT_SCSI);
        printk( "TT_SCSI " );
    }
    if (hwreg_present( &sound_ym.rd_data_reg_sel )) {
	ATARIHW_SET(YM_2149);
        printk( "YM2149 " );
    }
    if (!is_medusa && hwreg_present( &tt_dmasnd.ctrl )) {
	ATARIHW_SET(PCM_8BIT);
        printk( "PCM " );
    }
    if (hwreg_present( (void *)(0xffff8940) )) {
	ATARIHW_SET(CODEC);
        printk( "CODEC " );
    }
    if (hwreg_present( &tt_scc_dma.dma_ctrl ) &&
#if 0
	/* This test sucks! Who knows some better? */
	(tt_scc_dma.dma_ctrl = 0x01, (tt_scc_dma.dma_ctrl & 1) == 1) &&
	(tt_scc_dma.dma_ctrl = 0x00, (tt_scc_dma.dma_ctrl & 1) == 0)
#else
	!is_medusa
#endif
	) {
	ATARIHW_SET(SCC_DMA);
        printk( "SCC_DMA " );
    }
    if (scc_test( &scc.cha_a_ctrl )) {
	ATARIHW_SET(SCC);
        printk( "SCC " );
    }
    if (scc_test( &st_escc.cha_b_ctrl )) {
	ATARIHW_SET( ST_ESCC );
	printk( "ST_ESCC " );
    }
    if (hwreg_present( &tt_scu.sys_mask )) {
	ATARIHW_SET(SCU);
	/* Assume a VME bus if there's a SCU */
	ATARIHW_SET( VME );
        printk( "VME SCU " );
    }
    if (hwreg_present( (void *)(0xffff9210) )) {
	ATARIHW_SET(ANALOG_JOY);
        printk( "ANALOG_JOY " );
    }
    if (hwreg_present( blitter.halftone )) {
	ATARIHW_SET(BLITTER);
        printk( "BLITTER " );
    }
    if (hwreg_present( (void *)(ATA_HD_BASE+ATA_HD_CMD) )) {
	ATARIHW_SET(IDE);
        printk( "IDE " );
    }
#if 1 /* This maybe wrong */
    if (!is_medusa &&
	hwreg_present( &tt_microwire.data ) &&
	hwreg_present( &tt_microwire.mask ) &&
	(tt_microwire.mask = 0x7ff,
	 tt_microwire.data = MW_LM1992_PSG_HIGH | MW_LM1992_ADDR,
	 tt_microwire.data != 0)) {
	ATARIHW_SET(MICROWIRE);
	while (tt_microwire.mask != 0x7ff) ;
        printk( "MICROWIRE " );
    }
#endif
    if (hwreg_present( &tt_rtc.regsel )) {
	ATARIHW_SET(TT_CLK);
        printk( "TT_CLK " );
        mach_gettod = atari_gettod;
        mach_hwclk = atari_hwclk;
        mach_set_clock_mmss = atari_set_clock_mmss;
    }
    if (hwreg_present( &mste_rtc.sec_ones)) {
	ATARIHW_SET(MSTE_CLK);
        printk( "MSTE_CLK ");
        mach_gettod = atari_mste_gettod;
        mach_hwclk = atari_mste_hwclk;
        mach_set_clock_mmss = atari_mste_set_clock_mmss;
    }
    if (!is_medusa &&
	hwreg_present( &dma_wd.fdc_speed ) &&
	hwreg_write( &dma_wd.fdc_speed, 0 )) {
	    ATARIHW_SET(FDCSPEED);
	    printk( "FDC_SPEED ");
    }
    if (!ATARIHW_PRESENT(ST_SCSI)) {
	ATARIHW_SET(ACSI);
        printk( "ACSI " );
    }
    printk("\n");

    if (m68k_is040or060)
        /* Now it seems to be safe to turn of the tt0 transparent
         * translation (the one that must not be turned off in
         * head.S...)
         */
        __asm__ volatile ("moveq #0,%/d0;"
                          ".long 0x4e7b0004;"	/* movec d0,itt0 */
                          ".long 0x4e7b0006;"	/* movec d0,dtt0 */
						  : /* no outputs */
						  : /* no inputs */
						  : "d0");
	
    /* allocator for memory that must reside in st-ram */
    atari_stram_init ();

    /* Set up a mapping for the VMEbus address region:
     *
     * VME is either at phys. 0xfexxxxxx (TT) or 0xa00000..0xdfffff
     * (MegaSTE) In both cases, the whole 16 MB chunk is mapped at
     * 0xfe000000 virt., because this can be done with a single
     * transparent translation. On the 68040, lots of often unused
     * page tables would be needed otherwise. On a MegaSTE or similar,
     * the highest byte is stripped off by hardware due to the 24 bit
     * design of the bus.
     */

    if (!m68k_is040or060) {
        unsigned long	tt1_val;
        tt1_val = 0xfe008543;	/* Translate 0xfexxxxxx, enable, cache
                                 * inhibit, read and write, FDC mask = 3,
                                 * FDC val = 4 -> Supervisor only */
        __asm__ __volatile__ ( "pmove	%0@,%/tt1" : : "a" (&tt1_val) );
    }
    else {
        __asm__ __volatile__
            ( "movel %0,%/d0\n\t"
              ".long 0x4e7b0005\n\t"	/* movec d0,itt1 */
              ".long 0x4e7b0007"	/* movec d0,dtt1 */
              :
              : "g" (0xfe00a040)	/* Translate 0xfexxxxxx, enable,
                                         * supervisor only, non-cacheable/
                                         * serialized, writable */
              : "d0" );

    }
}

void atari_sched_init (isrfunc timer_routine)
{
    /* set Timer C data Register */
    mfp.tim_dt_c = INT_TICKS;
    /* start timer C, div = 1:100 */
    mfp.tim_ct_cd = (mfp.tim_ct_cd & 15) | 0x60; 
    /* install interrupt service routine for MFP Timer C */
    add_isr (IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW, NULL, "timer");
}

/* ++andreas: gettimeoffset fixed to check for pending interrupt */

#define TICK_SIZE 10000
  
/* This is always executed with interrupts disabled.  */
unsigned long atari_gettimeoffset (void)
{
  unsigned long ticks, offset = 0;

  /* read MFP timer C current value */
  ticks = mfp.tim_dt_c;
  /* The probability of underflow is less than 2% */
  if (ticks > INT_TICKS - INT_TICKS / 50)
    /* Check for pending timer interrupt */
    if (mfp.int_pn_b & (1 << 5))
      offset = TICK_SIZE;

  ticks = INT_TICKS - ticks;
  ticks = ticks * 10000L / INT_TICKS;

  return ticks + offset;
}


static void
mste_read(struct MSTE_RTC *val)
{
#define COPY(v) val->v=(mste_rtc.v & 0xf)
	do {
		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; 
		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; 
		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; 
		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
		COPY(year_tens) ;
	/* prevent from reading the clock while it changed */
	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}

static void
mste_write(struct MSTE_RTC *val)
{
#define COPY(v) mste_rtc.v=val->v
	do {
		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ; 
		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ; 
		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ; 
		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
		COPY(year_tens) ;
	/* prevent from writing the clock while it changed */
	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}

#define	RTC_READ(reg)				\
    ({	unsigned char	__val;			\
		outb(reg,&tt_rtc.regsel);	\
		__val = tt_rtc.data;		\
		__val;				\
	})

#define	RTC_WRITE(reg,val)			\
    do {					\
		outb(reg,&tt_rtc.regsel);	\
		tt_rtc.data = (val);		\
	} while(0)


void atari_mste_gettod (int *yearp, int *monp, int *dayp,
			int *hourp, int *minp, int *secp)
{
    int hr24=0;
    struct MSTE_RTC val;

    mste_rtc.mode=(mste_rtc.mode | 1);
    hr24=mste_rtc.mon_tens & 1;
    mste_rtc.mode=(mste_rtc.mode & ~1);

    mste_read(&val);
    *secp = val.sec_ones + val.sec_tens * 10;
    *minp = val.min_ones + val.min_tens * 10;
    if (hr24)
        *hourp = val.hr_ones + val.hr_tens * 10;
    else {
        *hourp = val.hr_ones + (val.hr_tens & 1) * 10;
        if (val.hr_tens & 2)
            *hourp += 12;
    }
    *dayp = val.day_ones + val.day_tens * 10;
    *monp = val.mon_ones + val.mon_tens * 10;
    *yearp = val.year_ones + val.year_tens * 10 + 80;	
}

  
void atari_gettod (int *yearp, int *monp, int *dayp,
		   int *hourp, int *minp, int *secp)
{
    unsigned char	ctrl;
    unsigned short tos_version;
		
    while (!(RTC_READ(RTC_FREQ_SELECT) & RTC_UIP)) ;
    while (RTC_READ(RTC_FREQ_SELECT) & RTC_UIP) ;

    *secp  = RTC_READ(RTC_SECONDS);
    *minp  = RTC_READ(RTC_MINUTES);
    *hourp = RTC_READ(RTC_HOURS);
    *dayp  = RTC_READ(RTC_DAY_OF_MONTH);
    *monp  = RTC_READ(RTC_MONTH);
    *yearp = RTC_READ(RTC_YEAR);

    ctrl = RTC_READ(RTC_CONTROL); 

    if (!(ctrl & RTC_DM_BINARY)) {
        BCD_TO_BIN(*secp);
        BCD_TO_BIN(*minp);
        BCD_TO_BIN(*hourp);
        BCD_TO_BIN(*dayp);
        BCD_TO_BIN(*monp);
        BCD_TO_BIN(*yearp);
    }
    if (!(ctrl & RTC_24H)) {
        if (*hourp & 0x80) {
            *hourp &= ~0x80;
            *hourp += 12;
        }
    }
    /* Adjust values (let the setup valid) */

    /* Fetch tos version at Physical 2 */
    /* We my not be able to access this address if the kernel is
       loaded to st ram, since the first page is unmapped.  On the
       Medusa this is always the case and there is nothing we can do
       about this, so we just assume the smaller offset.  For the TT
       we use the fact that in head.S we have set up a mapping
       0xFFxxxxxx -> 0x00xxxxxx, so that the first 16MB is accessible
       in the last 16MB of the address space. */
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xFF000002;
    *yearp += (tos_version < 0x306) ? 70 : 68;
}

#define HWCLK_POLL_INTERVAL	5

int atari_mste_hwclk( int op, struct hwclk_time *t )
{
    int hour, year;
    int hr24=0;
    struct MSTE_RTC val;
    
    mste_rtc.mode=(mste_rtc.mode | 1);
    hr24=mste_rtc.mon_tens & 1;
    mste_rtc.mode=(mste_rtc.mode & ~1);

    if (op) {
        /* write: prepare values */
        
        val.sec_ones = t->sec % 10;
        val.sec_tens = t->sec / 10;
        val.min_ones = t->min % 10;
        val.min_tens = t->min / 10;
        hour = t->hour;
        val.hr_ones = hour % 10;
        val.hr_tens = hour / 10;
        if (!hr24  && hour > 11) {
            hour -= 12;
            val.hr_ones = hour % 10;
            val.hr_tens = (hour / 10) | 2;
        }
        val.day_ones = t->day % 10;
        val.day_tens = t->day / 10;
        val.mon_ones = (t->mon+1) % 10;
        val.mon_tens = (t->mon+1) / 10;
        year = t->year - 80;
        val.year_ones = year % 10;
        val.year_tens = year / 10;
        val.weekday = t->wday;
        mste_write(&val);
        mste_rtc.mode=(mste_rtc.mode | 1);
        val.year_ones = (year % 4);	/* leap year register */
        mste_rtc.mode=(mste_rtc.mode & ~1);
    }
    else {
        mste_read(&val);
        t->sec = val.sec_ones + val.sec_tens * 10;
        t->min = val.min_ones + val.min_tens * 10;
        if (hr24)
            t->hour = val.hr_ones + val.hr_tens * 10;
        else {
            t->hour = val.hr_ones + (val.hr_tens & 1) * 10;
            if (val.hr_tens & 2)
                t->hour += 12;
        }
	t->day = val.day_ones + val.day_tens * 10;
        t->mon = val.mon_ones + val.mon_tens * 10 - 1;
        t->year = val.year_ones + val.year_tens * 10 + 80;
        t->wday = val.weekday;
    }
    return 0;
}

int atari_hwclk( int op, struct hwclk_time *t )
{
    int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0; 
    unsigned long 	flags;
    unsigned short	tos_version;
    unsigned char	ctrl;

    /* Tos version at Physical 2.  See above for explanation why we
       cannot use PTOV(2).  */
    tos_version = is_medusa ? 0xfff : *(unsigned short *)0xff000002;

    ctrl = RTC_READ(RTC_CONTROL); /* control registers are
                                   * independent from the UIP */

    if (op) {
        /* write: prepare values */
        
        sec  = t->sec;
        min  = t->min;
        hour = t->hour;
        day  = t->day;
        mon  = t->mon + 1;
        year = t->year - ((tos_version < 0x306) ? 70 : 68);
        wday = t->wday + (t->wday >= 0);
        
        if (!(ctrl & RTC_24H) && hour > 11) {
            hour -= 12;
            hour |= 0x80;
        }
        
        if (!(ctrl & RTC_DM_BINARY)) {
            BIN_TO_BCD(sec);
            BIN_TO_BCD(min);
            BIN_TO_BCD(hour);
            BIN_TO_BCD(day);
            BIN_TO_BCD(mon);
            BIN_TO_BCD(year);
            if (wday >= 0) BIN_TO_BCD(wday);
        }
    }
    
    /* Reading/writing the clock registers is a bit critical due to
     * the regular update cycle of the RTC. While an update is in
     * progress, registers 0..9 shouldn't be touched.
     * The problem is solved like that: If an update is currently in
     * progress (the UIP bit is set), the process sleeps for a while
     * (50ms). This really should be enough, since the update cycle
     * normally needs 2 ms.
     * If the UIP bit reads as 0, we have at least 244 usecs until the
     * update starts. This should be enough... But to be sure,
     * additionally the RTC_SET bit is set to prevent an update cycle.
     */

    while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
        current->state = TASK_INTERRUPTIBLE;
        current->timeout = jiffies + HWCLK_POLL_INTERVAL;
        schedule();
    }

    save_flags(flags);
    cli();
    RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
    if (!op) {
        sec  = RTC_READ( RTC_SECONDS );
        min  = RTC_READ( RTC_MINUTES );
        hour = RTC_READ( RTC_HOURS );
        day  = RTC_READ( RTC_DAY_OF_MONTH );
        mon  = RTC_READ( RTC_MONTH );
        year = RTC_READ( RTC_YEAR );
        wday = RTC_READ( RTC_DAY_OF_WEEK );
    }
    else {
        RTC_WRITE( RTC_SECONDS, sec );
        RTC_WRITE( RTC_MINUTES, min );
        RTC_WRITE( RTC_HOURS, hour );
        RTC_WRITE( RTC_DAY_OF_MONTH, day );
        RTC_WRITE( RTC_MONTH, mon );
        RTC_WRITE( RTC_YEAR, year );
        if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
    }
    RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
    restore_flags(flags);

    if (!op) {
        /* read: adjust values */
        
        if (!(ctrl & RTC_DM_BINARY)) {
            BCD_TO_BIN(sec);
            BCD_TO_BIN(min);
            BCD_TO_BIN(hour);
            BCD_TO_BIN(day);
            BCD_TO_BIN(mon);
            BCD_TO_BIN(year);
            BCD_TO_BIN(wday);
        }

        if (!(ctrl & RTC_24H)) {
            if (hour & 0x80) {
                hour &= ~0x80;
                hour += 12;
            }
        }

        t->sec  = sec;
        t->min  = min;
        t->hour = hour;
        t->day  = day;
        t->mon  = mon - 1;
        t->year = year + ((tos_version < 0x306) ? 70 : 68);
        t->wday = wday - 1;
    }

    return( 0 );
}


int atari_mste_set_clock_mmss (unsigned long nowtime)
{
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    struct MSTE_RTC val;
    unsigned char rtc_minutes;

    mste_read(&val);  
    rtc_minutes= val.min_ones + val.min_tens * 10;
    if ((rtc_minutes < real_minutes
         ? real_minutes - rtc_minutes
         : rtc_minutes - real_minutes) < 30)
    {
        val.sec_ones = real_seconds % 10;
        val.sec_tens = real_seconds / 10;
        val.min_ones = real_minutes % 10;
        val.min_tens = real_minutes / 10;
        mste_write(&val);
    }
    else
        return -1;
    return 0;
}

int atari_set_clock_mmss (unsigned long nowtime)
{
    int retval = 0;
    short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
    unsigned char save_control, save_freq_select, rtc_minutes;

    save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
    RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);

    save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);

    rtc_minutes = RTC_READ (RTC_MINUTES);
    if (!(save_control & RTC_DM_BINARY))
        BCD_TO_BIN (rtc_minutes);

    /* Since we're only adjusting minutes and seconds, don't interfere
       with hour overflow.  This avoids messing with unknown time zones
       but requires your RTC not to be off by more than 30 minutes.  */
    if ((rtc_minutes < real_minutes
         ? real_minutes - rtc_minutes
         : rtc_minutes - real_minutes) < 30)
        {
            if (!(save_control & RTC_DM_BINARY))
                {
                    BIN_TO_BCD (real_seconds);
                    BIN_TO_BCD (real_minutes);
                }
            RTC_WRITE (RTC_SECONDS, real_seconds);
            RTC_WRITE (RTC_MINUTES, real_minutes);
        }
    else
        retval = -1;

    RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
    RTC_WRITE (RTC_CONTROL, save_control);
    return retval;
}


void atari_waitbut (void)
{
    /* sorry, no-op */
}


static inline void ata_mfp_out (char c)
{
    while (!(mfp.trn_stat & 0x80)) /* wait for tx buf empty */
	barrier ();
    mfp.usart_dta = c;
}

void ata_mfp_print (const char *str)
{
    for( ; *str; ++str ) {
	if (*str == '\n')
	    ata_mfp_out( '\r' );
	ata_mfp_out( *str );
    }
}

static inline void ata_scc_out (char c)
{
    do {
	MFPDELAY();
    } while (!(scc.cha_b_ctrl & 0x04)); /* wait for tx buf empty */
    MFPDELAY();
    scc.cha_b_data = c;
}

void ata_scc_print (const char *str)
{
    for( ; *str; ++str ) {
	if (*str == '\n')
	    ata_scc_out( '\r' );
	ata_scc_out( *str );
    }
}

static int ata_par_out (char c)
{
    extern unsigned long loops_per_sec;
    unsigned char tmp;
    /* This a some-seconds timeout in case no printer is connected */
    unsigned long i = loops_per_sec > 1 ? loops_per_sec : 10000000;

    while( (mfp.par_dt_reg & 1) && --i ) /* wait for BUSY == L */
	;
    if (!i) return( 0 );
    
    sound_ym.rd_data_reg_sel = 15;  /* select port B */
    sound_ym.wd_data = c;           /* put char onto port */
    sound_ym.rd_data_reg_sel = 14;  /* select port A */
    tmp = sound_ym.rd_data_reg_sel;
    sound_ym.wd_data = tmp & ~0x20; /* set strobe L */
    MFPDELAY();                     /* wait a bit */
    sound_ym.wd_data = tmp | 0x20;  /* set strobe H */
    return( 1 );
}

void ata_par_print (const char *str)
{
    static int printer_present = 1;

    if (!printer_present)
	return;

    for( ; *str; ++str ) {
	if (*str == '\n')
	    if (!ata_par_out( '\r' )) {
		printer_present = 0;
		return;
	    }
	if (!ata_par_out( *str )) {
	    printer_present = 0;
	    return;
	}
    }
}


void atari_debug_init( void )
{
    extern void (*debug_print_proc)(const char *);
    extern char m68k_debug_device[];
    
    if (!strcmp( m68k_debug_device, "ser" )) {
	/* defaults to ser2 for a Falcon and ser1 otherwise */
	strcpy( m68k_debug_device, 
		((boot_info.bi_atari.mch_cookie >> 16) == ATARI_MCH_FALCON) ?
		"ser2" : "ser1" );

    }

    if (!strcmp( m68k_debug_device, "ser1" )) {
	/* ST-MFP Modem1 serial port */
	mfp.trn_stat  &= ~0x01; /* disable TX */
	mfp.usart_ctr  = 0x88;  /* clk 1:16, 8N1 */
	mfp.tim_ct_cd &= 0x70;  /* stop timer D */
	mfp.tim_dt_d   = 2;     /* 9600 bps */
	mfp.tim_ct_cd |= 0x01;  /* start timer D, 1:4 */
	mfp.trn_stat  |= 0x01;  /* enable TX */
	debug_print_proc = ata_mfp_print;
    }
    else if (!strcmp( m68k_debug_device, "ser2" )) {
	/* SCC Modem2 serial port */
	static unsigned char *p, scc_table[] = {
	    9, 12,		/* Reset */
	    4, 0x44,		/* x16, 1 stopbit, no parity */
	    3, 0xc0,		/* receiver: 8 bpc */
	    5, 0xe2,		/* transmitter: 8 bpc, assert dtr/rts */
	    9, 0,		/* no interrupts */
	    10, 0,		/* NRZ */
	    11, 0x50,		/* use baud rate generator */
	    12, 24, 13, 0,	/* 9600 baud */
	    14, 2, 14, 3,	/* use master clock for BRG, enable */
	    3, 0xc1,		/* enable receiver */
	    5, 0xea,		/* enable transmitter */
	    0
	};
	    
	(void)scc.cha_b_ctrl; /* reset reg pointer */
	for( p = scc_table; *p != 0; ) {
	    scc.cha_b_ctrl = *p++;
	    MFPDELAY();
	    scc.cha_b_ctrl = *p++;
	    MFPDELAY();
	}
	debug_print_proc = ata_scc_print;
    }
    else if (!strcmp( m68k_debug_device, "par" )) {
	/* parallel printer */
	atari_turnoff_irq( IRQ_MFP_BUSY ); /* avoid ints */
	sound_ym.rd_data_reg_sel = 7;  /* select mixer control */
	sound_ym.wd_data = 0xff;       /* sound off, ports are output */
	sound_ym.rd_data_reg_sel = 15; /* select port B */
	sound_ym.wd_data = 0;          /* no char */
	sound_ym.rd_data_reg_sel = 14; /* select port A */
	sound_ym.wd_data = sound_ym.rd_data_reg_sel | 0x20; /* strobe H */
	debug_print_proc = ata_par_print;
    }
    else
	debug_print_proc = NULL;
}


void ata_serial_print (const char *str)
{
  int c;

  while (c = *str++, c != 0)
    {
      if (c == '\n')
	{
	  while (!(mfp.trn_stat & (1 << 7)))
	    barrier ();
	  mfp.usart_dta = '\r';
	}
      while (!(mfp.trn_stat & (1 << 7)))
	barrier ();
      mfp.usart_dta = c;
    }
}

/* ++roman:
 *
 * This function does a reset on machines that lack the ability to
 * assert the processor's _RESET signal somehow via hardware. It is
 * based on the fact that you can find the initial SP and PC values
 * after a reset at physical addresses 0 and 4. This works pretty well
 * for Atari machines, since the lowest 8 bytes of physical memory are
 * really ROM (mapped by hardware). For other 680x0 machines: don't
 * know if it works...
 *
 * To get the values at addresses 0 and 4, the MMU better is turned
 * off first. After that, we have to jump into physical address space
 * (the PC before the pmove statement points to the virtual address of
 * the code). Getting that physical address is not hard, but the code
 * becomes a bit complex since I've tried to ensure that the jump
 * statement after the pmove is in the cache already (otherwise the
 * processor can't fetch it!). For that, the code first jumps to the
 * jump statement with the (virtual) address of the pmove section in
 * an address register . The jump statement is surely in the cache
 * now. After that, that physical address of the reset code is loaded
 * into the same address register, pmove is done and the same jump
 * statements goes to the reset code. Since there are not many
 * statements between the two jumps, I hope it stays in the cache.
 *
 * The C code makes heavy use of the GCC features that you can get the
 * address of a C label. No hope to compile this with another compiler
 * than GCC!
 */
  
/* ++andreas: no need for complicated code, just depend on prefetch */

void atari_reset (void)
{
    long tc_val = 0;
    long reset_addr;

    /* On the Medusa, phys. 0x4 may contain garbage because it's no
       ROM.  See above for explanation why we cannot use PTOV(4). */
    reset_addr = is_medusa ? 0xe00030 : *(unsigned long *) 0xff000004;

    acia.key_ctrl = ACIA_RESET;             /* reset ACIA for switch off OverScan, if it's active */

    /* processor independent: turn off interrupts and reset the VBR;
     * the caches must be left enabled, else prefetching the final jump
     * instruction doesn't work. */
    cli();
    __asm__ __volatile__
	("moveq	#0,%/d0\n\t"
	 "movec	%/d0,%/vbr"
	 : : : "d0" );
    
    if (m68k_is040or060) {
        unsigned long jmp_addr040 = VTOP(&&jmp_addr_label040);
	if (m68k_is040or060 == 6) {
	    /* 68060: clear PCR to turn off superscalar operation */
	    __asm__ __volatile__
		("moveq	#0,%/d0\n\t"
		 ".long	0x4e7b0808"	/* movec d0,pcr */
		 : : : "d0" );
	}
	    
        __asm__ __volatile__
            ("movel    %0,%/d0\n\t"
             "andl     #0xff000000,%/d0\n\t"
             "orw      #0xe020,%/d0\n\t"   /* map 16 MB, enable, cacheable */
             ".long    0x4e7b0004\n\t"   /* movec d0,itt0 */
             ".long    0x4e7b0006\n\t"   /* movec d0,dtt0 */
             "jmp   %0@\n\t"
             : /* no outputs */
             : "a" (jmp_addr040)
             : "d0" );
      jmp_addr_label040:
        __asm__ __volatile__
          ("moveq #0,%/d0\n\t"
	   "nop\n\t"
	   ".word 0xf4d8\n\t"		/* cinva i/d */
	   ".word 0xf518\n\t"		/* pflusha */
           ".long 0x4e7b0003\n\t"	/* movec d0,tc */
           "jmp %0@"
           : /* no outputs */
           : "a" (reset_addr)
           : "d0");
    }
    else
        __asm__ __volatile__
            ("pmove %0@,%/tc\n\t"
             "jmp %1@"
             : /* no outputs */
             : "a" (&tc_val), "a" (reset_addr));
}


void atari_get_model(char *model)
{
    strcpy(model, "Atari ");
    switch (boot_info.bi_atari.mch_cookie >> 16) {
	case ATARI_MCH_ST:
	    if (ATARIHW_PRESENT(MSTE_CLK))
		strcat (model, "Mega ST");
	    else
		strcat (model, "ST");
	    break;
	case ATARI_MCH_STE:
	    if ((boot_info.bi_atari.mch_cookie & 0xffff) == 0x10)
		strcat (model, "Mega STE");
	    else
		strcat (model, "STE");
	    break;
	case ATARI_MCH_TT:
	    if (is_medusa)
		/* Medusa has TT _MCH cookie */
		strcat (model, "Medusa");
	    else
		strcat (model, "TT");
	    break;
	case ATARI_MCH_FALCON:
	    strcat (model, "Falcon");
	    break;
	default:
	    sprintf (model + strlen (model), "(unknown mach cookie 0x%lx)",
		     boot_info.bi_atari.mch_cookie);
	    break;
    }
}


int atari_get_hardware_list(char *buffer)
{
    int len = 0, i;

    for (i = 0; i < boot_info.num_memory; i++)
	len += sprintf (buffer+len, "\t%3ld MB at 0x%08lx (%s)\n",
			boot_info.memory[i].size >> 20,
			boot_info.memory[i].addr,
			(boot_info.memory[i].addr & 0xff000000 ?
			 "alternate RAM" : "ST-RAM"));

#define ATARIHW_ANNOUNCE(name,str)				\
    if (ATARIHW_PRESENT(name))			\
	len += sprintf (buffer + len, "\t%s\n", str)

    len += sprintf (buffer + len, "Detected hardware:\n");
    ATARIHW_ANNOUNCE(STND_SHIFTER, "ST Shifter");
    ATARIHW_ANNOUNCE(EXTD_SHIFTER, "STe Shifter");
    ATARIHW_ANNOUNCE(TT_SHIFTER, "TT Shifter");
    ATARIHW_ANNOUNCE(VIDEL_SHIFTER, "Falcon Shifter");
    ATARIHW_ANNOUNCE(YM_2149, "Programmable Sound Generator");
    ATARIHW_ANNOUNCE(PCM_8BIT, "PCM 8 Bit Sound");
    ATARIHW_ANNOUNCE(CODEC, "CODEC Sound");
    ATARIHW_ANNOUNCE(TT_SCSI, "SCSI Controller NCR5380 (TT style)");
    ATARIHW_ANNOUNCE(ST_SCSI, "SCSI Controller NCR5380 (Falcon style)");
    ATARIHW_ANNOUNCE(ACSI, "ACSI Interface");
    ATARIHW_ANNOUNCE(IDE, "IDE Interface");
    ATARIHW_ANNOUNCE(FDCSPEED, "8/16 Mhz Switch for FDC");
    ATARIHW_ANNOUNCE(ST_MFP, "Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(TT_MFP, "Second Multi Function Peripheral MFP 68901");
    ATARIHW_ANNOUNCE(SCC, "Serial Communications Controller SCC 8530");
    ATARIHW_ANNOUNCE(ST_ESCC, "Extended Serial Communications Controller SCC 85230");
    ATARIHW_ANNOUNCE(ANALOG_JOY, "Paddle Interface");
    ATARIHW_ANNOUNCE(MICROWIRE, "MICROWIRE(tm) Interface");
    ATARIHW_ANNOUNCE(STND_DMA, "DMA Controller (24 bit)");
    ATARIHW_ANNOUNCE(EXTD_DMA, "DMA Controller (32 bit)");
    ATARIHW_ANNOUNCE(SCSI_DMA, "DMA Controller for NCR5380");
    ATARIHW_ANNOUNCE(SCC_DMA, "DMA Controller for SCC");
    ATARIHW_ANNOUNCE(TT_CLK, "Clock Chip MC146818A");
    ATARIHW_ANNOUNCE(MSTE_CLK, "Clock Chip RP5C15");
    ATARIHW_ANNOUNCE(SCU, "System Control Unit");
    ATARIHW_ANNOUNCE(BLITTER, "Blitter");
    ATARIHW_ANNOUNCE(VME, "VME Bus");

    return(len);
}