Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
 *  linux/fs/exec.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 */

/*
 * #!-checking implemented by tytso.
 */
/*
 * Demand-loading implemented 01.12.91 - no need to read anything but
 * the header into memory. The inode of the executable is put into
 * "current->executable", and page faults do the actual loading. Clean.
 *
 * Once more I can proudly say that linux stood up to being changed: it
 * was less than 2 hours work to get demand-loading completely implemented.
 *
 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 * current->executable is only used by the procfs.  This allows a dispatch
 * table to check for several different types  of binary formats.  We keep
 * trying until we recognize the file or we run out of supported binary
 * formats. 
 */

#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/a.out.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/malloc.h>
#include <linux/binfmts.h>
#include <linux/personality.h>

#include <asm/system.h>
#include <asm/segment.h>
#include <asm/pgtable.h>

#include <linux/config.h>
#ifdef CONFIG_KERNELD
#include <linux/kerneld.h>
#endif

asmlinkage int sys_exit(int exit_code);
asmlinkage int sys_brk(unsigned long);

/*
 * Here are the actual binaries that will be accepted:
 * add more with "register_binfmt()" if using modules...
 *
 * These are defined again for the 'real' modules if you are using a
 * module definition for these routines.
 */

static struct linux_binfmt *formats = (struct linux_binfmt *) NULL;

void binfmt_setup(void)
{
#ifdef CONFIG_BINFMT_ELF
	init_elf_binfmt();
#endif

#ifdef CONFIG_BINFMT_AOUT
	init_aout_binfmt();
#endif

#ifdef CONFIG_BINFMT_JAVA
	init_java_binfmt();
#endif
	/* This cannot be configured out of the kernel */
	init_script_binfmt();
}

int register_binfmt(struct linux_binfmt * fmt)
{
	struct linux_binfmt ** tmp = &formats;

	if (!fmt)
		return -EINVAL;
	if (fmt->next)
		return -EBUSY;
	while (*tmp) {
		if (fmt == *tmp)
			return -EBUSY;
		tmp = &(*tmp)->next;
	}
	fmt->next = formats;
	formats = fmt;
	return 0;	
}

#ifdef CONFIG_MODULES
int unregister_binfmt(struct linux_binfmt * fmt)
{
	struct linux_binfmt ** tmp = &formats;

	while (*tmp) {
		if (fmt == *tmp) {
			*tmp = fmt->next;
			return 0;
		}
		tmp = &(*tmp)->next;
	}
	return -EINVAL;
}
#endif	/* CONFIG_MODULES */

int open_inode(struct inode * inode, int mode)
{
	int fd;

	if (!inode->i_op || !inode->i_op->default_file_ops)
		return -EINVAL;
	fd = get_unused_fd();
	if (fd >= 0) {
		struct file * f = get_empty_filp();
		if (!f) {
			put_unused_fd(fd);
			return -ENFILE;
		}
		f->f_flags = mode;
		f->f_mode = (mode+1) & O_ACCMODE;
		f->f_inode = inode;
		f->f_pos = 0;
		f->f_reada = 0;
		f->f_op = inode->i_op->default_file_ops;
		if (f->f_op->open) {
			int error = f->f_op->open(inode,f);
			if (error) {
				f->f_count--;
				put_unused_fd(fd);
				return error;
			}
		}
		current->files->fd[fd] = f;
		inode->i_count++;
	}
	return fd;
}

/*
 * Note that a shared library must be both readable and executable due to
 * security reasons.
 *
 * Also note that we take the address to load from from the file itself.
 */
asmlinkage int sys_uselib(const char * library)
{
	int fd, retval;
	struct file * file;
	struct linux_binfmt * fmt;

	fd = sys_open(library, 0, 0);
	if (fd < 0)
		return fd;
	file = current->files->fd[fd];
	retval = -ENOEXEC;
	if (file && file->f_inode && file->f_op && file->f_op->read) {
		for (fmt = formats ; fmt ; fmt = fmt->next) {
			int (*fn)(int) = fmt->load_shlib;
			if (!fn)
				continue;
			retval = fn(fd);
			if (retval != -ENOEXEC)
				break;
		}
	}
	sys_close(fd);
  	return retval;
}

/*
 * count() counts the number of arguments/envelopes
 *
 * We also do some limited EFAULT checking: this isn't complete, but
 * it does cover most cases. I'll have to do this correctly some day..
 */
static int count(char ** argv)
{
	int error, i = 0;
	char ** tmp, *p;

	if ((tmp = argv) != NULL) {
		error = verify_area(VERIFY_READ, tmp, sizeof(char *));
		if (error)
			return error;
		while ((p = get_user(tmp++)) != NULL) {
			i++;
			error = verify_area(VERIFY_READ, p, 1);
			if (error)
				return error;
		}
	}
	return i;
}

/*
 * 'copy_string()' copies argument/envelope strings from user
 * memory to free pages in kernel mem. These are in a format ready
 * to be put directly into the top of new user memory.
 *
 * Modified by TYT, 11/24/91 to add the from_kmem argument, which specifies
 * whether the string and the string array are from user or kernel segments:
 * 
 * from_kmem     argv *        argv **
 *    0          user space    user space
 *    1          kernel space  user space
 *    2          kernel space  kernel space
 * 
 * We do this by playing games with the fs segment register.  Since it
 * is expensive to load a segment register, we try to avoid calling
 * set_fs() unless we absolutely have to.
 */
unsigned long copy_strings(int argc,char ** argv,unsigned long *page,
		unsigned long p, int from_kmem)
{
	char *tmp, *tmp1, *pag = NULL;
	int len, offset = 0;
	unsigned long old_fs, new_fs;

	if (!p)
		return 0;	/* bullet-proofing */
	new_fs = get_ds();
	old_fs = get_fs();
	if (from_kmem==2)
		set_fs(new_fs);
	while (argc-- > 0) {
		if (from_kmem == 1)
			set_fs(new_fs);
		if (!(tmp1 = tmp = get_user(argv+argc)))
			panic("VFS: argc is wrong");
		if (from_kmem == 1)
			set_fs(old_fs);
		while (get_user(tmp++));
		len = tmp - tmp1;
		if (p < len) {	/* this shouldn't happen - 128kB */
			set_fs(old_fs);
			return 0;
		}
		while (len) {
			--p; --tmp; --len;
			if (--offset < 0) {
				offset = p % PAGE_SIZE;
				if (from_kmem==2)
					set_fs(old_fs);
				if (!(pag = (char *) page[p/PAGE_SIZE]) &&
				    !(pag = (char *) page[p/PAGE_SIZE] =
				      (unsigned long *) get_free_page(GFP_USER))) 
					return 0;
				if (from_kmem==2)
					set_fs(new_fs);

			}
			if (len == 0 || offset == 0)
			  *(pag + offset) = get_user(tmp);
			else {
			  int bytes_to_copy = (len > offset) ? offset : len;
			  tmp -= bytes_to_copy;
			  p -= bytes_to_copy;
			  offset -= bytes_to_copy;
			  len -= bytes_to_copy;
			  memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
			}
		}
	}
	if (from_kmem==2)
		set_fs(old_fs);
	return p;
}

unsigned long setup_arg_pages(unsigned long p, struct linux_binprm * bprm)
{
	unsigned long stack_base;
	struct vm_area_struct *mpnt;
	int i;

	stack_base = STACK_TOP - MAX_ARG_PAGES*PAGE_SIZE;

	p += stack_base;
	if (bprm->loader)
		bprm->loader += stack_base;
	bprm->exec += stack_base;

	mpnt = (struct vm_area_struct *)kmalloc(sizeof(*mpnt), GFP_KERNEL);
	if (mpnt) {
		mpnt->vm_mm = current->mm;
		mpnt->vm_start = PAGE_MASK & (unsigned long) p;
		mpnt->vm_end = STACK_TOP;
		mpnt->vm_page_prot = PAGE_COPY;
		mpnt->vm_flags = VM_STACK_FLAGS;
		mpnt->vm_ops = NULL;
		mpnt->vm_offset = 0;
		mpnt->vm_inode = NULL;
		mpnt->vm_pte = 0;
		insert_vm_struct(current->mm, mpnt);
		current->mm->total_vm = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;

		for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
			if (bprm->page[i]) {
				current->mm->rss++;
				put_dirty_page(current,bprm->page[i],stack_base);
			}
			stack_base += PAGE_SIZE;
		}
	} else {
		/*
		 * This one is tricky. We are already in the new context, so we cannot
		 * return with -ENOMEM. So we _have_ to deallocate argument pages here,
		 * if there is no VMA, they wont be freed at exit_mmap() -> memory leak.
		 *
		 * User space then gets a SIGSEGV when it tries to access argument pages.
		 */
		for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
			if (bprm->page[i]) {
				free_page(bprm->page[i]);
				bprm->page[i] = 0;
			}
		}
	}

	return p;
}

/*
 * Read in the complete executable. This is used for "-N" files
 * that aren't on a block boundary, and for files on filesystems
 * without bmap support.
 */
int read_exec(struct inode *inode, unsigned long offset,
	char * addr, unsigned long count, int to_kmem)
{
	struct file file;
	int result = -ENOEXEC;

	if (!inode->i_op || !inode->i_op->default_file_ops)
		goto end_readexec;
	file.f_mode = 1;
	file.f_flags = 0;
	file.f_count = 1;
	file.f_inode = inode;
	file.f_pos = 0;
	file.f_reada = 0;
	file.f_op = inode->i_op->default_file_ops;
	if (file.f_op->open)
		if (file.f_op->open(inode,&file))
			goto end_readexec;
	if (!file.f_op || !file.f_op->read)
		goto close_readexec;
	if (file.f_op->lseek) {
		if (file.f_op->lseek(inode,&file,offset,0) != offset)
 			goto close_readexec;
	} else
		file.f_pos = offset;
	if (to_kmem) {
		unsigned long old_fs = get_fs();
		set_fs(get_ds());
		result = file.f_op->read(inode, &file, addr, count);
		set_fs(old_fs);
	} else {
		result = verify_area(VERIFY_WRITE, addr, count);
		if (result)
			goto close_readexec;
		result = file.f_op->read(inode, &file, addr, count);
	}
close_readexec:
	if (file.f_op->release)
		file.f_op->release(inode,&file);
end_readexec:
	return result;
}

static int exec_mmap(void)
{
	/*
	 * The clear_page_tables done later on exec does the right thing
	 * to the page directory when shared, except for graceful abort
	 */
	if (current->mm->count > 1) {
		struct mm_struct *old_mm, *mm = kmalloc(sizeof(*mm), GFP_KERNEL);
		if (!mm)
			return -ENOMEM;

		*mm = *current->mm;
		mm->def_flags = 0;	/* should future lockings be kept? */
		mm->count = 1;
		mm->mmap = NULL;
		mm->mmap_avl = NULL;
		mm->total_vm = 0;
		mm->rss = 0;

		old_mm = current->mm;
		current->mm = mm;
		if (new_page_tables(current)) {
			/* The pgd belongs to the parent ... don't free it! */
			mm->pgd = NULL;
			current->mm = old_mm;
			exit_mmap(mm);
			kfree(mm);
			return -ENOMEM;
		}

		if ((old_mm != &init_mm) && (!--old_mm->count)) {
			/*
			 * all threads exited while we were sleeping, 'old_mm' is held
			 * by us exclusively, lets get rid of it:
			 */
			exit_mmap(old_mm);
			free_page_tables(old_mm);
			kfree(old_mm);
		}

		return 0;
	}
	flush_cache_mm(current->mm);
	exit_mmap(current->mm);
	clear_page_tables(current);
	flush_tlb_mm(current->mm);

	return 0;
}

/*
 * These functions flushes out all traces of the currently running executable
 * so that a new one can be started
 */

static inline void flush_old_signals(struct signal_struct *sig)
{
	int i;
	struct sigaction * sa = sig->action;

	for (i=32 ; i != 0 ; i--) {
		sa->sa_mask = 0;
		sa->sa_flags = 0;
		if (sa->sa_handler != SIG_IGN)
			sa->sa_handler = NULL;
		sa++;
	}
}

static inline void flush_old_files(struct files_struct * files)
{
	unsigned long j;

	j = 0;
	for (;;) {
		unsigned long set, i;

		i = j * __NFDBITS;
		if (i >= NR_OPEN)
			break;
		set = files->close_on_exec.fds_bits[j];
		files->close_on_exec.fds_bits[j] = 0;
		j++;
		for ( ; set ; i++,set >>= 1) {
			if (set & 1)
				sys_close(i);
		}
	}
}

int flush_old_exec(struct linux_binprm * bprm)
{
	int i;
	int ch;
	char * name;

	if (current->euid == current->uid && current->egid == current->gid)
		current->dumpable = 1;
	name = bprm->filename;
	for (i=0; (ch = *(name++)) != '\0';) {
		if (ch == '/')
			i = 0;
		else
			if (i < 15)
				current->comm[i++] = ch;
	}
	current->comm[i] = '\0';

	/* Release all of the old mmap stuff. */
	if (exec_mmap())
		return -ENOMEM;

	flush_thread();

	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 
	    permission(bprm->inode,MAY_READ))
		current->dumpable = 0;

	flush_old_signals(current->sig);
	flush_old_files(current->files);

	return 0;
}

/* 
 * Fill the binprm structure from the inode. 
 * Check permissions, then read the first 512 bytes
 */
int prepare_binprm(struct linux_binprm *bprm)
{
	int mode;
	int retval,id_change;

	mode = bprm->inode->i_mode;
	if (!S_ISREG(mode))			/* must be regular file */
		return -EACCES;
	if (!(mode & 0111))			/* with at least _one_ execute bit set */
		return -EACCES;
	if (IS_NOEXEC(bprm->inode))		/* FS mustn't be mounted noexec */
		return -EACCES;
	if (!bprm->inode->i_sb)
		return -EACCES;
	if ((retval = permission(bprm->inode, MAY_EXEC)) != 0)
		return retval;
	/* better not execute files which are being written to */
	if (bprm->inode->i_writecount > 0)
		return -ETXTBSY;

	bprm->e_uid = current->euid;
	bprm->e_gid = current->egid;
	id_change = 0;

	/* Set-uid? */
	if (mode & S_ISUID) {
		bprm->e_uid = bprm->inode->i_uid;
		if (bprm->e_uid != current->euid)
			id_change = 1;
	}

	/* Set-gid? */
	/*
	 * If setgid is set but no group execute bit then this
	 * is a candidate for mandatory locking, not a setgid
	 * executable.
	 */
	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
		bprm->e_gid = bprm->inode->i_gid;
		if (!in_group_p(bprm->e_gid))
			id_change = 1;
	}

	if (id_change) {
		/* We can't suid-execute if we're sharing parts of the executable */
		/* or if we're being traced (or if suid execs are not allowed)    */
		/* (current->mm->count > 1 is ok, as we'll get a new mm anyway)   */
		if (IS_NOSUID(bprm->inode)
		    || (current->flags & PF_PTRACED)
		    || (current->fs->count > 1)
		    || (current->sig->count > 1)
		    || (current->files->count > 1)) {
			if (!suser())
				return -EPERM;
		}
	}

	memset(bprm->buf,0,sizeof(bprm->buf));
	return read_exec(bprm->inode,0,bprm->buf,128,1);
}

void remove_arg_zero(struct linux_binprm *bprm)
{
	if (bprm->argc) {
		unsigned long offset;
		char * page;
		offset = bprm->p % PAGE_SIZE;
		page = (char*)bprm->page[bprm->p/PAGE_SIZE];
		while(bprm->p++,*(page+offset++))
			if(offset==PAGE_SIZE){
				offset=0;
				page = (char*)bprm->page[bprm->p/PAGE_SIZE];
			}
		bprm->argc--;
	}
}

/*
 * cycle the list of binary formats handler, until one recognizes the image
 */
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
{
	int try,retval=0;
	struct linux_binfmt *fmt;
#ifdef __alpha__
	/* handle /sbin/loader.. */
	{
	    struct exec * eh = (struct exec *) bprm->buf;

	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
		(eh->fh.f_flags & 0x3000) == 0x3000)
	    {
		char * dynloader[] = { "/sbin/loader" };
		iput(bprm->inode);
		bprm->dont_iput = 1;
		remove_arg_zero(bprm);
		bprm->p = copy_strings(1, dynloader, bprm->page, bprm->p, 2);
		bprm->argc++;
		bprm->loader = bprm->p;
		retval = open_namei(dynloader[0], 0, 0, &bprm->inode, NULL);
		if (retval)
			return retval;
		bprm->dont_iput = 0;
		retval = prepare_binprm(bprm);
		if (retval<0)
			return retval;
		/* should call search_binary_handler recursively here,
		   but it does not matter */
	    }
	}
#endif
	for (try=0; try<2; try++) {
		for (fmt = formats ; fmt ; fmt = fmt->next) {
			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
			if (!fn)
				continue;
			retval = fn(bprm, regs);
			if (retval >= 0) {
				if(!bprm->dont_iput)
					iput(bprm->inode);
				bprm->dont_iput=1;
				current->did_exec = 1;
				return retval;
			}
			if (retval != -ENOEXEC)
				break;
			if (bprm->dont_iput) /* We don't have the inode anymore*/
				return retval;
		}
		if (retval != -ENOEXEC) {
			break;
#ifdef CONFIG_KERNELD
		}else{
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
			char modname[20];
			if (printable(bprm->buf[0]) &&
			    printable(bprm->buf[1]) &&
			    printable(bprm->buf[2]) &&
			    printable(bprm->buf[3]))
				break; /* -ENOEXEC */
			sprintf(modname, "binfmt-%hd", *(short*)(&bprm->buf));
			request_module(modname);
#endif
		}
	}
	return retval;
}


/*
 * sys_execve() executes a new program.
 */
int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)
{
	struct linux_binprm bprm;
	int retval;
	int i;

	bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
	for (i=0 ; i<MAX_ARG_PAGES ; i++)	/* clear page-table */
		bprm.page[i] = 0;
	retval = open_namei(filename, 0, 0, &bprm.inode, NULL);
	if (retval)
		return retval;
	bprm.filename = filename;
	bprm.sh_bang = 0;
	bprm.loader = 0;
	bprm.exec = 0;
	bprm.dont_iput = 0;
	if ((bprm.argc = count(argv)) < 0)
		return bprm.argc;
	if ((bprm.envc = count(envp)) < 0)
		return bprm.envc;

	retval = prepare_binprm(&bprm);
	
	if(retval>=0) {
		bprm.p = copy_strings(1, &bprm.filename, bprm.page, bprm.p, 2);
		bprm.exec = bprm.p;
		bprm.p = copy_strings(bprm.envc,envp,bprm.page,bprm.p,0);
		bprm.p = copy_strings(bprm.argc,argv,bprm.page,bprm.p,0);
		if (!bprm.p)
			retval = -E2BIG;
	}

	if(retval>=0)
		retval = search_binary_handler(&bprm,regs);
	if(retval>=0)
		/* execve success */
		return retval;

	/* Something went wrong, return the inode and free the argument pages*/
	if(!bprm.dont_iput)
		iput(bprm.inode);
	for (i=0 ; i<MAX_ARG_PAGES ; i++)
		free_page(bprm.page[i]);
	return(retval);
}