/*
* linux/kernel/floppy.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1993, 1994 Alain Knaff
*/
/*
* 02.12.91 - Changed to static variables to indicate need for reset
* and recalibrate. This makes some things easier (output_byte reset
* checking etc), and means less interrupt jumping in case of errors,
* so the code is hopefully easier to understand.
*/
/*
* This file is certainly a mess. I've tried my best to get it working,
* but I don't like programming floppies, and I have only one anyway.
* Urgel. I should check for more errors, and do more graceful error
* recovery. Seems there are problems with several drives. I've tried to
* correct them. No promises.
*/
/*
* As with hd.c, all routines within this file can (and will) be called
* by interrupts, so extreme caution is needed. A hardware interrupt
* handler may not sleep, or a kernel panic will happen. Thus I cannot
* call "floppy-on" directly, but have to set a special timer interrupt
* etc.
*/
/*
* 28.02.92 - made track-buffering routines, based on the routines written
* by entropy@wintermute.wpi.edu (Lawrence Foard). Linus.
*/
/*
* Automatic floppy-detection and formatting written by Werner Almesberger
* (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with
* the floppy-change signal detection.
*/
/*
* 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed
* FDC data overrun bug, added some preliminary stuff for vertical
* recording support.
*
* 1992/9/17: Added DMA allocation & DMA functions. -- hhb.
*
* TODO: Errors are still not counted properly.
*/
/* 1992/9/20
* Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl)
* modelled after the freeware MS/DOS program fdformat/88 V1.8 by
* Christoph H. Hochst\"atter.
* I have fixed the shift values to the ones I always use. Maybe a new
* ioctl() should be created to be able to modify them.
* There is a bug in the driver that makes it impossible to format a
* floppy as the first thing after bootup.
*/
/*
* 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and
* this helped the floppy driver as well. Much cleaner, and still seems to
* work.
*/
/* 1994/6/24 --bbroad-- added the floppy table entries and made
* minor modifications to allow 2.88 floppies to be run.
*/
/* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more
* disk types.
*/
/*
* 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger
* format bug fixes, but unfortunately some new bugs too...
*/
/* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write
* errors to allow safe writing by specialized programs.
*/
/* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks
* by defining bit 1 of the "stretch" parameter to mean put sectors on the
* opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's
* drives are "upside-down").
*/
#define CONFIG_FLOPPY_SANITY
#undef CONFIG_FLOPPY_SILENT_DCL_CLEAR
#define REALLY_SLOW_IO
#define DEBUGT 2
#define DCL_DEBUG /* debug disk change line */
#include <linux/config.h>
/* do print messages for unexpected interrupts */
static int print_unex=1;
#ifdef MODULE
#define FD_MODULE
#include <linux/module.h>
/*
* NB. we must include the kernel idenfication string in to install the module.
*/
#include <linux/version.h>
char kernel_version[] = UTS_RELEASE;
int FLOPPY_IRQ=6;
int FLOPPY_DMA=2;
int ALLOWED_DRIVE_MASK = 0x33;
int FDC1 = 0x3f0;
int FDC2 = -1;
#endif
#ifndef FD_MODULE
/* the following is the mask of allowed drives. By default units 2 and
* 3 of both floppy controllers are disabled, because switching on the
* motor of these drives causes system hangs on some PCI computers. drive
* 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
* a drive is allowed. */
static int ALLOWED_DRIVE_MASK=0x33;
#define FLOPPY_IRQ 6
#define FLOPPY_DMA 2
#define FDC1 0x3f0
static int FDC2=-1;
#endif
#define MODULE_AWARE_DRIVER
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/tqueue.h>
#define FDPATCHES
#include <linux/fdreg.h>
#include <linux/fd.h>
#include <linux/errno.h>
#include <linux/malloc.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h> /* CMOS defines */
#include <linux/ioport.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#define MAJOR_NR FLOPPY_MAJOR
#include "blk.h"
/* Dma Memory related stuff */
/* Pure 2^n version of get_order */
static inline int __get_order (int size)
{
int order;
#ifdef _ASM_IO_H2
__asm__ __volatile__("bsr %1,%0"
: "=r" (order)
: "r" (size / PAGE_SIZE) );
#else
for (order = 0; order < NR_MEM_LISTS; ++order)
if (size <= (PAGE_SIZE << order))
return order;
#endif
return NR_MEM_LISTS;
}
static unsigned long dma_mem_alloc(int size)
{
int order = __get_order(size);
if (order >= NR_MEM_LISTS)
return(0);
return __get_dma_pages(GFP_KERNEL,order);
}
/* End dma memory related stuff */
static unsigned int fake_change = 0;
static int initialising=1;
/*
* Again, the CMOS information doesn't work on the alpha..
*/
#ifdef __alpha__
#define FLOPPY0_TYPE 6
#define FLOPPY1_TYPE 0
#else
#define FLOPPY0_TYPE ((CMOS_READ(0x10) >> 4) & 15)
#define FLOPPY1_TYPE (CMOS_READ(0x10) & 15)
#endif
#define N_FDC 2
#define N_DRIVE 8
#define TYPE(x) ( ((x)>>2) & 0x1f )
#define DRIVE(x) ( ((x)&0x03) | (((x)&0x80 ) >> 5))
#define UNIT(x) ( (x) & 0x03 ) /* drive on fdc */
#define FDC(x) ( ((x) & 0x04) >> 2 ) /* fdc of drive */
#define REVDRIVE(fdc, unit) ( (unit) + ((fdc) << 2 ))
/* reverse mapping from unit and fdc to drive */
#define DP (&drive_params[current_drive])
#define DRS (&drive_state[current_drive])
#define DRWE (&write_errors[current_drive])
#define FDCS (&fdc_state[fdc])
#define CLEARF(x) (clear_bit(x##_BIT, &DRS->flags))
#define SETF(x) (set_bit(x##_BIT, &DRS->flags))
#define TESTF(x) (test_bit(x##_BIT, &DRS->flags))
#define UDP (&drive_params[drive])
#define UDRS (&drive_state[drive])
#define UDRWE (&write_errors[drive])
#define UFDCS (&fdc_state[FDC(drive)])
#define UCLEARF(x) (clear_bit(x##_BIT, &UDRS->flags))
#define USETF(x) (set_bit(x##_BIT, &UDRS->flags))
#define UTESTF(x) (test_bit(x##_BIT, &UDRS->flags))
#define DPRINT(x) printk(DEVICE_NAME "%d: " x,current_drive)
#define DPRINT1(x,x1) \
printk(DEVICE_NAME "%d: " x,current_drive,(x1))
#define DPRINT2(x,x1,x2) \
printk(DEVICE_NAME "%d: " x,current_drive,(x1),(x2))
#define DPRINT3(x,x1,x2,x3) \
printk(DEVICE_NAME "%d: " x,current_drive,(x1),(x2),(x3))
#define PH_HEAD(floppy,head) (((((floppy)->stretch & 2) >>1) ^ head) << 2)
#define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)
/* read/write */
#define COMMAND raw_cmd.cmd[0]
#define DR_SELECT raw_cmd.cmd[1]
#define TRACK raw_cmd.cmd[2]
#define HEAD raw_cmd.cmd[3]
#define SECTOR raw_cmd.cmd[4]
#define SIZECODE raw_cmd.cmd[5]
#define SECT_PER_TRACK raw_cmd.cmd[6]
#define GAP raw_cmd.cmd[7]
#define SIZECODE2 raw_cmd.cmd[8]
#define NR_RW 9
/* format */
#define F_SIZECODE raw_cmd.cmd[2]
#define F_SECT_PER_TRACK raw_cmd.cmd[3]
#define F_GAP raw_cmd.cmd[4]
#define F_FILL raw_cmd.cmd[5]
#define NR_F 6
/*
* Maximum disk size (in kilobytes). This default is used whenever the
* current disk size is unknown.
* [Now it is rather a minimum]
*/
#define MAX_DISK_SIZE 2 /* 3984*/
#define K_64 0x10000 /* 64KB */
/*
* The DMA channel used by the floppy controller cannot access data at
* addresses >= 16MB
*
* Went back to the 1MB limit, as some people had problems with the floppy
* driver otherwise. It doesn't matter much for performance anyway, as most
* floppy accesses go through the track buffer.
*/
#ifdef __alpha__
# define CROSS_64KB(a,s) (0)
#else
# define CROSS_64KB(a,s) \
((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64)
#endif
/*
* globals used by 'result()'
*/
#define MAX_REPLIES 10
static unsigned char reply_buffer[MAX_REPLIES];
static int inr; /* size of reply buffer, when called from interrupt */
#define ST0 (reply_buffer[0])
#define ST1 (reply_buffer[1])
#define ST2 (reply_buffer[2])
#define ST3 (reply_buffer[0]) /* result of GETSTATUS */
#define R_TRACK (reply_buffer[3])
#define R_HEAD (reply_buffer[4])
#define R_SECTOR (reply_buffer[5])
#define R_SIZECODE (reply_buffer[6])
#define SEL_DLY (2*HZ/100)
#define ARRAY_SIZE(x) (sizeof(x) / sizeof( (x)[0] ))
/*
* this struct defines the different floppy drive types.
*/
static struct {
struct floppy_drive_params params;
char *name; /* name printed while booting */
} default_drive_params[]= {
/* NOTE: the time values in jiffies should be in msec!
CMOS drive type
| Maximum data rate supported by drive type
| | Head load time, msec
| | | Head unload time, msec (not used)
| | | | Step rate interval, usec
| | | | | Time needed for spinup time (jiffies)
| | | | | | Timeout for spinning down (jiffies)
| | | | | | | Spindown offset (where disk stops)
| | | | | | | | Select delay
| | | | | | | | | RPS
| | | | | | | | | | Max number of tracks
| | | | | | | | | | | Interrupt timeout
| | | | | | | | | | | | Max nonintlv. sectors
| | | | | | | | | | | | | -Max Errors- flags */
{{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },
{{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/
{{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 2, 5, 6,23,10,20,11, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/
{{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/
{{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/
{{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/
{{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
/* | ---autodetected formats-- | | |
read_track | | Name printed when booting
| Native format
Frequency of disk change checks */
};
static struct floppy_drive_params drive_params[N_DRIVE];
static struct floppy_drive_struct drive_state[N_DRIVE];
static struct floppy_write_errors write_errors[N_DRIVE];
static struct floppy_raw_cmd raw_cmd;
/*
* This struct defines the different floppy types.
*
* Bit 0 of 'stretch' tells if the tracks need to be doubled for some
* types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch'
* tells if the disk is in Commodore 1581 format, which means side 0 sectors
* are located on side 1 of the disk but with a side 0 ID, and vice-versa.
* This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
* 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
* side 0 is on physical side 0 (but with the misnamed sector IDs).
* 'stretch' should probably be renamed to something more general, like
* 'options'. Other parameters should be self-explanatory (see also
* setfdprm(8)).
*/
static struct floppy_struct floppy_type[32] = {
{ 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */
{ 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */
{ 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */
{ 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */
{ 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */
{ 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */
{ 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */
{ 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */
{ 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"CompaQ"}, /* 9 2.88MB 3.5" */
{ 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */
{ 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */
{ 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */
{ 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */
{ 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */
{ 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */
{ 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */
{ 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */
{ 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */
{ 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */
{ 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */
{ 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */
{ 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */
{ 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */
{ 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */
{ 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */
{ 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */
{ 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */
{ 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */
{ 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */
{ 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */
{ 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */
};
#define NUMBER(x) (sizeof(x) / sizeof(*(x)))
#define SECTSIZE ( _FD_SECTSIZE(*floppy))
/* Auto-detection: Disk type used until the next media change occurs. */
struct floppy_struct *current_type[N_DRIVE] = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL
};
/*
* User-provided type information. current_type points to
* the respective entry of this array.
*/
struct floppy_struct user_params[N_DRIVE];
static int floppy_sizes[256];
static int floppy_blocksizes[256] = { 0, };
/*
* The driver is trying to determine the correct media format
* while probing is set. rw_interrupt() clears it after a
* successful access.
*/
static int probing = 0;
/* Synchronization of FDC access. */
#define FD_COMMAND_DETECT -2
#define FD_COMMAND_NONE -1
#define FD_COMMAND_ERROR 2
#define FD_COMMAND_OKAY 3
static volatile int command_status = FD_COMMAND_NONE, fdc_busy = 0;
static struct wait_queue *fdc_wait = NULL, *command_done = NULL;
#define NO_SIGNAL (!(current->signal & ~current->blocked) || !interruptible)
#define CALL(x) if( (x) == -EINTR) return -EINTR;
#define _WAIT(x,i) CALL(ret=wait_til_done((x),i))
#define WAIT(x) _WAIT((x),interruptible)
#define IWAIT(x) _WAIT((x),1)
/* Errors during formatting are counted here. */
static int format_errors;
/* Format request descriptor. */
static struct format_descr format_req;
/*
* Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
* Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
* H is head unload time (1=16ms, 2=32ms, etc)
*/
/*
* Track buffer
* Because these are written to by the DMA controller, they must
* not contain a 64k byte boundary crossing, or data will be
* corrupted/lost. Alignment of these is enforced in boot/head.S.
* Note that you must not change the sizes below without updating head.S.
*/
char *floppy_track_buffer=0;
int max_buffer_sectors=0;
int *errors;
typedef void (*done_f)(int);
struct cont_t {
void (*interrupt)(void); /* this is called after the interrupt of the
* main command */
void (*redo)(void); /* this is called to retry the operation */
void (*error)(void); /* this is called to tally an error */
done_f done; /* this is called to say if the operation has succeeded/failed */
} *cont=NULL;
static void floppy_ready(void);
static void floppy_start(void);
static void process_fd_request(void);
static void recalibrate_floppy(void);
static void floppy_shutdown(void);
static int floppy_grab_irq_and_dma(void);
static void floppy_release_irq_and_dma(void);
/*
* The "reset" variable should be tested whenever an interrupt is scheduled,
* after the commands have been sent. This is to ensure that the driver doesn't
* get wedged when the interrupt doesn't come because of a failed command.
* reset doesn't need to be tested before sending commands, because
* output_byte is automatically disabled when reset is set.
*/
#define CHECK_RESET { if ( FDCS->reset ){ reset_fdc(); return ; } }
static void reset_fdc(void);
/*
* These are global variables, as that's the easiest way to give
* information to interrupts. They are the data used for the current
* request.
*/
#define NO_TRACK -1
#define NEED_1_RECAL -2
#define NEED_2_RECAL -3
/* */
static int usage_count = 0;
/* buffer related variables */
static int buffer_track = -1;
static int buffer_drive = -1;
static int buffer_min = -1;
static int buffer_max = -1;
/* fdc related variables, should end up in a struct */
static struct floppy_fdc_state fdc_state[N_FDC];
static int fdc; /* current fdc */
static struct floppy_struct * floppy = floppy_type;
static unsigned char current_drive = 0;
static long current_count_sectors = 0;
static char *current_addr = 0;
static unsigned char sector_t; /* sector in track */
#ifdef DEBUGT
long unsigned debugtimer;
#endif
/*
* Debugging
* =========
*/
static inline void set_debugt(void)
{
#ifdef DEBUGT
debugtimer = jiffies;
#endif
}
static inline void debugt(char *message)
{
#ifdef DEBUGT
if ( DP->flags & DEBUGT )
printk("%s dtime=%lu\n", message, jiffies-debugtimer );
#endif
}
typedef void (*timeout_fn)(unsigned long);
static struct timer_list fd_timeout ={ NULL, NULL, 0, 0,
(timeout_fn) floppy_shutdown };
static char *timeout_message;
#ifdef CONFIG_FLOPPY_SANITY
static void is_alive(char *message)
{
/* this routine checks whether the floppy driver is "alive" */
if (fdc_busy && command_status < 2 && !fd_timeout.prev){
DPRINT1("timeout handler died: %s\n",message);
}
}
#endif
#ifdef CONFIG_FLOPPY_SANITY
#define OLOGSIZE 20
void (*lasthandler)(void) = NULL;
int interruptjiffies=0;
int resultjiffies=0;
int resultsize=0;
int lastredo=0;
static struct output_log {
unsigned char data;
unsigned char status;
unsigned long jiffies;
} output_log[OLOGSIZE];
static int output_log_pos=0;
#endif
#define CURRENTD -1
#define MAXTIMEOUT -2
static void reschedule_timeout(int drive, char *message, int marg)
{
if (drive == CURRENTD )
drive = current_drive;
del_timer(&fd_timeout);
if (drive < 0 || drive > N_DRIVE) {
fd_timeout.expires = 2000;
drive=0;
} else
fd_timeout.expires = UDP->timeout;
add_timer(&fd_timeout);
if (UDP->flags & FD_DEBUG){
DPRINT("reschedule timeout ");
printk(message, marg);
printk("\n");
}
timeout_message = message;
}
/*
* Bottom half floppy driver.
* ==========================
*
* This part of the file contains the code talking directly to the hardware,
* and also the main service loop (seek-configure-spinup-command)
*/
/*
* disk change.
* This routine is responsible for maintaining the FD_DISK_CHANGE flag,
* and the last_checked date.
*
* last_checked is the date of the last check which showed 'no disk change'
* FD_DISK_CHANGE is set under two conditions:
* 1. The floppy has been changed after some i/o to that floppy already
* took place.
* 2. No floppy disk is in the drive. This is done in order to ensure that
* requests are quickly flushed in case there is no disk in the drive. It
* follows that FD_DISK_CHANGE can only be cleared if there is a disk in
* the drive.
*
* For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
* For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
* each seek. If a disk is present, the disk change line should also be
* cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
* change line is set, this means either that no disk is in the drive, or
* that it has been removed since the last seek.
*
* This means that we really have a third possibility too:
* The floppy has been changed after the last seek.
*/
static int disk_change(int drive)
{
int fdc=FDC(drive);
#ifdef CONFIG_FLOPPY_SANITY
if(jiffies < UDP->select_delay + UDRS->select_date)
DPRINT("WARNING disk change called early\n");
if(! (FDCS->dor & (0x10 << UNIT(drive))) ||
(FDCS->dor & 3) != UNIT(drive) ||
fdc != FDC(drive)){
DPRINT("probing disk change on unselected drive\n");
DPRINT3("drive=%d fdc=%d dor=%x\n",drive, FDC(drive),
FDCS->dor);
}
#endif
#ifdef DCL_DEBUG
if (UDP->flags & FD_DEBUG){
DPRINT1("checking disk change line for drive %d\n",drive);
DPRINT1("jiffies=%ld\n", jiffies);
DPRINT1("disk change line=%x\n",inb_p(FD_DIR)&0x80);
DPRINT1("flags=%x\n",UDRS->flags);
}
#endif
if (UDP->flags & FD_BROKEN_DCL)
return UTESTF(FD_DISK_CHANGED);
if( (inb_p(FD_DIR) ^ UDP->flags) & 0x80){
USETF(FD_VERIFY); /* verify write protection */
if(UDRS->maxblock){
/* mark it changed */
USETF(FD_DISK_CHANGED);
/* invalidate its geometry */
if (UDRS->keep_data >= 0) {
if ((UDP->flags & FTD_MSG) &&
current_type[drive] != NULL)
DPRINT("Disk type is undefined after "
"disk change\n");
current_type[drive] = NULL;
floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] = MAX_DISK_SIZE;
}
}
/*USETF(FD_DISK_NEWCHANGE);*/
return 1;
} else {
UDRS->last_checked=jiffies;
UCLEARF(FD_DISK_NEWCHANGE);
}
return 0;
}
static inline int is_selected(int dor, int unit)
{
return ( (dor & (0x10 << unit)) && (dor &3) == unit);
}
static int set_dor(int fdc, char mask, char data)
{
register unsigned char drive, unit, newdor,olddor;
if(FDCS->address == -1)
return -1;
olddor = FDCS->dor;
newdor = (olddor & mask) | data;
if ( newdor != olddor ){
unit = olddor & 0x3;
if(is_selected(olddor, unit) && !is_selected(newdor,unit)){
drive = REVDRIVE(fdc,unit);
#ifdef DCL_DEBUG
if (UDP->flags & FD_DEBUG){
DPRINT("calling disk change from set_dor\n");
}
#endif
disk_change(drive);
}
FDCS->dor = newdor;
outb_p(newdor, FD_DOR);
unit = newdor & 0x3;
if(!is_selected(olddor, unit) && is_selected(newdor,unit)){
drive = REVDRIVE(fdc,unit);
UDRS->select_date = jiffies;
}
}
if ( newdor & 0xf0 )
floppy_grab_irq_and_dma();
if( olddor & 0xf0 )
floppy_release_irq_and_dma();
return olddor;
}
static void twaddle(void)
{
if (DP->select_delay)
return;
outb_p(FDCS->dor & ~(0x10<<UNIT(current_drive)),FD_DOR);
outb_p(FDCS->dor, FD_DOR);
DRS->select_date = jiffies;
}
/* reset all driver information about the current fdc. This is needed after
* a reset, and after a raw command. */
static void reset_fdc_info(int mode)
{
int drive;
FDCS->spec1 = FDCS->spec2 = -1;
FDCS->need_configure = 1;
FDCS->perp_mode = 1;
FDCS->rawcmd = 0;
for ( drive = 0; drive < N_DRIVE; drive++)
if (FDC(drive) == fdc &&
( mode || UDRS->track != NEED_1_RECAL))
UDRS->track = NEED_2_RECAL;
}
/* selects the fdc and drive, and enables the fdc's input/dma. */
static void set_fdc(int drive)
{
if (drive >= 0 && drive < N_DRIVE){
fdc = FDC(drive);
current_drive = drive;
}
set_dor(fdc,~0,8);
set_dor(1-fdc, ~8, 0);
if ( FDCS->rawcmd == 2 )
reset_fdc_info(1);
if( inb_p(FD_STATUS) != STATUS_READY )
FDCS->reset = 1;
}
/* locks the driver */
static int lock_fdc(int drive, int interruptible)
{
if(!usage_count){
printk("trying to lock fdc while usage count=0\n");
return -1;
}
floppy_grab_irq_and_dma();
if (!current->pid)
run_task_queue(&tq_timer);
cli();
while (fdc_busy && NO_SIGNAL)
interruptible_sleep_on(&fdc_wait);
if(fdc_busy){
sti();
return -EINTR;
}
fdc_busy = 1;
sti();
command_status = FD_COMMAND_NONE;
set_fdc(drive);
reschedule_timeout(drive, "lock fdc", 0);
return 0;
}
#define LOCK_FDC(drive,interruptible) \
if(lock_fdc(drive,interruptible)) return -EINTR;
/* unlocks the driver */
static inline void unlock_fdc(void)
{
if (!fdc_busy)
DPRINT("FDC access conflict!\n");
if ( DEVICE_INTR )
DPRINT1("device interrupt still active at FDC release: %p!\n",
DEVICE_INTR);
command_status = FD_COMMAND_NONE;
del_timer(&fd_timeout);
cont = NULL;
fdc_busy = 0;
floppy_release_irq_and_dma();
wake_up(&fdc_wait);
}
/* switches the motor off after a given timeout */
static void motor_off_callback(unsigned long nr)
{
unsigned char mask = ~(0x10 << UNIT(nr));
set_dor( FDC(nr), mask, 0 );
}
static struct timer_list motor_off_timer[N_DRIVE] = {
{ NULL, NULL, 0, 0, motor_off_callback },
{ NULL, NULL, 0, 1, motor_off_callback },
{ NULL, NULL, 0, 2, motor_off_callback },
{ NULL, NULL, 0, 3, motor_off_callback },
{ NULL, NULL, 0, 4, motor_off_callback },
{ NULL, NULL, 0, 5, motor_off_callback },
{ NULL, NULL, 0, 6, motor_off_callback },
{ NULL, NULL, 0, 7, motor_off_callback }
};
/* schedules motor off */
static void floppy_off(unsigned int drive)
{
unsigned long volatile delta;
register int fdc=FDC(drive);
if( !(FDCS->dor & ( 0x10 << UNIT(drive))))
return;
del_timer(motor_off_timer+drive);
/* make spindle stop in a position which minimizes spinup time
* next time */
if (UDP->rps ){
delta = jiffies - UDRS->first_read_date + HZ -
UDP->spindown_offset;
delta = (( delta * UDP->rps) % HZ ) / UDP->rps;
motor_off_timer[drive].expires = UDP->spindown - delta;
}
add_timer(motor_off_timer+drive);
}
/*
* cycle through all N_DRIVE floppy drives, for disk change testing.
* stopping at current drive. This is done before any long operation, to
* be sure to have up to date disk change information.
*/
static void scandrives(void)
{
int i, drive, saved_drive;
if (DP->select_delay)
return;
saved_drive = current_drive;
for(i=0; i< N_DRIVE; i++){
drive = (saved_drive + i + 1 ) % N_DRIVE;
if ( UDRS->fd_ref == 0 || UDP->select_delay != 0)
continue; /* skip closed drives */
set_fdc(drive);
if(! (set_dor( fdc, ~3, UNIT(drive) | ( 0x10 << UNIT(drive))) &
(0x10 << UNIT(drive))))
/* switch the motor off again, if it was off to
* begin with */
set_dor( fdc, ~( 0x10 << UNIT(drive) ), 0 );
}
set_fdc(saved_drive);
}
static struct timer_list fd_timer ={ NULL, NULL, 0, 0, 0 };
/* this function makes sure that the disk stays in the drive during the
* transfer */
static void fd_watchdog(void)
{
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from watchdog\n");
}
#endif
if ( disk_change(current_drive) ){
DPRINT("disk removed during i/o\n");
floppy_shutdown();
} else {
del_timer(&fd_timer);
fd_timer.function = (timeout_fn) fd_watchdog;
fd_timer.expires = 10;
add_timer(&fd_timer);
}
}
static void main_command_interrupt(void)
{
del_timer(&fd_timer);
cont->interrupt();
}
/* waits for a delay (spinup or select) to pass */
static int wait_for_completion(int delay, timeout_fn function)
{
if ( FDCS->reset ){
reset_fdc(); /* do the reset during sleep to win time
* if we don't need to sleep, it's a good
* occasion anyways */
return 1;
}
if ( jiffies < delay ){
del_timer(&fd_timer);
fd_timer.function = function;
fd_timer.expires = delay - jiffies;
add_timer(&fd_timer);
return 1;
}
return 0;
}
static int hlt_disabled=0;
static void floppy_disable_hlt(void)
{
unsigned long flags;
save_flags(flags);
cli();
if(!hlt_disabled){
hlt_disabled=1;
#ifdef HAVE_DISABLE_HLT
disable_hlt();
#endif
}
restore_flags(flags);
}
static void floppy_enable_hlt(void)
{
unsigned long flags;
save_flags(flags);
cli();
if(hlt_disabled){
hlt_disabled=0;
#ifdef HAVE_DISABLE_HLT
enable_hlt();
#endif
}
restore_flags(flags);
}
static void setup_DMA(void)
{
#ifdef CONFIG_FLOPPY_SANITY
if (raw_cmd.length == 0){
int i;
printk("zero dma transfer size:");
for(i=0; i< raw_cmd.cmd_count; i++)
printk("%x,", raw_cmd.cmd[i]);
printk("\n");
cont->done(0);
FDCS->reset = 1;
return;
}
if ((!CURRENT ||
CURRENT->buffer != current_addr ||
raw_cmd.length > 512 * CURRENT->nr_sectors) &&
(current_addr < floppy_track_buffer ||
current_addr + raw_cmd.length >
floppy_track_buffer + 1024 * max_buffer_sectors)){
printk("bad address. start=%p lg=%lx tb=%p\n",
current_addr, raw_cmd.length, floppy_track_buffer);
if ( CURRENT ){
printk("buffer=%p nr=%lx cnr=%lx\n",
CURRENT->buffer, CURRENT->nr_sectors,
CURRENT->current_nr_sectors);
}
cont->done(0);
FDCS->reset=1;
return;
}
if ((long) current_addr % 512 ){
printk("non aligned address: %p\n", current_addr );
cont->done(0);
FDCS->reset=1;
return;
}
if (CROSS_64KB(current_addr, raw_cmd.length)) {
printk("DMA crossing 64-K boundary %p-%p\n",
current_addr, current_addr + raw_cmd.length);
cont->done(0);
FDCS->reset=1;
return;
}
#endif
cli();
disable_dma(FLOPPY_DMA);
clear_dma_ff(FLOPPY_DMA);
set_dma_mode(FLOPPY_DMA,
(raw_cmd.flags & FD_RAW_READ)?
DMA_MODE_READ : DMA_MODE_WRITE);
set_dma_addr(FLOPPY_DMA, virt_to_bus(current_addr));
set_dma_count(FLOPPY_DMA, raw_cmd.length);
enable_dma(FLOPPY_DMA);
sti();
floppy_disable_hlt();
}
/* sends a command byte to the fdc */
static int output_byte(char byte)
{
int counter;
unsigned char status;
unsigned char rstatus;
if (FDCS->reset)
return -1;
for(counter = 0 ; counter < 10000 && !FDCS->reset ; counter++) {
rstatus = inb_p(FD_STATUS);
status = rstatus &(STATUS_READY|STATUS_DIR|STATUS_DMA);
if (!(status & STATUS_READY))
continue;
if (status == STATUS_READY){
outb_p(byte,FD_DATA);
#ifdef CONFIG_FLOPPY_SANITY
output_log[output_log_pos].data = byte;
output_log[output_log_pos].status = rstatus;
output_log[output_log_pos].jiffies = jiffies;
output_log_pos = (output_log_pos + 1) % OLOGSIZE;
#endif
return 0;
} else
break;
}
FDCS->reset = 1;
if ( !initialising )
DPRINT2("Unable to send byte %x to FDC. Status=%x\n",
byte, status);
return -1;
}
#define LAST_OUT(x) if(output_byte(x)){ reset_fdc();return;}
/* gets the response from the fdc */
static int result(void)
{
int i = 0, counter, status;
if (FDCS->reset)
return -1;
for (counter = 0 ; counter < 10000 && !FDCS->reset ; counter++) {
status = inb_p(FD_STATUS)&
(STATUS_DIR|STATUS_READY|STATUS_BUSY|STATUS_DMA);
if (!(status & STATUS_READY))
continue;
if (status == STATUS_READY){
#ifdef CONFIG_FLOPPY_SANITY
resultjiffies = jiffies;
resultsize = i;
#endif
return i;
}
if (status & STATUS_DMA )
break;
if (status == (STATUS_DIR|STATUS_READY|STATUS_BUSY)) {
if (i >= MAX_REPLIES) {
DPRINT("floppy_stat reply overrun\n");
break;
}
reply_buffer[i++] = inb_p(FD_DATA);
}
}
FDCS->reset = 1;
if ( !initialising )
DPRINT3("Getstatus times out (%x) on fdc %d [%d]\n",
status, fdc, i);
return -1;
}
/* Set perpendicular mode as required, based on data rate, if supported.
* 82077 Now tested. 1Mbps data rate only possible with 82077-1.
*/
static inline void perpendicular_mode(void)
{
unsigned char perp_mode;
if (!floppy)
return;
if (floppy->rate & 0x40){
switch(raw_cmd.rate){
case 0:
perp_mode=2;
break;
case 3:
perp_mode=3;
break;
default:
DPRINT("Invalid data rate for perpendicular mode!\n");
cont->done(0);
FDCS->reset = 1; /* convenient way to return to
* redo without to much hassle (deep
* stack et al. */
return;
}
} else
perp_mode = 0;
if ( FDCS->perp_mode == perp_mode )
return;
if (FDCS->version >= FDC_82077_ORIG && FDCS->has_fifo) {
output_byte(FD_PERPENDICULAR);
output_byte(perp_mode);
FDCS->perp_mode = perp_mode;
} else if (perp_mode) {
DPRINT("perpendicular mode not supported by this FDC.\n");
}
} /* perpendicular_mode */
#define NOMINAL_DTR 500
/* Issue a "SPECIFY" command to set the step rate time, head unload time,
* head load time, and DMA disable flag to values needed by floppy.
*
* The value "dtr" is the data transfer rate in Kbps. It is needed
* to account for the data rate-based scaling done by the 82072 and 82077
* FDC types. This parameter is ignored for other types of FDCs (i.e.
* 8272a).
*
* Note that changing the data transfer rate has a (probably deleterious)
* effect on the parameters subject to scaling for 82072/82077 FDCs, so
* fdc_specify is called again after each data transfer rate
* change.
*
* srt: 1000 to 16000 in microseconds
* hut: 16 to 240 milliseconds
* hlt: 2 to 254 milliseconds
*
* These values are rounded up to the next highest available delay time.
*/
static void fdc_specify(void)
{
unsigned char spec1, spec2;
int srt, hlt, hut;
unsigned long dtr = NOMINAL_DTR;
unsigned long scale_dtr = NOMINAL_DTR;
int hlt_max_code = 0x7f;
int hut_max_code = 0xf;
if (FDCS->need_configure && FDCS->has_fifo) {
if ( FDCS->reset )
return;
/* Turn on FIFO for 82077-class FDC (improves performance) */
/* TODO: lock this in via LOCK during initialization */
output_byte(FD_CONFIGURE);
output_byte(0);
output_byte(0x2A); /* FIFO on, polling off, 10 byte threshold */
output_byte(0); /* precompensation from track 0 upwards */
if ( FDCS->reset ){
FDCS->has_fifo=0;
return;
}
FDCS->need_configure = 0;
/*DPRINT("FIFO enabled\n");*/
}
switch (raw_cmd.rate & 0x03) {
case 3:
dtr = 1000;
break;
case 1:
dtr = 300;
break;
case 2:
dtr = 250;
break;
}
if (FDCS->version >= FDC_82072) {
scale_dtr = dtr;
hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */
hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */
}
/* Convert step rate from microseconds to milliseconds and 4 bits */
srt = 16 - (DP->srt*scale_dtr/1000 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if (srt > 0xf)
srt = 0xf;
else if (srt < 0)
srt = 0;
hlt = (DP->hlt*scale_dtr/2 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if (hlt < 0x01)
hlt = 0x01;
else if (hlt > 0x7f)
hlt = hlt_max_code;
hut = (DP->hut*scale_dtr/16 + NOMINAL_DTR - 1)/NOMINAL_DTR;
if (hut < 0x1)
hut = 0x1;
else if (hut > 0xf)
hut = hut_max_code;
spec1 = (srt << 4) | hut;
spec2 = (hlt << 1);
/* If these parameters did not change, just return with success */
if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) {
/* Go ahead and set spec1 and spec2 */
output_byte(FD_SPECIFY);
output_byte(FDCS->spec1 = spec1);
output_byte(FDCS->spec2 = spec2);
}
} /* fdc_specify */
/* Set the FDC's data transfer rate on behalf of the specified drive.
* NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
* of the specify command (i.e. using the fdc_specify function).
*/
static int fdc_dtr(void)
{
/* If data rate not already set to desired value, set it. */
if ( raw_cmd.rate == FDCS->dtr)
return 0;
/* Set dtr */
outb_p(raw_cmd.rate, FD_DCR);
/* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
* need a stabilization period of several milliseconds to be
* enforced after data rate changes before R/W operations.
* Pause 5 msec to avoid trouble. (Needs to be 2 jiffies)
*/
FDCS->dtr = raw_cmd.rate;
return(wait_for_completion(jiffies+2*HZ/100,
(timeout_fn) floppy_ready));
} /* fdc_dtr */
static void tell_sector(void)
{
printk(": track %d, head %d, sector %d, size %d",
R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE);
} /* tell_sector */
/*
* Ok, this error interpreting routine is called after a
* DMA read/write has succeeded
* or failed, so we check the results, and copy any buffers.
* hhb: Added better error reporting.
* ak: Made this into a separate routine.
*/
static int interpret_errors(void)
{
char bad;
if (inr!=7) {
DPRINT("-- FDC reply error");
FDCS->reset = 1;
return 1;
}
/* check IC to find cause of interrupt */
switch ((ST0 & ST0_INTR)>>6) {
case 1: /* error occurred during command execution */
bad = 1;
if (ST1 & ST1_WP) {
DPRINT("Drive is write protected\n");
CLEARF(FD_DISK_WRITABLE);
cont->done(0);
bad = 2;
} else if (ST1 & ST1_ND) {
SETF(FD_NEED_TWADDLE);
} else if (ST1 & ST1_OR) {
if (DP->flags & FTD_MSG )
DPRINT("Over/Underrun - retrying\n");
bad = 0;
}else if(*errors >= DP->max_errors.reporting){
DPRINT("");
if (ST0 & ST0_ECE) {
printk("Recalibrate failed!");
} else if (ST2 & ST2_CRC) {
printk("data CRC error");
tell_sector();
} else if (ST1 & ST1_CRC) {
printk("CRC error");
tell_sector();
} else if ((ST1 & (ST1_MAM|ST1_ND)) || (ST2 & ST2_MAM)) {
if (!probing) {
printk("sector not found");
tell_sector();
} else
printk("probe failed...");
} else if (ST2 & ST2_WC) { /* seek error */
printk("wrong cylinder");
} else if (ST2 & ST2_BC) { /* cylinder marked as bad */
printk("bad cylinder");
} else {
printk("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", ST0, ST1, ST2);
tell_sector();
}
printk("\n");
}
if ( ST2 & ST2_WC || ST2 & ST2_BC)
/* wrong cylinder => recal */
DRS->track = NEED_2_RECAL;
return bad;
case 2: /* invalid command given */
DPRINT("Invalid FDC command given!\n");
cont->done(0);
return 2;
case 3:
DPRINT("Abnormal termination caused by polling\n");
cont->error();
return 2;
default: /* (0) Normal command termination */
return 0;
}
}
/*
* This routine is called when everything should be correctly set up
* for the transfer (ie floppy motor is on, the correct floppy is
* selected, and the head is sitting on the right track).
*/
static void setup_rw_floppy(void)
{
int i,ready_date,r, flags,dflags;
timeout_fn function;
flags = raw_cmd.flags;
if ( flags & ( FD_RAW_READ | FD_RAW_WRITE))
flags |= FD_RAW_INTR;
if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)){
ready_date = DRS->spinup_date + DP->spinup;
/* If spinup will take a long time, rerun scandrives
* again just before spinup completion. Beware that
* after scandrives, we must again wait for selection.
*/
if ( ready_date > jiffies + DP->select_delay){
ready_date -= DP->select_delay;
function = (timeout_fn) floppy_start;
} else
function = (timeout_fn) setup_rw_floppy;
/* wait until the floppy is spinning fast enough */
if (wait_for_completion(ready_date,function))
return;
}
dflags = DRS->flags;
if ( (flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
setup_DMA();
if ( flags & FD_RAW_INTR )
SET_INTR(main_command_interrupt);
r=0;
for(i=0; i< raw_cmd.cmd_count; i++)
r|=output_byte( raw_cmd.cmd[i] );
#ifdef DEBUGT
debugt("rw_command: ");
#endif
if ( r ){
reset_fdc();
return;
}
if ( ! ( flags & FD_RAW_INTR )){
inr = result();
cont->interrupt();
} else if ( flags & FD_RAW_NEED_DISK )
fd_watchdog();
}
static int blind_seek;
/*
* This is the routine called after every seek (or recalibrate) interrupt
* from the floppy controller.
*/
static void seek_interrupt(void)
{
#ifdef DEBUGT
debugt("seek interrupt:");
#endif
if (inr != 2 || (ST0 & 0xF8) != 0x20 ) {
DPRINT("seek failed\n");
DRS->track = NEED_2_RECAL;
cont->error();
cont->redo();
return;
}
if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek){
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("clearing NEWCHANGE flag because of effective seek\n");
DPRINT1("jiffies=%ld\n", jiffies);
}
#endif
CLEARF(FD_DISK_NEWCHANGE); /* effective seek */
DRS->select_date = jiffies;
}
DRS->track = ST1;
floppy_ready();
}
static void check_wp(void)
{
if (TESTF(FD_VERIFY)) {
/* check write protection */
output_byte( FD_GETSTATUS );
output_byte( UNIT(current_drive) );
if ( result() != 1 ){
FDCS->reset = 1;
return;
}
CLEARF(FD_VERIFY);
CLEARF(FD_NEED_TWADDLE);
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("checking whether disk is write protected\n");
DPRINT1("wp=%x\n",ST3 & 0x40);
}
#endif
if (!( ST3 & 0x40))
SETF(FD_DISK_WRITABLE);
else
CLEARF(FD_DISK_WRITABLE);
}
}
static void seek_floppy(void)
{
int track;
blind_seek=0;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from seek\n");
}
#endif
if (!TESTF(FD_DISK_NEWCHANGE) &&
disk_change(current_drive) &&
(raw_cmd.flags & FD_RAW_NEED_DISK)){
/* the media changed flag should be cleared after the seek.
* If it isn't, this means that there is really no disk in
* the drive.
*/
SETF(FD_DISK_CHANGED);
cont->done(0);
cont->redo();
return;
}
if ( DRS->track <= NEED_1_RECAL ){
recalibrate_floppy();
return;
} else if (TESTF(FD_DISK_NEWCHANGE) &&
(raw_cmd.flags & FD_RAW_NEED_DISK) &&
(DRS->track <= NO_TRACK || DRS->track == raw_cmd.track)) {
/* we seek to clear the media-changed condition. Does anybody
* know a more elegant way, which works on all drives? */
if ( raw_cmd.track )
track = raw_cmd.track - 1;
else {
if(DP->flags & FD_SILENT_DCL_CLEAR){
set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0);
blind_seek = 1;
raw_cmd.flags |= FD_RAW_NEED_SEEK;
}
track = 1;
}
} else {
check_wp();
if (raw_cmd.track != DRS->track &&
(raw_cmd.flags & FD_RAW_NEED_SEEK))
track = raw_cmd.track;
else {
setup_rw_floppy();
return;
}
}
SET_INTR(seek_interrupt);
output_byte(FD_SEEK);
output_byte(UNIT(current_drive));
LAST_OUT(track);
#ifdef DEBUGT
debugt("seek command:");
#endif
}
static void recal_interrupt(void)
{
#ifdef DEBUGT
debugt("recal interrupt:");
#endif
if (inr !=2 )
FDCS->reset = 1;
else if (ST0 & ST0_ECE) {
switch(DRS->track){
case NEED_1_RECAL:
#ifdef DEBUGT
debugt("recal interrupt need 1 recal:");
#endif
/* after a second recalibrate, we still haven't
* reached track 0. Probably no drive. Raise an
* error, as failing immediately might upset
* computers possessed by the Devil :-) */
cont->error();
cont->redo();
return;
case NEED_2_RECAL:
#ifdef DEBUGT
debugt("recal interrupt need 2 recal:");
#endif
/* If we already did a recalibrate, and we are not at
* track 0, this means we have moved. (The only way
* not to move at recalibration is to be already at
* track 0.) Clear the new change flag
*/
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("clearing NEWCHANGE flag because of second recalibrate\n");
}
#endif
CLEARF(FD_DISK_NEWCHANGE);
DRS->select_date = jiffies;
/* fall through */
default:
#ifdef DEBUGT
debugt("recal interrupt default:");
#endif
/* Recalibrate moves the head by at most 80 steps. If
* after one recalibrate we don't have reached track
* 0, this might mean that we started beyond track 80.
* Try again.
*/
DRS->track = NEED_1_RECAL;
break;
}
} else
DRS->track = ST1;
floppy_ready();
}
/*
* Unexpected interrupt - Print as much debugging info as we can...
* All bets are off...
*/
static void unexpected_floppy_interrupt(void)
{
int i;
if ( initialising )
return;
if(print_unex){
DPRINT("unexpected interrupt\n");
if ( inr >= 0 )
for(i=0; i<inr; i++)
printk("%d %x\n", i, reply_buffer[i] );
}
while(1){
output_byte(FD_SENSEI);
inr=result();
if ( inr != 2 )
break;
if(print_unex){
printk("sensei\n");
for(i=0; i<inr; i++)
printk("%d %x\n", i, reply_buffer[i] );
}
}
FDCS->reset = 1;
}
struct tq_struct floppy_tq =
{ 0, 0, (void *) (void *) unexpected_floppy_interrupt, 0 };
/* interrupt handler */
static void floppy_interrupt(int irq, struct pt_regs * regs)
{
void (*handler)(void) = DEVICE_INTR;
lasthandler = handler;
interruptjiffies = jiffies;
floppy_enable_hlt();
CLEAR_INTR;
if ( fdc >= N_FDC || FDCS->address == -1){
/* we don't even know which FDC is the culprit */
printk("DOR0=%x\n", fdc_state[0].dor);
printk("floppy interrupt on bizarre fdc %d\n",fdc);
printk("handler=%p\n", handler);
is_alive("bizarre fdc");
return;
}
inr = result();
if (!handler){
unexpected_floppy_interrupt();
is_alive("unexpected");
return;
}
if ( inr == 0 ){
do {
output_byte(FD_SENSEI);
inr = result();
} while ( (ST0 & 0x83) != UNIT(current_drive) && inr == 2);
}
floppy_tq.routine = (void *)(void *) handler;
queue_task_irq(&floppy_tq, &tq_timer);
is_alive("normal interrupt end");
}
static void recalibrate_floppy(void)
{
#ifdef DEBUGT
debugt("recalibrate floppy:");
#endif
SET_INTR(recal_interrupt);
output_byte(FD_RECALIBRATE);
LAST_OUT(UNIT(current_drive));
}
/*
* Must do 4 FD_SENSEIs after reset because of ``drive polling''.
*/
static void reset_interrupt(void)
{
#ifdef DEBUGT
debugt("reset interrupt:");
#endif
fdc_specify(); /* reprogram fdc */
result(); /* get the status ready for set_fdc */
if ( FDCS->reset )
cont->error(); /* a reset just after a reset. BAD! */
cont->redo();
}
/*
* reset is done by pulling bit 2 of DOR low for a while (old FDC's),
* or by setting the self clearing bit 7 of STATUS (newer FDC's)
*/
static void reset_fdc(void)
{
SET_INTR(reset_interrupt);
FDCS->reset = 0;
reset_fdc_info(0);
if ( FDCS->version >= FDC_82077 )
outb_p(0x80 | ( FDCS->dtr &3), FD_STATUS);
else {
outb_p(FDCS->dor & ~0x04, FD_DOR);
udelay(FD_RESET_DELAY);
outb(FDCS->dor, FD_DOR);
}
}
static void empty(void)
{
}
void show_floppy(void)
{
int i;
printk("\n");
printk("floppy driver state\n");
printk("-------------------\n");
printk("now=%ld last interrupt=%d last called handler=%p\n",
jiffies, interruptjiffies, lasthandler);
#ifdef CONFIG_FLOPPY_SANITY
printk("timeout_message=%s\n", timeout_message);
printk("last output bytes:\n");
for(i=0; i < OLOGSIZE; i++)
printk("%2x %2x %ld\n",
output_log[(i+output_log_pos) % OLOGSIZE].data,
output_log[(i+output_log_pos) % OLOGSIZE].status,
output_log[(i+output_log_pos) % OLOGSIZE].jiffies);
printk("last result at %d\n", resultjiffies);
printk("last redo_fd_request at %d\n", lastredo);
for(i=0; i<resultsize; i++){
printk("%2x ", reply_buffer[i]);
}
printk("\n");
#endif
#if 0
for(i=0; i<N_FDC; i++){
if(FDCS->address != -1){
printk("dor %d = %x\n", i, fdc_state[i].dor );
outb_p(fdc_state[i].address+2, fdc_state[i].dor);
udelay(1000); /* maybe we'll catch an interrupt... */
}
}
#endif
printk("status=%x\n", inb_p(FD_STATUS));
printk("fdc_busy=%d\n", fdc_busy);
if( DEVICE_INTR)
printk("DEVICE_INTR=%p\n", DEVICE_INTR);
if(floppy_tq.sync)
printk("floppy_tq.routine=%p\n", floppy_tq.routine);
if(fd_timer.prev)
printk("fd_timer.function=%p\n", fd_timer.function);
if(fd_timeout.prev){
printk("timer_table=%p\n",fd_timeout.function);
printk("expires=%ld\n",fd_timeout.expires);
printk("now=%ld\n",jiffies);
}
printk("cont=%p\n", cont);
printk("CURRENT=%p\n", CURRENT);
printk("command_status=%d\n", command_status);
printk("\n");
}
static void floppy_shutdown(void)
{
if(!initialising)
show_floppy();
CLEAR_INTR;
floppy_tq.routine = (void *)(void *) empty;
del_timer( &fd_timer);
floppy_enable_hlt();
disable_dma(FLOPPY_DMA);
/* avoid dma going to a random drive after shutdown */
if(!initialising)
DPRINT("floppy timeout\n");
FDCS->reset = 1;
if (cont){
cont->done(0);
cont->redo(); /* this will recall reset when needed */
} else {
printk("no cont in shutdown!\n");
process_fd_request();
}
is_alive("floppy shutdown");
}
/*typedef void (*timeout_fn)(unsigned long);*/
/* start motor, check media-changed condition and write protection */
static int start_motor( void (*function)(void) )
{
int mask, data;
mask = 0xfc;
data = UNIT(current_drive);
if (!(raw_cmd.flags & FD_RAW_NO_MOTOR)){
if(!(FDCS->dor & ( 0x10 << UNIT(current_drive) ) )){
set_debugt();
/* no read since this drive is running */
DRS->first_read_date = 0;
/* note motor start time if motor is not yet running */
DRS->spinup_date = jiffies;
data |= (0x10 << UNIT(current_drive));
}
} else
if (FDCS->dor & ( 0x10 << UNIT(current_drive) ) )
mask &= ~(0x10 << UNIT(current_drive));
/* starts motor and selects floppy */
del_timer(motor_off_timer + current_drive);
set_dor( fdc, mask, data);
/* wait_for_completion also schedules reset if needed. */
return(wait_for_completion(DRS->select_date+DP->select_delay,
(timeout_fn) function));
}
static void floppy_ready(void)
{
CHECK_RESET;
if(start_motor(floppy_ready)) return;
if(fdc_dtr()) return;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from floppy_ready\n");
}
#endif
if(!(raw_cmd.flags & FD_RAW_NO_MOTOR) &&
disk_change(current_drive) &&
!DP->select_delay)
twaddle(); /* this clears the dcl on certain drive/controller
* combinations */
if ( raw_cmd.flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)){
perpendicular_mode();
fdc_specify(); /* must be done here because of hut, hlt ... */
seek_floppy();
} else
setup_rw_floppy();
}
static void floppy_start(void)
{
reschedule_timeout(CURRENTD, "floppy start", 0);
scandrives();
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("setting NEWCHANGE in floppy_start\n");
}
#endif
SETF(FD_DISK_NEWCHANGE);
floppy_ready();
}
/*
* ========================================================================
* here ends the bottom half. Exported routines are:
* floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
* start_motor, reset_fdc, reset_fdc_info, interpret_errors.
* Initialisation also uses output_byte, result, set_dor, floppy_interrupt
* and set_dor.
* ========================================================================
*/
/*
* General purpose continuations.
* ==============================
*/
static void do_wakeup(void)
{
reschedule_timeout(MAXTIMEOUT, "do wakeup", 0);
cont = 0;
command_status += 2;
wake_up(&command_done);
}
static struct cont_t wakeup_cont={
empty,
do_wakeup,
empty,
(done_f)empty
};
static int wait_til_done( void (*handler)(void ), int interruptible )
{
int ret;
floppy_tq.routine = (void *)(void *) handler;
queue_task(&floppy_tq, &tq_timer);
cli();
while(command_status < 2 && NO_SIGNAL){
is_alive("wait_til_done");
if (current->pid)
interruptible_sleep_on(&command_done);
else {
sti();
run_task_queue(&tq_timer);
cli();
}
}
if(command_status < 2){
sti();
floppy_shutdown();
process_fd_request();
return -EINTR;
}
sti();
if ( FDCS->reset )
command_status = FD_COMMAND_ERROR;
if ( command_status == FD_COMMAND_OKAY )
ret=0;
else
ret=-EIO;
command_status = FD_COMMAND_NONE;
return ret;
}
static void generic_done(int result)
{
command_status = result;
cont = &wakeup_cont;
}
static void generic_success(void)
{
generic_done(1);
}
static void generic_failure(void)
{
generic_done(0);
}
static void success_and_wakeup(void)
{
generic_success();
do_wakeup();
}
static void failure_and_wakeup(void)
{
generic_failure();
do_wakeup();
}
/*
* formatting and rw support.
* ==========================
*/
static int next_valid_format(void)
{
int probed_format;
probed_format = DRS->probed_format;
while(1){
if ( probed_format >= 8 ||
! DP->autodetect[probed_format] ){
DRS->probed_format = 0;
return 1;
}
if ( floppy_type[DP->autodetect[probed_format]].sect ){
DRS->probed_format = probed_format;
return 0;
}
probed_format++;
}
}
static void bad_flp_intr(void)
{
if ( probing ){
DRS->probed_format++;
if ( !next_valid_format())
return;
}
(*errors)++;
if (*errors > DRWE->badness)
DRWE->badness = *errors;
if (*errors > DP->max_errors.abort)
cont->done(0);
if (*errors > DP->max_errors.reset)
FDCS->reset = 1;
else if (*errors > DP->max_errors.recal)
DRS->track = NEED_2_RECAL;
}
static void set_floppy(int device)
{
if (TYPE(device))
floppy = TYPE(device) + floppy_type;
else
floppy = current_type[ DRIVE(device) ];
}
/*
* formatting and support.
* =======================
*/
static void format_interrupt(void)
{
switch (interpret_errors()){
case 1:
cont->error();
case 2:
break;
case 0:
cont->done(1);
}
cont->redo();
}
#define CODE2SIZE (ssize = ( ( 1 << SIZECODE ) + 3 ) >> 2)
#define FM_MODE(x,y) ((y) & ~(((x)->rate & 0x80 ) >>1))
#define CT(x) ( (x) | 0x40 )
static void setup_format_params(void)
{
struct fparm {
unsigned char track,head,sect,size;
} *here = (struct fparm *)floppy_track_buffer;
int il,n;
int count,head_shift,track_shift;
raw_cmd.flags = FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN |
/*FD_RAW_NEED_DISK |*/ FD_RAW_NEED_SEEK;
raw_cmd.rate = floppy->rate & 0x3;
raw_cmd.cmd_count = NR_F;
COMMAND = FM_MODE(floppy,FD_FORMAT);
DR_SELECT = UNIT(current_drive) + PH_HEAD(floppy,format_req.head);
F_SIZECODE = FD_SIZECODE(floppy);
F_SECT_PER_TRACK = floppy->sect << 2 >> F_SIZECODE;
F_GAP = floppy->fmt_gap;
F_FILL = FD_FILL_BYTE;
current_addr = floppy_track_buffer;
raw_cmd.length = 4 * F_SECT_PER_TRACK;
/* allow for about 30ms for data transport per track */
head_shift = (F_SECT_PER_TRACK + 5) / 6;
/* a ``cylinder'' is two tracks plus a little stepping time */
track_shift = 2 * head_shift + 1;
/* position of logical sector 1 on this track */
n = (track_shift * format_req.track + head_shift * format_req.head )
% F_SECT_PER_TRACK;
/* determine interleave */
il = 1;
if (floppy->sect > DP->interleave_sect && F_SIZECODE == 2)
il++;
/* initialize field */
for (count = 0; count < F_SECT_PER_TRACK; ++count) {
here[count].track = format_req.track;
here[count].head = format_req.head;
here[count].sect = 0;
here[count].size = F_SIZECODE;
}
/* place logical sectors */
for (count = 1; count <= F_SECT_PER_TRACK; ++count) {
here[n].sect = count;
n = (n+il) % F_SECT_PER_TRACK;
if (here[n].sect) { /* sector busy, find next free sector */
++n;
if (n>= F_SECT_PER_TRACK) {
n-=F_SECT_PER_TRACK;
while (here[n].sect) ++n;
}
}
}
}
static void redo_format(void)
{
raw_cmd.track = format_req.track << STRETCH(floppy);
buffer_track = -1;
setup_format_params();
floppy_start();
#ifdef DEBUGT
debugt("queue format request");
#endif
}
static struct cont_t format_cont={
format_interrupt,
redo_format,
bad_flp_intr,
generic_done };
static int do_format(int device, struct format_descr *tmp_format_req)
{
int ret;
int drive=DRIVE(device);
LOCK_FDC(drive,1);
set_floppy(device);
if (!floppy ||
floppy->track > DP->tracks ||
tmp_format_req->track >= floppy->track ||
tmp_format_req->head >= floppy->head ||
(floppy->sect << 2) % (1 << FD_SIZECODE(floppy)) ||
!floppy->fmt_gap) {
process_fd_request();
return -EINVAL;
}
format_req = *tmp_format_req;
format_errors = 0;
cont = &format_cont;
errors = &format_errors;
IWAIT(redo_format);
process_fd_request();
return ret;
}
/*
* Buffer read/write and support
* =============================
*/
/* new request_done. Can handle physical sectors which are smaller than a
* logical buffer */
static void request_done(int uptodate)
{
int block;
probing = 0;
reschedule_timeout(MAXTIMEOUT, "request done %d", uptodate);
if (!CURRENT){
DPRINT("request list destroyed in floppy request done\n");
return;
}
if (uptodate){
/* maintain values for invalidation on geometry
change */
block = current_count_sectors + CURRENT->sector;
if (block > DRS->maxblock)
DRS->maxblock=block;
if ( block > floppy->sect)
DRS->maxtrack = 1;
/* unlock chained buffers */
while (current_count_sectors && CURRENT &&
current_count_sectors >= CURRENT->current_nr_sectors ){
current_count_sectors -= CURRENT->current_nr_sectors;
CURRENT->nr_sectors -= CURRENT->current_nr_sectors;
CURRENT->sector += CURRENT->current_nr_sectors;
end_request(1);
}
if ( current_count_sectors && CURRENT){
/* "unlock" last subsector */
CURRENT->buffer += current_count_sectors <<9;
CURRENT->current_nr_sectors -= current_count_sectors;
CURRENT->nr_sectors -= current_count_sectors;
CURRENT->sector += current_count_sectors;
return;
}
if ( current_count_sectors && ! CURRENT )
DPRINT("request list destroyed in floppy request done\n");
} else {
if(CURRENT->cmd == WRITE) {
/* record write error information */
DRWE->write_errors++;
if(DRWE->write_errors == 1) {
DRWE->first_error_sector = CURRENT->sector;
DRWE->first_error_generation = DRS->generation;
}
DRWE->last_error_sector = CURRENT->sector;
DRWE->last_error_generation = DRS->generation;
}
end_request(0);
}
}
/* Interrupt handler evaluating the result of the r/w operation */
static void rw_interrupt(void)
{
int nr_sectors, ssize;
if ( ! DRS->first_read_date )
DRS->first_read_date = jiffies;
nr_sectors = 0;
CODE2SIZE;
nr_sectors = ((R_TRACK-TRACK)*floppy->head+R_HEAD-HEAD) *
floppy->sect + ((R_SECTOR-SECTOR) << SIZECODE >> 2) -
(sector_t % floppy->sect) % ssize;
#ifdef CONFIG_FLOPPY_SANITY
if ( nr_sectors > current_count_sectors + ssize -
(current_count_sectors + sector_t) % ssize +
sector_t % ssize){
DPRINT2("long rw: %x instead of %lx\n",
nr_sectors, current_count_sectors);
printk("rs=%d s=%d\n", R_SECTOR, SECTOR);
printk("rh=%d h=%d\n", R_HEAD, HEAD);
printk("rt=%d t=%d\n", R_TRACK, TRACK);
printk("spt=%d st=%d ss=%d\n", SECT_PER_TRACK,
sector_t, ssize);
}
#endif
if ( nr_sectors < 0 )
nr_sectors = 0;
if ( nr_sectors < current_count_sectors )
current_count_sectors = nr_sectors;
switch (interpret_errors()){
case 2:
cont->redo();
return;
case 1:
if ( !current_count_sectors){
cont->error();
cont->redo();
return;
}
break;
case 0:
if ( !current_count_sectors){
cont->redo();
return;
}
current_type[current_drive] = floppy;
floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] =
floppy->size >> 1;
break;
}
if (probing) {
if (DP->flags & FTD_MSG)
DPRINT2("Auto-detected floppy type %s in fd%d\n",
floppy->name,current_drive);
current_type[current_drive] = floppy;
floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] =
floppy->size >> 1;
probing = 0;
}
if ( CT(COMMAND) != FD_READ || current_addr == CURRENT->buffer ){
/* transfer directly from buffer */
cont->done(1);
} else if ( CT(COMMAND) == FD_READ){
buffer_track = raw_cmd.track;
buffer_drive = current_drive;
if ( nr_sectors + sector_t > buffer_max )
buffer_max = nr_sectors + sector_t;
}
cont->redo();
}
/* Compute maximal contiguous buffer size. */
static int buffer_chain_size(void)
{
struct buffer_head *bh;
int size;
char *base;
base = CURRENT->buffer;
size = CURRENT->current_nr_sectors << 9;
bh = CURRENT->bh;
if (bh){
bh = bh->b_reqnext;
while ( bh && bh->b_data == base + size ){
size += bh->b_size;
bh = bh->b_reqnext;
}
}
return size >> 9;
}
/* Compute the maximal transfer size */
static int transfer_size(int ssize, int max_sector, int max_size)
{
if ( max_sector > sector_t + max_size)
max_sector = sector_t + max_size;
/* alignment */
max_sector -= (max_sector % floppy->sect ) % ssize;
/* transfer size, beginning not aligned */
current_count_sectors = max_sector - sector_t ;
return max_sector;
}
/*
* Move data from/to the track buffer to/from the buffer cache.
*/
static void copy_buffer(int ssize, int max_sector, int max_sector_2)
{
int remaining; /* number of transferred 512-byte sectors */
struct buffer_head *bh;
char *buffer, *dma_buffer;
int size;
if ( max_sector > max_sector_2 )
max_sector = max_sector_2;
max_sector = transfer_size(ssize, max_sector, CURRENT->nr_sectors);
if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE &&
buffer_max > sector_t + CURRENT->nr_sectors){
current_count_sectors = buffer_max - sector_t;
if ( current_count_sectors > CURRENT->nr_sectors )
current_count_sectors = CURRENT->nr_sectors;
}
remaining = current_count_sectors << 9;
#ifdef CONFIG_FLOPPY_SANITY
if ((remaining >> 9) > CURRENT->nr_sectors &&
CT(COMMAND) == FD_WRITE ){
DPRINT("in copy buffer\n");
printk("current_count_sectors=%ld\n", current_count_sectors);
printk("remaining=%d\n", remaining >> 9);
printk("CURRENT->nr_sectors=%ld\n",CURRENT->nr_sectors);
printk("CURRENT->current_nr_sectors=%ld\n",
CURRENT->current_nr_sectors);
printk("max_sector=%d\n", max_sector);
printk("ssize=%d\n", ssize);
}
#endif
if ( max_sector > buffer_max )
buffer_max = max_sector;
dma_buffer = floppy_track_buffer + ((sector_t - buffer_min) << 9);
bh = CURRENT->bh;
size = CURRENT->current_nr_sectors << 9;
buffer = CURRENT->buffer;
while ( remaining > 0){
if ( size > remaining )
size = remaining;
#ifdef CONFIG_FLOPPY_SANITY
if (dma_buffer + size >
floppy_track_buffer + (max_buffer_sectors << 10) ||
dma_buffer < floppy_track_buffer ){
DPRINT1("buffer overrun in copy buffer %d\n",
(int) ((floppy_track_buffer - dma_buffer) >>9));
printk("sector_t=%d buffer_min=%d\n",
sector_t, buffer_min);
printk("current_count_sectors=%ld\n",
current_count_sectors);
if ( CT(COMMAND) == FD_READ )
printk("read\n");
if ( CT(COMMAND) == FD_READ )
printk("write\n");
break;
}
if ( ((unsigned long)buffer) % 512 )
DPRINT1("%p buffer not aligned\n", buffer);
#endif
if ( CT(COMMAND) == FD_READ )
memcpy( buffer, dma_buffer, size);
else
memcpy( dma_buffer, buffer, size);
remaining -= size;
if ( !remaining)
break;
dma_buffer += size;
bh = bh->b_reqnext;
#ifdef CONFIG_FLOPPY_SANITY
if ( !bh){
DPRINT("bh=null in copy buffer after copy\n");
break;
}
#endif
size = bh->b_size;
buffer = bh->b_data;
}
#ifdef CONFIG_FLOPPY_SANITY
if ( remaining ){
if ( remaining > 0 )
max_sector -= remaining >> 9;
DPRINT1("weirdness: remaining %d\n", remaining>>9);
}
#endif
}
/*
* Formulate a read/write request.
* this routine decides where to load the data (directly to buffer, or to
* tmp floppy area), how much data to load (the size of the buffer, the whole
* track, or a single sector)
* All floppy_track_buffer handling goes in here. If we ever add track buffer
* allocation on the fly, it should be done here. No other part should need
* modification.
*/
static int make_raw_rw_request(void)
{
int aligned_sector_t;
int max_sector, max_size, tracksize, ssize;
set_fdc(DRIVE(CURRENT->dev));
raw_cmd.flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_DISK |
FD_RAW_NEED_SEEK;
raw_cmd.cmd_count = NR_RW;
if (CURRENT->cmd == READ){
raw_cmd.flags |= FD_RAW_READ;
COMMAND = FM_MODE(floppy,FD_READ);
} else if (CURRENT->cmd == WRITE){
raw_cmd.flags |= FD_RAW_WRITE;
COMMAND = FM_MODE(floppy,FD_WRITE);
} else {
DPRINT("make_raw_rw_request: unknown command\n");
return 0;
}
max_sector = floppy->sect * floppy->head;
TRACK = CURRENT->sector / max_sector;
sector_t = CURRENT->sector % max_sector;
if ( floppy->track && TRACK >= floppy->track )
return 0;
HEAD = sector_t / floppy->sect;
if (((floppy->stretch & FD_SWAPSIDES) || TESTF( FD_NEED_TWADDLE)) &&
sector_t < floppy->sect )
max_sector = floppy->sect;
/* 2M disks have phantom sectors on the first track */
if ( (floppy->rate & FD_2M ) && (!TRACK) && (!HEAD)){
max_sector = 2 * floppy->sect / 3;
if (sector_t >= max_sector){
current_count_sectors = (floppy->sect - sector_t);
if ( current_count_sectors > CURRENT->nr_sectors )
current_count_sectors = CURRENT->nr_sectors;
return 1;
}
SIZECODE = 2;
} else
SIZECODE = FD_SIZECODE(floppy);
raw_cmd.rate = floppy->rate & 3;
if ((floppy->rate & FD_2M) &&
(TRACK || HEAD ) &&
raw_cmd.rate == 2)
raw_cmd.rate = 1;
if ( SIZECODE )
SIZECODE2 = 0xff;
else
SIZECODE2 = 0x80;
raw_cmd.track = TRACK << STRETCH(floppy);
DR_SELECT = UNIT(current_drive) + PH_HEAD(floppy,HEAD);
GAP = floppy->gap;
CODE2SIZE;
SECT_PER_TRACK = floppy->sect << 2 >> SIZECODE;
SECTOR = ((sector_t % floppy->sect) << 2 >> SIZECODE) + 1;
tracksize = floppy->sect - floppy->sect % ssize;
if ( tracksize < floppy->sect ){
SECT_PER_TRACK ++;
if ( tracksize <= sector_t % floppy->sect)
SECTOR--;
while ( tracksize <= sector_t % floppy->sect){
while( tracksize + ssize > floppy->sect ){
SIZECODE--;
ssize >>= 1;
}
SECTOR++; SECT_PER_TRACK ++;
tracksize += ssize;
}
max_sector = HEAD * floppy->sect + tracksize;
} else if ( !TRACK && !HEAD && !( floppy->rate & FD_2M ) && probing)
max_sector = floppy->sect;
aligned_sector_t = sector_t - ( sector_t % floppy->sect ) % ssize;
max_size = CURRENT->nr_sectors;
if ((raw_cmd.track == buffer_track) && (current_drive == buffer_drive) &&
(sector_t >= buffer_min) && (sector_t < buffer_max)) {
/* data already in track buffer */
if (CT(COMMAND) == FD_READ) {
copy_buffer(1, max_sector, buffer_max);
return 1;
}
} else if (aligned_sector_t != sector_t || CURRENT->nr_sectors < ssize){
if (CT(COMMAND) == FD_WRITE){
if(sector_t + CURRENT->nr_sectors > ssize &&
sector_t + CURRENT->nr_sectors < ssize + ssize)
max_size = ssize + ssize;
else
max_size = ssize;
}
raw_cmd.flags &= ~FD_RAW_WRITE;
raw_cmd.flags |= FD_RAW_READ;
COMMAND = FM_MODE(floppy,FD_READ);
} else if ((unsigned long)CURRENT->buffer < MAX_DMA_ADDRESS ) {
int direct, indirect;
indirect= transfer_size(ssize,max_sector,max_buffer_sectors*2) -
sector_t;
max_size = buffer_chain_size();
if ( max_size > ( MAX_DMA_ADDRESS - ((unsigned long) CURRENT->buffer))>>9)
max_size=(MAX_DMA_ADDRESS - ((unsigned long) CURRENT->buffer))>>9;
/* 64 kb boundaries */
if (CROSS_64KB(CURRENT->buffer, max_size << 9))
max_size = ( K_64 - ((long) CURRENT->buffer) % K_64)>>9;
direct = transfer_size(ssize,max_sector,max_size) - sector_t;
/*
* We try to read tracks, but if we get too many errors, we
* go back to reading just one sector at a time.
*
* This means we should be able to read a sector even if there
* are other bad sectors on this track.
*/
if (!direct ||
(indirect * 2 > direct * 3 &&
*errors < DP->max_errors.read_track &&
/*!TESTF( FD_NEED_TWADDLE) &&*/
((!probing || (DP->read_track&(1<<DRS->probed_format)))))){
max_size = CURRENT->nr_sectors;
} else {
current_addr = CURRENT->buffer;
raw_cmd.length = current_count_sectors << 9;
if (raw_cmd.length == 0){
DPRINT("zero dma transfer attempted from make_raw_request\n");
DPRINT3("indirect=%d direct=%d sector_t=%d",
indirect, direct, sector_t);
return 0;
}
return 2;
}
}
if ( CT(COMMAND) == FD_READ )
max_size = max_sector; /* unbounded */
/* claim buffer track if needed */
if (buffer_track != raw_cmd.track || /* bad track */
buffer_drive !=current_drive || /* bad drive */
sector_t > buffer_max ||
sector_t < buffer_min ||
((CT(COMMAND) == FD_READ ||
(aligned_sector_t == sector_t && CURRENT->nr_sectors >= ssize ))&&
max_sector > 2 * max_buffer_sectors + buffer_min &&
max_size + sector_t > 2 * max_buffer_sectors + buffer_min)
/* not enough space */ ){
buffer_track = -1;
buffer_drive = current_drive;
buffer_max = buffer_min = aligned_sector_t;
}
current_addr = floppy_track_buffer +((aligned_sector_t-buffer_min )<<9);
if ( CT(COMMAND) == FD_WRITE ){
/* copy write buffer to track buffer.
* if we get here, we know that the write
* is either aligned or the data already in the buffer
* (buffer will be overwritten) */
#ifdef CONFIG_FLOPPY_SANITY
if (sector_t != aligned_sector_t && buffer_track == -1 )
DPRINT("internal error offset !=0 on write\n");
#endif
buffer_track = raw_cmd.track;
buffer_drive = current_drive;
copy_buffer(ssize, max_sector, 2*max_buffer_sectors+buffer_min);
} else
transfer_size(ssize, max_sector,
2*max_buffer_sectors+buffer_min-aligned_sector_t);
/* round up current_count_sectors to get dma xfer size */
raw_cmd.length = sector_t+current_count_sectors-aligned_sector_t;
raw_cmd.length = ((raw_cmd.length -1)|(ssize-1))+1;
raw_cmd.length <<= 9;
#ifdef CONFIG_FLOPPY_SANITY
if ((raw_cmd.length < current_count_sectors << 9) ||
(current_addr != CURRENT->buffer &&
CT(COMMAND) == FD_WRITE &&
(aligned_sector_t + (raw_cmd.length >> 9) > buffer_max ||
aligned_sector_t < buffer_min )) ||
raw_cmd.length % ( 128 << SIZECODE ) ||
raw_cmd.length <= 0 || current_count_sectors <= 0){
DPRINT2("fractionary current count b=%lx s=%lx\n",
raw_cmd.length, current_count_sectors);
if ( current_addr != CURRENT->buffer )
printk("addr=%d, length=%ld\n",
(int) ((current_addr - floppy_track_buffer ) >> 9),
current_count_sectors);
printk("st=%d ast=%d mse=%d msi=%d\n",
sector_t, aligned_sector_t, max_sector, max_size);
printk("ssize=%x SIZECODE=%d\n", ssize, SIZECODE);
printk("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
COMMAND, SECTOR, HEAD, TRACK);
printk("buffer drive=%d\n", buffer_drive);
printk("buffer track=%d\n", buffer_track);
printk("buffer_min=%d\n", buffer_min );
printk("buffer_max=%d\n", buffer_max );
return 0;
}
if (current_addr != CURRENT->buffer ){
if (current_addr < floppy_track_buffer ||
current_count_sectors < 0 ||
raw_cmd.length < 0 ||
current_addr + raw_cmd.length >
floppy_track_buffer + (max_buffer_sectors << 10)){
DPRINT("buffer overrun in schedule dma\n");
printk("sector_t=%d buffer_min=%d current_count=%ld\n",
sector_t, buffer_min,
raw_cmd.length >> 9 );
printk("current_count_sectors=%ld\n",
current_count_sectors);
if ( CT(COMMAND) == FD_READ )
printk("read\n");
if ( CT(COMMAND) == FD_READ )
printk("write\n");
return 0;
}
} else if (raw_cmd.length > CURRENT->nr_sectors << 9 ||
current_count_sectors > CURRENT->nr_sectors){
DPRINT("buffer overrun in direct transfer\n");
return 0;
} else if ( raw_cmd.length < current_count_sectors << 9 ){
DPRINT("more sectors than bytes\n");
printk("bytes=%ld\n", raw_cmd.length >> 9 );
printk("sectors=%ld\n", current_count_sectors);
}
if (raw_cmd.length == 0){
DPRINT("zero dma transfer attempted from make_raw_request\n");
return 0;
}
#endif
return 2;
}
static void redo_fd_request(void)
{
#define REPEAT {request_done(0); continue; }
int device;
int tmp;
int error;
error = -1;
lastredo = jiffies;
if (current_drive < N_DRIVE)
floppy_off(current_drive);
if (CURRENT && CURRENT->dev < 0){
DPRINT("current dev < 0!\n");
return;
}
while(1){
if (!CURRENT) {
CLEAR_INTR;
unlock_fdc();
return;
}
if (MAJOR(CURRENT->dev) != MAJOR_NR)
panic(DEVICE_NAME ": request list destroyed");
if (CURRENT->bh && !CURRENT->bh->b_lock)
panic(DEVICE_NAME ": block not locked");
#if 0
if (!CURRENT->bh->b_count &&
(CURRENT->errors || error == CURRENT->dev)){
error=CURRENT->dev;
DPRINT("skipping read ahead buffer\n");
REPEAT;
}
#endif
error=-1;
device = CURRENT->dev;
set_fdc( DRIVE(device));
reschedule_timeout(CURRENTD, "redo fd request", 0);
set_floppy(device);
if(start_motor(redo_fd_request)) return;
if(test_bit(current_drive, &fake_change) ||
TESTF(FD_DISK_CHANGED)){
DPRINT("disk absent or changed during operation\n");
REPEAT;
}
if (!floppy) { /* Autodetection */
if (!probing){
DRS->probed_format = 0;
if ( next_valid_format() ){
DPRINT("no autodetectable formats\n");
floppy = NULL;
REPEAT;
}
}
probing = 1;
floppy = floppy_type+DP->autodetect[DRS->probed_format];
} else
probing = 0;
errors = & (CURRENT->errors);
tmp = make_raw_rw_request();
if ( tmp < 2 ){
request_done(tmp);
continue;
}
if (TESTF(FD_NEED_TWADDLE))
twaddle();
floppy_tq.routine = (void *)(void *) floppy_start;
queue_task(&floppy_tq, &tq_timer);
#ifdef DEBUGT
debugt("queue fd request");
#endif
return;
}
#undef REPEAT
}
static struct cont_t rw_cont={
rw_interrupt,
redo_fd_request,
bad_flp_intr,
request_done };
struct tq_struct request_tq =
{ 0, 0, (void *) (void *) redo_fd_request, 0 };
static void process_fd_request(void)
{
cont = &rw_cont;
queue_task(&request_tq, &tq_timer);
}
static void do_fd_request(void)
{
if (fdc_busy){
/* fdc busy, this new request will be treated when the
current one is done */
is_alive("do fd request, old request running");
return;
}
/* fdc_busy cannot be set by an interrupt or a bh */
floppy_grab_irq_and_dma();
fdc_busy=1;
reschedule_timeout(MAXTIMEOUT, "do fd request",0);
process_fd_request();
is_alive("do fd request");
}
static struct cont_t poll_cont={
success_and_wakeup,
floppy_ready,
generic_failure,
generic_done };
static int poll_drive(int interruptible, int flag){
int ret;
/* no auto-sense, just clear dcl */
raw_cmd.flags= flag;
raw_cmd.track=0;
raw_cmd.cmd_count=0;
cont = &poll_cont;
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("setting NEWCHANGE in poll_drive\n");
}
#endif
SETF(FD_DISK_NEWCHANGE);
WAIT(floppy_ready);
return ret;
}
/*
* User triggered reset
* ====================
*/
static void reset_intr(void)
{
printk("weird, reset interrupt called\n");
}
static struct cont_t reset_cont={
reset_intr,
success_and_wakeup,
generic_failure,
generic_done };
static int user_reset_fdc(int drive, int arg, int interruptible)
{
int ret;
ret=0;
if(arg == FD_RESET_IF_NEEDED && !FDCS->reset)
return 0;
LOCK_FDC(drive,interruptible);
if(arg == FD_RESET_ALWAYS)
FDCS->reset=1;
if ( FDCS->reset ){
cont = &reset_cont;
reschedule_timeout(CURRENTD, "user reset fdc", 0);
WAIT(reset_fdc);
}
process_fd_request();
return ret;
}
/*
* Misc Ioctl's and support
* ========================
*/
static int fd_copyout(void *param, volatile void *address, int size)
{
int i;
i = verify_area(VERIFY_WRITE,param,size);
if (i)
return i;
memcpy_tofs(param,(void *) address, size);
return 0;
}
#define COPYOUT(x) (fd_copyout( (void *)param, &(x), sizeof(x)))
#define COPYIN(x) (memcpy_fromfs( &(x), (void *) param, sizeof(x)),0)
static char *drive_name(int type, int drive )
{
struct floppy_struct *floppy;
if ( type )
floppy = floppy_type + type;
else {
if ( UDP->native_format )
floppy = floppy_type + UDP->native_format;
else
return "(null)";
}
if ( floppy->name )
return floppy->name;
else
return "(null)";
}
/* raw commands */
static struct cont_t raw_cmd_cont={
success_and_wakeup,
failure_and_wakeup,
generic_failure,
generic_done };
static int raw_cmd_ioctl(void *param)
{
int i, drive, count, ret;
if ( FDCS->rawcmd <= 1 )
FDCS->rawcmd = 1;
for ( drive= 0; drive < N_DRIVE; drive++){
if ( FDC(drive) != fdc)
continue;
if ( drive == current_drive ){
if ( UDRS->fd_ref > 1 ){
FDCS->rawcmd = 2;
break;
}
} else if ( UDRS->fd_ref ){
FDCS->rawcmd = 2;
break;
}
}
if(FDCS->reset)
return -EIO;
COPYIN(raw_cmd);
raw_cmd.rate &= 0x03;
count = raw_cmd.length;
if (raw_cmd.flags & (FD_RAW_WRITE | FD_RAW_READ)){
if(count > max_buffer_sectors * 1024 )
return -ENOMEM;
if(count == 0){
printk("attempt to do a 0 byte dma transfer\n");
return -EINVAL;
}
buffer_track = -1;
}
if ( raw_cmd.flags & FD_RAW_WRITE ){
i = verify_area(VERIFY_READ, raw_cmd.data, count );
if (i)
return i;
memcpy_fromfs(floppy_track_buffer, raw_cmd.data, count);
}
current_addr = floppy_track_buffer;
cont = &raw_cmd_cont;
IWAIT(floppy_start);
#ifdef DCL_DEBUG
if (DP->flags & FD_DEBUG){
DPRINT("calling disk change from raw_cmd ioctl\n");
}
#endif
if( disk_change(current_drive) )
raw_cmd.flags |= FD_RAW_DISK_CHANGE;
else
raw_cmd.flags &= ~FD_RAW_DISK_CHANGE;
if(raw_cmd.flags & FD_RAW_NO_MOTOR_AFTER)
motor_off_callback(current_drive);
if ( !ret && !FDCS->reset ){
raw_cmd.reply_count = inr;
for( i=0; i< raw_cmd.reply_count; i++)
raw_cmd.reply[i] = reply_buffer[i];
if ( raw_cmd.flags & ( FD_RAW_READ | FD_RAW_WRITE ))
raw_cmd.length = get_dma_residue(FLOPPY_DMA);
} else
ret = -EIO;
DRS->track = NO_TRACK;
if ( ret )
return ret;
if ( raw_cmd.flags & FD_RAW_READ ){
i=fd_copyout( raw_cmd.data, floppy_track_buffer, count);
if (i)
return i;
}
return COPYOUT(raw_cmd);
}
static int invalidate_drive(int rdev)
{
/* invalidate the buffer track to force a reread */
set_bit( DRIVE(rdev), &fake_change);
process_fd_request();
check_disk_change(rdev);
return 0;
}
static int fd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
unsigned long param)
{
#define IOCTL_MODE_BIT 8
#define OPEN_WRITE_BIT 16
#define IOCTL_ALLOWED (filp && (filp->f_mode & IOCTL_MODE_BIT))
struct floppy_struct newparams;
struct format_descr tmp_format_req;
int i,device,drive,type,cnt;
struct floppy_struct *this_floppy;
char *name;
device = inode->i_rdev;
switch (cmd) {
RO_IOCTLS(device,param);
}
type = TYPE(device);
drive = DRIVE(device);
switch (cmd) {
case FDGETDRVTYP:
i=verify_area(VERIFY_WRITE,(void *) param,16);
if (i)
return i;
name = drive_name(type,drive);
for ( cnt=0; cnt<16; cnt++){
put_user(name[cnt], ((char*)param)+cnt);
if ( ! *name )
break;
}
return 0;
case FDGETMAXERRS:
return COPYOUT(UDP->max_errors);
case FDGETPRM:
if (type)
this_floppy = &floppy_type[type];
else if ((this_floppy = current_type[drive]) ==
NULL)
return -ENODEV;
return COPYOUT(this_floppy[0]);
case FDPOLLDRVSTAT:
LOCK_FDC(drive,1);
CALL(poll_drive(1, FD_RAW_NEED_DISK));
process_fd_request();
/* fall through */
case FDGETDRVSTAT:
return COPYOUT(*UDRS);
case FDGETFDCSTAT:
return COPYOUT(*UFDCS);
case FDGETDRVPRM:
return COPYOUT(*UDP);
case FDWERRORGET:
return COPYOUT(*UDRWE);
}
if (!IOCTL_ALLOWED)
return -EPERM;
switch (cmd) {
case FDWERRORCLR:
UDRWE->write_errors = 0;
UDRWE->first_error_sector = 0;
UDRWE->first_error_generation = 0;
UDRWE->last_error_sector = 0;
UDRWE->last_error_generation = 0;
UDRWE->badness = 0;
return 0;
case FDRAWCMD:
if (type)
return -EINVAL;
LOCK_FDC(drive,1);
set_floppy(device);
CALL(i = raw_cmd_ioctl((void *) param));
process_fd_request();
return i;
case FDFMTTRK:
if (UDRS->fd_ref != 1)
return -EBUSY;
COPYIN(tmp_format_req);
return do_format(device, &tmp_format_req);
case FDSETMAXERRS:
return COPYIN(UDP->max_errors);
case FDFMTBEG:
return 0;
case FDCLRPRM:
LOCK_FDC(drive,1);
current_type[drive] = NULL;
floppy_sizes[drive] = MAX_DISK_SIZE;
UDRS->keep_data = 0;
return invalidate_drive(device);
case FDFMTEND:
case FDFLUSH:
LOCK_FDC(drive,1);
return invalidate_drive(device);
case FDSETPRM:
case FDDEFPRM:
COPYIN(newparams);
/* sanity checking for parameters.*/
if(newparams.sect <= 0 ||
newparams.head <= 0 ||
newparams.track <= 0 ||
newparams.track > UDP->tracks>> STRETCH(&newparams) ||
/* check if reserved bits are set */
(newparams.stretch & ~(FD_STRETCH | FD_SWAPSIDES)) != 0)
return -EINVAL;
if ( type){
if ( !suser() )
return -EPERM;
LOCK_FDC(drive,1);
for ( cnt = 0; cnt < N_DRIVE; cnt++){
if (TYPE(drive_state[cnt].fd_device) == type &&
drive_state[cnt].fd_ref)
set_bit(drive, &fake_change);
}
floppy_type[type] = newparams;
floppy_type[type].name="user format";
for (cnt = type << 2 ;
cnt < (type << 2 ) + 4 ;
cnt++)
floppy_sizes[cnt]=
floppy_sizes[cnt+0x80]=
floppy_type[type].size>>1;
process_fd_request();
for ( cnt = 0; cnt < N_DRIVE; cnt++){
if (TYPE(drive_state[cnt].fd_device) == type &&
drive_state[cnt].fd_ref)
check_disk_change(drive_state[cnt].
fd_device);
}
return 0;
}
LOCK_FDC(drive,1);
if ( cmd != FDDEFPRM )
/* notice a disk change immediately, else
* we loose our settings immediately*/
CALL(poll_drive(1,0));
user_params[drive] = newparams;
if (buffer_drive == drive &&
buffer_max > user_params[drive].sect)
buffer_max=user_params[drive].sect;
current_type[drive] = &user_params[drive];
floppy_sizes[drive] = user_params[drive].size >> 1;
if (cmd == FDDEFPRM)
DRS->keep_data = -1;
else
DRS->keep_data = 1;
/* invalidation. Invalidate only when needed, i.e.
* when there are already sectors in the buffer cache
* whose number will change. This is useful, because
* mtools often changes the geometry of the disk after
* looking at the boot block */
if (DRS->maxblock >
user_params[drive].sect ||
DRS->maxtrack )
invalidate_drive(device);
else
process_fd_request();
return 0;
case FDRESET:
return user_reset_fdc( drive, (int)param, 1);
case FDMSGON:
UDP->flags |= FTD_MSG;
return 0;
case FDMSGOFF:
UDP->flags &= ~FTD_MSG;
return 0;
case FDSETEMSGTRESH:
UDP->max_errors.reporting =
(unsigned short) (param & 0x0f);
return 0;
case FDTWADDLE:
LOCK_FDC(drive,1);
twaddle();
process_fd_request();
}
if ( ! suser() )
return -EPERM;
switch(cmd){
case FDSETDRVPRM:
return COPYIN(*UDP);
default:
return -EINVAL;
}
return 0;
#undef IOCTL_ALLOWED
}
static void config_types(void)
{
int first=1;
int drive;
/* read drive info out of physical cmos */
drive=0;
if (!UDP->cmos )
UDP->cmos= FLOPPY0_TYPE;
drive=1;
if (!UDP->cmos && FLOPPY1_TYPE)
UDP->cmos = FLOPPY1_TYPE;
/* XXX */
/* additional physical CMOS drive detection should go here */
for (drive=0; drive < N_DRIVE; drive++){
if (UDP->cmos >= 0 && UDP->cmos <= NUMBER(default_drive_params))
memcpy((char *) UDP,
(char *) (&default_drive_params[(int)UDP->cmos].params),
sizeof(struct floppy_drive_params));
if (UDP->cmos){
if (first)
printk("Floppy drive(s): ");
else
printk(", ");
first=0;
if (UDP->cmos > 0 ){
ALLOWED_DRIVE_MASK |= 1 << drive;
printk("fd%d is %s", drive,
default_drive_params[(int)UDP->cmos].name);
} else
printk("fd%d is unknown type %d",drive,
UDP->cmos);
}
}
if(!first)
printk("\n");
}
static int floppy_read(struct inode * inode, struct file * filp,
char * buf, int count)
{
int drive = DRIVE(inode->i_rdev);
check_disk_change(inode->i_rdev);
if (UTESTF(FD_DISK_CHANGED))
return -ENXIO;
return block_read(inode, filp, buf, count);
}
static int floppy_write(struct inode * inode, struct file * filp,
char * buf, int count)
{
int block;
int ret;
int drive = DRIVE(inode->i_rdev);
if(!UDRS->maxblock)
UDRS->maxblock=1;/* make change detectable */
check_disk_change(inode->i_rdev);
if (UTESTF(FD_DISK_CHANGED))
return -ENXIO;
if(!UTESTF(FD_DISK_WRITABLE))
return -EROFS;
block = (filp->f_pos + count) >> 9;
if(block > UDRS->maxblock)
UDRS->maxblock = block;
ret= block_write(inode, filp, buf, count);
return ret;
}
static void floppy_release(struct inode * inode, struct file * filp)
{
int drive;
drive = DRIVE(inode->i_rdev);
if( !filp || (filp->f_mode & (2 | OPEN_WRITE_BIT)))
/* if the file is mounted OR (writable now AND writable at
* open time) Linus: Does this cover all cases? */
block_fsync(inode,filp);
if (UDRS->fd_ref < 0)
UDRS->fd_ref=0;
else if (!UDRS->fd_ref--) {
DPRINT("floppy_release with fd_ref == 0");
UDRS->fd_ref = 0;
}
floppy_release_irq_and_dma();
}
/*
* floppy_open check for aliasing (/dev/fd0 can be the same as
* /dev/PS0 etc), and disallows simultaneous access to the same
* drive with different device numbers.
*/
#define RETERR(x) \
do{floppy_release(inode,filp); \
return -(x);}while(0)
static int floppy_open(struct inode * inode, struct file * filp)
{
int drive;
int old_dev;
int try;
char *tmp;
if (!filp) {
DPRINT("Weird, open called with filp=0\n");
return -EIO;
}
drive = DRIVE(inode->i_rdev);
if (drive >= N_DRIVE ||
!( ALLOWED_DRIVE_MASK & ( 1 << drive)) ||
fdc_state[FDC(drive)].version == FDC_NONE)
return -ENXIO;
if (TYPE(inode->i_rdev) >= NUMBER(floppy_type))
return -ENXIO;
old_dev = UDRS->fd_device;
if (UDRS->fd_ref && old_dev != inode->i_rdev)
return -EBUSY;
if(!UDRS->fd_ref && (UDP->flags & FD_BROKEN_DCL)){
USETF(FD_DISK_CHANGED);
USETF(FD_VERIFY);
}
if(UDRS->fd_ref == -1 ||
(UDRS->fd_ref && (filp->f_flags & O_EXCL)))
return -EBUSY;
if (floppy_grab_irq_and_dma())
return -EBUSY;
if (filp->f_flags & O_EXCL)
UDRS->fd_ref = -1;
else
UDRS->fd_ref++;
if (!floppy_track_buffer){
/* if opening an ED drive, reserve a big buffer,
* else reserve a small one */
if ((UDP->cmos == 6) || (UDP->cmos == 5))
try = 64; /* Only 48 actually useful */
else
try = 32; /* Only 24 actually useful */
tmp=(char *)dma_mem_alloc(1024 * try);
if (!tmp) {
try >>= 1; /* buffer only one side */
if (try < 16)
try=16;
tmp= (char *)dma_mem_alloc(1024*try);
}
if (!tmp) {
DPRINT("Unable to allocate DMA memory\n");
RETERR(ENXIO);
}
if (floppy_track_buffer){
free_pages((unsigned long)tmp,__get_order(try*1024));
}else {
floppy_track_buffer = tmp;
max_buffer_sectors = try;
}
}
UDRS->fd_device = inode->i_rdev;
if (old_dev && old_dev != inode->i_rdev) {
if (buffer_drive == drive)
buffer_track = -1;
invalidate_buffers(old_dev);
}
/* Allow ioctls if we have write-permissions even if read-only open */
if ((filp->f_mode & 2) || (permission(inode,2) == 0))
filp->f_mode |= IOCTL_MODE_BIT;
if (filp->f_mode & 2)
filp->f_mode |= OPEN_WRITE_BIT;
if (UFDCS->rawcmd == 1)
UFDCS->rawcmd = 2;
if (filp->f_flags & O_NDELAY)
return 0;
if (filp->f_mode & 3) {
UDRS->last_checked = 0;
check_disk_change(inode->i_rdev);
if (UTESTF(FD_DISK_CHANGED))
RETERR(ENXIO);
}
if ((filp->f_mode & 2) && !(UTESTF(FD_DISK_WRITABLE)))
RETERR(EROFS);
return 0;
#undef RETERR
}
/*
* Check if the disk has been changed or if a change has been faked.
*/
static int check_floppy_change(dev_t dev)
{
int drive = DRIVE( dev );
if (MAJOR(dev) != MAJOR_NR) {
DPRINT("floppy_changed: not a floppy\n");
return 0;
}
if (UTESTF(FD_DISK_CHANGED))
return 1;
if(UDRS->last_checked + UDP->checkfreq < jiffies){
lock_fdc(drive,0);
poll_drive(0,0);
process_fd_request();
}
if(UTESTF(FD_DISK_CHANGED) ||
test_bit(drive, &fake_change) ||
(!TYPE(dev) && !current_type[drive]))
return 1;
return 0;
}
/* revalidate the floppy disk, i.e. trigger format autodetection by reading
* the bootblock (block 0). "Autodetection" is also needed to check whether
* there is a disk in the drive at all... Thus we also do it for fixed
* geometry formats */
static int floppy_revalidate(dev_t dev)
{
#define NO_GEOM (!current_type[drive] && !TYPE(dev))
struct buffer_head * bh;
int drive=DRIVE(dev);
int cf;
if(UTESTF(FD_DISK_CHANGED) || test_bit(drive, &fake_change) || NO_GEOM){
lock_fdc(drive,0);
cf = UTESTF(FD_DISK_CHANGED);
if(! (cf || test_bit(drive, &fake_change) || NO_GEOM)){
process_fd_request(); /*already done by another thread*/
return 0;
}
UDRS->maxblock = 0;
UDRS->maxtrack = 0;
if ( buffer_drive == drive)
buffer_track = -1;
clear_bit(drive, &fake_change);
UCLEARF(FD_DISK_CHANGED);
if(cf)
UDRS->generation++;
if(NO_GEOM){
/* auto-sensing */
int size = floppy_blocksizes[MINOR(dev)];
if (!size)
size = 1024;
if (!(bh = getblk(dev,0,size))){
process_fd_request();
return 1;
}
if ( bh && ! bh->b_uptodate)
ll_rw_block(READ, 1, &bh);
process_fd_request();
wait_on_buffer(bh);
brelse(bh);
return 0;
}
if(cf)
poll_drive(0, FD_RAW_NEED_DISK);
process_fd_request();
}
return 0;
}
static struct file_operations floppy_fops = {
NULL, /* lseek - default */
floppy_read, /* read - general block-dev read */
floppy_write, /* write - general block-dev write */
NULL, /* readdir - bad */
NULL, /* select */
fd_ioctl, /* ioctl */
NULL, /* mmap */
floppy_open, /* open */
floppy_release, /* release */
block_fsync, /* fsync */
NULL, /* fasync */
check_floppy_change, /* media_change */
floppy_revalidate, /* revalidate */
};
/*
* Floppy Driver initialisation
* =============================
*/
/* Determine the floppy disk controller type */
/* This routine was written by David C. Niemi */
static char get_fdc_version(void)
{
int r;
output_byte(FD_DUMPREGS); /* 82072 and better know DUMPREGS */
if ( FDCS->reset )
return FDC_NONE;
if ( (r = result()) <= 0x00)
return FDC_NONE; /* No FDC present ??? */
if ((r==1) && (reply_buffer[0] == 0x80)){
printk("FDC %d is a 8272A\n",fdc);
return FDC_8272A; /* 8272a/765 don't know DUMPREGS */
}
if (r != 10) {
printk("FDC init: DUMPREGS: unexpected return of %d bytes.\n", r);
return FDC_UNKNOWN;
}
output_byte(FD_VERSION);
r = result();
if ((r == 1) && (reply_buffer[0] == 0x80)){
printk("FDC %d is a 82072\n",fdc);
return FDC_82072; /* 82072 doesn't know VERSION */
}
if ((r != 1) || (reply_buffer[0] != 0x90)) {
printk("FDC init: VERSION: unexpected return of %d bytes.\n", r);
return FDC_UNKNOWN;
}
output_byte(FD_UNLOCK);
r = result();
if ((r == 1) && (reply_buffer[0] == 0x80)){
printk("FDC %d is a pre-1991 82077\n", fdc);
return FDC_82077_ORIG; /* Pre-1991 82077 doesn't know LOCK/UNLOCK */
}
if ((r != 1) || (reply_buffer[0] != 0x00)) {
printk("FDC init: UNLOCK: unexpected return of %d bytes.\n", r);
return FDC_UNKNOWN;
}
printk("FDC %d is a post-1991 82077\n",fdc);
return FDC_82077; /* Revised 82077AA passes all the tests */
} /* get_fdc_version */
/* lilo configuration */
/* we make the invert_dcl function global. One day, somebody might
want to centralize all thinkpad related options into one lilo option,
there are just so many thinkpad related quirks! */
void floppy_invert_dcl(int *ints,int param)
{
int i;
for (i=0; i < ARRAY_SIZE(default_drive_params); i++){
if (param)
default_drive_params[i].params.flags |= 0x80;
else
default_drive_params[i].params.flags &= ~0x80;
}
DPRINT("Configuring drives for inverted dcl\n");
}
static void daring(int *ints,int param)
{
int i;
for (i=0; i < ARRAY_SIZE(default_drive_params); i++){
if (param){
default_drive_params[i].params.select_delay = 0;
default_drive_params[i].params.flags |= FD_SILENT_DCL_CLEAR;
} else {
default_drive_params[i].params.select_delay = 2*HZ/100;
default_drive_params[i].params.flags &= ~FD_SILENT_DCL_CLEAR;
}
}
DPRINT1("Assuming %s floppy hardware\n", param ? "standard" : "broken");
}
static void allow_drives(int *ints, int param)
{
ALLOWED_DRIVE_MASK=param;
DPRINT1("setting allowed_drive_mask to 0x%x\n", param);
}
static void fdc2_adr(int *ints, int param)
{
FDC2 = param;
if(param)
DPRINT1("enabling second fdc at address 0x%3x\n", FDC2);
else
DPRINT("disabling second fdc\n");
}
static void unex(int *ints,int param)
{
print_unex = param;
DPRINT1("%sprinting messages for unexpected interrupts\n",
param ? "" : "not ");
}
static void set_cmos(int *ints, int dummy)
{
int current_drive=0;
if ( ints[0] != 2 ){
DPRINT("wrong number of parameter for cmos\n");
return;
}
current_drive = ints[1];
if (current_drive < 0 || current_drive >= 8 ){
DPRINT("bad drive for set_cmos\n");
return;
}
if(ints[2] <= 0 || ints[2] >= NUMBER(default_drive_params)){
DPRINT1("bad cmos code %d\n", ints[2]);
return;
}
DP->cmos = ints[2];
DPRINT1("setting cmos code to %d\n", ints[2]);
}
static struct param_table {
char *name;
void (*fn)(int *ints, int param);
int def_param;
} config_params[]={
{ "allowed_drive_mask", allow_drives, 0xff },
{ "all_drives", allow_drives, 0xff },
{ "asus_pci", allow_drives, 0x33 },
{ "daring", daring, 1},
{ "two_fdc", fdc2_adr, 0x370 },
{ "one_fdc", fdc2_adr, 0 },
{ "thinkpad", floppy_invert_dcl, 1 },
{ "cmos", set_cmos, 0 },
{ "unexpected_interrupts", unex, 1 },
{ "no_unexpected_interrupts", unex, 0 },
{ "L40SX", unex, 0 } };
#define FLOPPY_SETUP
void floppy_setup(char *str, int *ints)
{
int i;
int param;
if(!str)
return;
for(i=0; i< ARRAY_SIZE(config_params); i++){
if (strcmp(str,config_params[i].name) == 0 ){
if (ints[0] )
param = ints[1];
else
param = config_params[i].def_param;
config_params[i].fn(ints,param);
return;
}
}
DPRINT1("unknown floppy option %s\n", str);
DPRINT("allowed options are:");
for(i=0; i< ARRAY_SIZE(config_params); i++)
printk(" %s",config_params[i].name);
printk("\n");
DPRINT("Read linux/drivers/block/README.fd\n");
}
int floppy_init(void)
{
int i,drive;
int have_no_fdc=0;
sti();
if (register_blkdev(MAJOR_NR,"fd",&floppy_fops)) {
printk("Unable to get major %d for floppy\n",MAJOR_NR);
return -EBUSY;
}
for(i=0; i<256; i++)
if ( TYPE(i))
floppy_sizes[i] = floppy_type[TYPE(i)].size >> 1;
else
floppy_sizes[i] = MAX_DISK_SIZE;
blk_size[MAJOR_NR] = floppy_sizes;
blksize_size[MAJOR_NR] = floppy_blocksizes;
blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;
reschedule_timeout(MAXTIMEOUT, "floppy init", MAXTIMEOUT);
config_types();
fdc_state[0].address = FDC1;
fdc_state[0].dor = 0;
#if N_FDC > 1
fdc_state[1].address = FDC2;
fdc_state[1].dor = 0;
#endif
for (i = 0 ; i < N_FDC ; i++) {
fdc = i;
FDCS->dtr = -1;
FDCS->dor = 0x4;
FDCS->reset = 0;
FDCS->version = FDC_NONE;
}
if(floppy_grab_irq_and_dma()){
unregister_blkdev(MAJOR_NR,"fd");
return -EBUSY;
}
/* initialise drive state */
for (drive = 0; drive < N_DRIVE ; drive++) {
UDRS->flags = FD_VERIFY | FD_DISK_NEWCHANGE | FD_DISK_CHANGED;
UDRS->generation = 0;
UDRS->keep_data = 0;
UDRS->fd_ref = 0;
UDRS->fd_device = 0;
floppy_track_buffer = NULL;
max_buffer_sectors = 0;
UDRWE->write_errors = 0;
UDRWE->first_error_sector = 0;
UDRWE->first_error_generation = 0;
UDRWE->last_error_sector = 0;
UDRWE->last_error_generation = 0;
UDRWE->badness = 0;
}
for (i = 0 ; i < N_FDC ; i++) {
fdc = i;
if (FDCS->address == -1 )
continue;
FDCS->rawcmd = 2;
if(user_reset_fdc(-1,FD_RESET_IF_NEEDED,0)){
FDCS->address = -1;
continue;
}
/* Try to determine the floppy controller type */
FDCS->version = get_fdc_version();
if (FDCS->version == FDC_NONE){
FDCS->address = -1;
continue;
}
request_region(FDCS->address, 6, "floppy");
request_region(FDCS->address+7, 1, "floppy DIR");
/* address + 6 is reserved, and may be taken by IDE.
* Unfortunately, Adaptec doesn't know this :-(, */
have_no_fdc = 0;
/* Not all FDCs seem to be able to handle the version command
* properly, so force a reset for the standard FDC clones,
* to avoid interrupt garbage.
*/
FDCS->has_fifo = FDCS->version >= FDC_82077_ORIG;
user_reset_fdc(-1,FD_RESET_ALWAYS,0);
}
fdc=0;
del_timer(&fd_timeout);
current_drive = 0;
floppy_release_irq_and_dma();
initialising=0;
if(have_no_fdc)
unregister_blkdev(MAJOR_NR,"fd");
return have_no_fdc;
}
static int floppy_grab_irq_and_dma(void)
{
int i;
cli();
if (usage_count++){
sti();
return 0;
}
sti();
#ifdef FD_MODULE
MOD_INC_USE_COUNT;
#endif
for(i=0; i< N_FDC; i++){
if(FDCS->address != -1){
fdc = i;
reset_fdc_info(1);
outb_p(FDCS->dor, FD_DOR);
}
}
set_dor(0, ~0, 8); /* avoid immediate interrupt */
if (request_irq(FLOPPY_IRQ, floppy_interrupt, SA_INTERRUPT, "floppy")) {
DPRINT1("Unable to grab IRQ%d for the floppy driver\n",
FLOPPY_IRQ);
return -1;
}
if (request_dma(FLOPPY_DMA,"floppy")) {
DPRINT1("Unable to grab DMA%d for the floppy driver\n",
FLOPPY_DMA);
free_irq(FLOPPY_IRQ);
return -1;
}
for(fdc = 0; fdc < N_FDC ; fdc++)
if(FDCS->address != -1)
outb_p(FDCS->dor, FD_DOR);
fdc = 0;
enable_irq(FLOPPY_IRQ);
return 0;
}
static void floppy_release_irq_and_dma(void)
{
#ifdef CONFIG_FLOPPY_SANITY
int drive;
#endif
long tmpsize;
void *tmpaddr;
cli();
if (--usage_count){
sti();
return;
}
sti();
#ifdef FD_MODULE
MOD_DEC_USE_COUNT;
#endif
disable_dma(FLOPPY_DMA);
free_dma(FLOPPY_DMA);
disable_irq(FLOPPY_IRQ);
free_irq(FLOPPY_IRQ);
set_dor(0, ~0, 8);
#if N_FDC > 1
set_dor(1, ~8, 0);
#endif
floppy_enable_hlt();
if (floppy_track_buffer && max_buffer_sectors) {
tmpsize = max_buffer_sectors*1024;
tmpaddr = (void *)floppy_track_buffer;
floppy_track_buffer = 0;
max_buffer_sectors = 0;
free_pages((unsigned long)tmpaddr, __get_order(tmpsize));
}
#ifdef CONFIG_FLOPPY_SANITY
for(drive=0; drive < N_FDC * 4; drive++)
if( motor_off_timer[drive].next )
printk("motor off timer %d still active\n", drive);
if(fd_timeout.next)
printk("floppy timer still active:%s\n", timeout_message);
if (fd_timer.next)
printk("auxiliary floppy timer still active\n");
if(floppy_tq.sync)
printk("task queue still active\n");
#endif
}
#ifdef MODULE
extern char *get_options(char *str, int *ints);
#if 0
/* assuming that insmod is compiled as a.out binary using a shared
C library ... */
int ENVIRON = 0x60090b34;
static void
mod_setup(char *name,
void (*setup)(char *, int *)) {
char **environ,*env,*ptr,c,i;
char line[100];
int ints[11];
environ = (char **) get_fs_long( ENVIRON );
while((env = (char *)get_fs_long(environ))){
for(i=0; i<strlen(name); i++)
if ( (char) get_fs_byte(env++) != name[i] )
break;
if(i == strlen(name)){
ptr=line;
while(ptr < line+99){
c = (char)get_fs_byte(env++);
if ( c== ' ' || !c ){
*ptr='\0';
if(ptr!=line)
setup(get_options(line,ints),
ints);
ptr=line;
if (!c)
break;
} else
*ptr++ = c;
}
}
environ++;
}
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
int init_module(void)
{
int ret;
printk("inserting floppy driver for %s\n", kernel_version);
/*mod_setup("floppy=", floppy_setup);*/
/* Can't do that any more, insmod is now ELF */
ret = floppy_init();
return 0;
}
void cleanup_module(void)
{
int fdc;
for(fdc=0; fdc<2; fdc++)
if (FDCS->address != -1){
release_region(FDCS->address, 6);
release_region(FDCS->address+7, 1);
}
unregister_blkdev(MAJOR_NR, "fd");
blk_dev[MAJOR_NR].request_fn = 0;
}
#ifdef __cplusplus
}
#endif
#endif