Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
/*
 *	sd.c Copyright (C) 1992 Drew Eckhardt 
 *	     Copyright (C) 1993, 1994 Eric Youngdale
 *	Linux scsi disk driver by
 *		Drew Eckhardt 
 *
 *	<drew@colorado.edu>
 *
 *       Modified by Eric Youngdale ericy@cais.com to
 *       add scatter-gather, multiple outstanding request, and other
 *       enhancements.
 */

#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <asm/system.h>

#define MAJOR_NR SCSI_DISK_MAJOR
#include "../block/blk.h"
#include "scsi.h"
#include "hosts.h"
#include "sd.h"
#include "scsi_ioctl.h"
#include "constants.h"

#include <linux/genhd.h>

/*
static const char RCSid[] = "$Header:";
*/

#define MAX_RETRIES 5

/*
 *	Time out in seconds for disks and Magneto-opticals (which are slower).
 */

#define SD_TIMEOUT 300
#define SD_MOD_TIMEOUT 750

#define CLUSTERABLE_DEVICE(SC) (SC->host->hostt->use_clustering && \
			    scsi_devices[SC->index].type != TYPE_MOD)

struct hd_struct * sd;

int NR_SD=0;
int MAX_SD=0;
Scsi_Disk * rscsi_disks;
static int * sd_sizes;
static int * sd_blocksizes;

extern int sd_ioctl(struct inode *, struct file *, unsigned int, unsigned long);

static sd_init_onedisk(int);

static void requeue_sd_request (Scsi_Cmnd * SCpnt);

static int sd_open(struct inode * inode, struct file * filp)
{
        int target;
	target =  DEVICE_NR(MINOR(inode->i_rdev));

	if(target >= NR_SD || !rscsi_disks[target].device)
	  return -ENXIO;   /* No such device */
	
/* Make sure that only one process can do a check_change_disk at one time.
 This is also used to lock out further access when the partition table is being re-read. */

	while (rscsi_disks[target].device->busy);

	if(rscsi_disks[target].device->removable) {
	  check_disk_change(inode->i_rdev);

	  if(!rscsi_disks[target].device->access_count)
	    sd_ioctl(inode, NULL, SCSI_IOCTL_DOORLOCK, 0);
	};
	rscsi_disks[target].device->access_count++;
	return 0;
}

static void sd_release(struct inode * inode, struct file * file)
{
        int target;
	sync_dev(inode->i_rdev);

	target =  DEVICE_NR(MINOR(inode->i_rdev));

	rscsi_disks[target].device->access_count--;

	if(rscsi_disks[target].device->removable) {
	  if(!rscsi_disks[target].device->access_count)
	    sd_ioctl(inode, NULL, SCSI_IOCTL_DOORUNLOCK, 0);
	};
}

static void sd_geninit(void);

static struct file_operations sd_fops = {
	NULL,			/* lseek - default */
	block_read,		/* read - general block-dev read */
	block_write,		/* write - general block-dev write */
	NULL,			/* readdir - bad */
	NULL,			/* select */
	sd_ioctl,		/* ioctl */
	NULL,			/* mmap */
	sd_open,		/* open code */
	sd_release,		/* release */
	block_fsync		/* fsync */
};

static struct gendisk sd_gendisk = {
	MAJOR_NR,		/* Major number */
	"sd",		/* Major name */
	4,		/* Bits to shift to get real from partition */
	1 << 4,		/* Number of partitions per real */
	0,		/* maximum number of real */
	sd_geninit,	/* init function */
	NULL,		/* hd struct */
	NULL,	/* block sizes */
	0,		/* number */
	NULL,	/* internal */
	NULL		/* next */
};

static void sd_geninit (void)
{
	int i;

	for (i = 0; i < NR_SD; ++i)
		sd[i << 4].nr_sects = rscsi_disks[i].capacity;
	sd_gendisk.nr_real = NR_SD;
}

/*
	rw_intr is the interrupt routine for the device driver.  It will
	be notified on the end of a SCSI read / write, and
	will take on of several actions based on success or failure.
*/

static void rw_intr (Scsi_Cmnd *SCpnt)
{
  int result = SCpnt->result;
  int this_count = SCpnt->bufflen >> 9;

#ifdef DEBUG
  printk("sd%d : rw_intr(%d, %d)\n", MINOR(SCpnt->request.dev), SCpnt->host->host_no, result);
#endif

/*
  First case : we assume that the command succeeded.  One of two things will
  happen here.  Either we will be finished, or there will be more
  sectors that we were unable to read last time.
*/

  if (!result) {

#ifdef DEBUG
    printk("sd%d : %d sectors remain.\n", MINOR(SCpnt->request.dev), SCpnt->request.nr_sectors);
    printk("use_sg is %d\n ",SCpnt->use_sg);
#endif
    if (SCpnt->use_sg) {
      struct scatterlist * sgpnt;
      int i;
      sgpnt = (struct scatterlist *) SCpnt->buffer;
      for(i=0; i<SCpnt->use_sg; i++) {
#ifdef DEBUG
	printk(":%x %x %d\n",sgpnt[i].alt_address, sgpnt[i].address, sgpnt[i].length);
#endif
	if (sgpnt[i].alt_address) {
	  if (SCpnt->request.cmd == READ)
	    memcpy(sgpnt[i].alt_address, sgpnt[i].address, sgpnt[i].length);
	  scsi_free(sgpnt[i].address, sgpnt[i].length);
	};
      };
      scsi_free(SCpnt->buffer, SCpnt->sglist_len);  /* Free list of scatter-gather pointers */
    } else {
      if (SCpnt->buffer != SCpnt->request.buffer) {
#ifdef DEBUG
	printk("nosg: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif	
	  if (SCpnt->request.cmd == READ)
	    memcpy(SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
	  scsi_free(SCpnt->buffer, SCpnt->bufflen);
      };
    };
/*
 * 	If multiple sectors are requested in one buffer, then
 *	they will have been finished off by the first command.  If
 *	not, then we have a multi-buffer command.
 */
    if (SCpnt->request.nr_sectors > this_count)
      {
	SCpnt->request.errors = 0;
	
	if (!SCpnt->request.bh)
	  {
#ifdef DEBUG
	    printk("sd%d : handling page request, no buffer\n",
		   MINOR(SCpnt->request.dev));
#endif
/*
  The SCpnt->request.nr_sectors field is always done in 512 byte sectors,
  even if this really isn't the case.
*/
	    panic("sd.c: linked page request (%lx %x)",
		  SCpnt->request.sector, this_count);
	  }
      }
    end_scsi_request(SCpnt, 1, this_count);
    requeue_sd_request(SCpnt);
    return;
  }

/* Free up any indirection buffers we allocated for DMA purposes. */
    if (SCpnt->use_sg) {
      struct scatterlist * sgpnt;
      int i;
      sgpnt = (struct scatterlist *) SCpnt->buffer;
      for(i=0; i<SCpnt->use_sg; i++) {
#ifdef DEBUG
	printk("err: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif
	if (sgpnt[i].alt_address) {
	  scsi_free(sgpnt[i].address, sgpnt[i].length);
	};
      };
      scsi_free(SCpnt->buffer, SCpnt->sglist_len);  /* Free list of scatter-gather pointers */
    } else {
#ifdef DEBUG
      printk("nosgerr: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif
      if (SCpnt->buffer != SCpnt->request.buffer)
	scsi_free(SCpnt->buffer, SCpnt->bufflen);
    };

/*
	Now, if we were good little boys and girls, Santa left us a request
	sense buffer.  We can extract information from this, so we
	can choose a block to remap, etc.
*/

        if (driver_byte(result) != 0) {
	  if (sugestion(result) == SUGGEST_REMAP) {
#ifdef REMAP
/*
	Not yet implemented.  A read will fail after being remapped,
	a write will call the strategy routine again.
*/
	    if rscsi_disks[DEVICE_NR(SCpnt->request.dev)].remap
	      {
		result = 0;
	      }
	    else
	      
#endif
	    }

	  if ((SCpnt->sense_buffer[0] & 0x7f) == 0x70) {
	    if ((SCpnt->sense_buffer[2] & 0xf) == UNIT_ATTENTION) {
	      if(rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->removable) {
	      /* detected disc change.  set a bit and quietly refuse	*/
	      /* further access.					*/
	      
		rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->changed = 1;
		end_scsi_request(SCpnt, 0, this_count);
		requeue_sd_request(SCpnt);
		return;
	      }
	    }
	  }
	  

/* 	If we had an ILLEGAL REQUEST returned, then we may have
performed an unsupported command.  The only thing this should be would
be a ten byte read where only a six byte read was supportted.  Also,
on a system where READ CAPACITY failed, we mave have read past the end
of the 	disk. 
*/

	  if (SCpnt->sense_buffer[2] == ILLEGAL_REQUEST) {
	    if (rscsi_disks[DEVICE_NR(SCpnt->request.dev)].ten) {
	      rscsi_disks[DEVICE_NR(SCpnt->request.dev)].ten = 0;
	      requeue_sd_request(SCpnt);
	      result = 0;
	    } else {
	    }
	  }
	}  /* driver byte != 0 */
	if (result) {
		printk("SCSI disk error : host %d id %d lun %d return code = %x\n",
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->host->host_no,
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->id,
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->lun, result);

		if (driver_byte(result) & DRIVER_SENSE)
			print_sense("sd", SCpnt);
		end_scsi_request(SCpnt, 0, SCpnt->request.current_nr_sectors);
		requeue_sd_request(SCpnt);
		return;
	}
}

/*
	requeue_sd_request() is the request handler function for the sd driver.
	Its function in life is to take block device requests, and translate
	them to SCSI commands.
*/

static void do_sd_request (void)
{
  Scsi_Cmnd * SCpnt = NULL;
  struct request * req = NULL;
  int flag = 0;
  while (1==1){
    cli();
    if (CURRENT != NULL && CURRENT->dev == -1) {
      sti();
      return;
    };

    INIT_SCSI_REQUEST;


/* We have to be careful here.  allocate_device will get a free pointer, but
   there is no guarantee that it is queueable.  In normal usage, we want to
   call this, because other types of devices may have the host all tied up,
   and we want to make sure that we have at least one request pending for this
   type of device.   We can also come through here while servicing an
   interrupt, because of the need to start another command.  If we call
   allocate_device more than once, then the system can wedge if the command
   is not queueable.  The request_queueable function is safe because it checks
   to make sure that the host is able to take another command before it returns
   a pointer.  */

    if (flag++ == 0)
      SCpnt = allocate_device(&CURRENT,
			      rscsi_disks[DEVICE_NR(MINOR(CURRENT->dev))].device->index, 0); 
    else SCpnt = NULL;
    sti();

/* This is a performance enhancement.  We dig down into the request list and
   try and find a queueable request (i.e. device not busy, and host able to
   accept another command.  If we find one, then we queue it. This can
   make a big difference on systems with more than one disk drive.  We want
   to have the interrupts off when monkeying with the request list, because
   otherwise the kernel might try and slip in a request inbetween somewhere. */

    if (!SCpnt && NR_SD > 1){
      struct request *req1;
      req1 = NULL;
      cli();
      req = CURRENT;
      while(req){
	SCpnt = request_queueable(req,
				  rscsi_disks[DEVICE_NR(MINOR(req->dev))].device->index);
	if(SCpnt) break;
	req1 = req;
	req = req->next;
      };
      if (SCpnt && req->dev == -1) {
	if (req == CURRENT) 
	  CURRENT = CURRENT->next;
	else
	  req1->next = req->next;
      };
      sti();
    };
    
    if (!SCpnt) return; /* Could not find anything to do */
        
    /* Queue command */
    requeue_sd_request(SCpnt);
  };  /* While */
}    

static void requeue_sd_request (Scsi_Cmnd * SCpnt)
{
	int dev, block, this_count;
	unsigned char cmd[10];
	int bounce_size, contiguous;
	int max_sg;
	struct buffer_head * bh, *bhp;
	char * buff, *bounce_buffer;

repeat:

	if(SCpnt->request.dev <= 0) {
	  do_sd_request();
	  return;
	}

	dev =  MINOR(SCpnt->request.dev);
	block = SCpnt->request.sector;
	this_count = 0;

#ifdef DEBUG
	printk("Doing sd request, dev = %d, block = %d\n", dev, block);
#endif

	if (dev >= (NR_SD << 4) || block + SCpnt->request.nr_sectors > sd[dev].nr_sects)
		{
		end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
		goto repeat;
		}

	block += sd[dev].start_sect;
	dev = DEVICE_NR(dev);

	if (rscsi_disks[dev].device->changed)
	        {
/*
 * quietly refuse to do anything to a changed disc until the changed bit has been reset
 */
		/* printk("SCSI disk has been changed.  Prohibiting further I/O.\n");	*/
		end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
		goto repeat;
		}

#ifdef DEBUG
	printk("sd%d : real dev = /dev/sd%d, block = %d\n", MINOR(SCpnt->request.dev), dev, block);
#endif

	switch (SCpnt->request.cmd)
		{
		case WRITE :
			if (!rscsi_disks[dev].device->writeable)
				{
				end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
				goto repeat;
				}
			cmd[0] = WRITE_6;
			break;
		case READ :
			cmd[0] = READ_6;
			break;
		default :
			panic ("Unknown sd command %d\n", SCpnt->request.cmd);
		      }

	SCpnt->this_count = 0;

	/* If the host adapter can deal with very large scatter-gather
	   requests, it is a waste of time to cluster */
	contiguous = (!CLUSTERABLE_DEVICE(SCpnt) ? 0 :1);
	bounce_buffer = NULL;
	bounce_size = (SCpnt->request.nr_sectors << 9);

	/* First see if we need a bounce buffer for this request.  If we do, make sure
	   that we can allocate a buffer.  Do not waste space by allocating a bounce
	   buffer if we are straddling the 16Mb line */

	
	if (contiguous && SCpnt->request.bh &&
	    ((int) SCpnt->request.bh->b_data) + (SCpnt->request.nr_sectors << 9) - 1 > 
	    ISA_DMA_THRESHOLD && SCpnt->host->unchecked_isa_dma) {
	  if(((int) SCpnt->request.bh->b_data) > ISA_DMA_THRESHOLD)
	    bounce_buffer = (char *) scsi_malloc(bounce_size);
	  if(!bounce_buffer) contiguous = 0;
	};

	if(contiguous && SCpnt->request.bh && SCpnt->request.bh->b_reqnext)
	  for(bh = SCpnt->request.bh, bhp = bh->b_reqnext; bhp; bh = bhp, 
	      bhp = bhp->b_reqnext) {
	    if(!CONTIGUOUS_BUFFERS(bh,bhp)) { 
	      if(bounce_buffer) scsi_free(bounce_buffer, bounce_size);
	      contiguous = 0;
	      break;
	    } 
	  };
	if (!SCpnt->request.bh || contiguous) {

	  /* case of page request (i.e. raw device), or unlinked buffer */
	  this_count = SCpnt->request.nr_sectors;
	  buff = SCpnt->request.buffer;
	  SCpnt->use_sg = 0;

	} else if (SCpnt->host->sg_tablesize == 0 ||
		   (need_isa_buffer && 
		    dma_free_sectors <= 10)) {

	  /* Case of host adapter that cannot scatter-gather.  We also
	   come here if we are running low on DMA buffer memory.  We set
	   a threshold higher than that we would need for this request so
	   we leave room for other requests.  Even though we would not need
	   it all, we need to be conservative, because if we run low enough
	   we have no choice but to panic. */

	  if (SCpnt->host->sg_tablesize != 0 &&
	      need_isa_buffer && 
	      dma_free_sectors <= 10)
	    printk("Warning: SCSI DMA buffer space running low.  Using non scatter-gather I/O.\n");

	  this_count = SCpnt->request.current_nr_sectors;
	  buff = SCpnt->request.buffer;
	  SCpnt->use_sg = 0;

	} else {

	  /* Scatter-gather capable host adapter */
	  struct scatterlist * sgpnt;
	  int count, this_count_max;
	  int counted;

	  bh = SCpnt->request.bh;
	  this_count = 0;
	  this_count_max = (rscsi_disks[dev].ten ? 0xffff : 0xff);
	  count = 0;
	  bhp = NULL;
	  while(bh) {
	    if ((this_count + (bh->b_size >> 9)) > this_count_max) break;
	    if(!bhp || !CONTIGUOUS_BUFFERS(bhp,bh) ||
	       !CLUSTERABLE_DEVICE(SCpnt) ||
	       (SCpnt->host->unchecked_isa_dma &&
	       ((unsigned int) bh->b_data-1) == ISA_DMA_THRESHOLD)) {
	      if (count < SCpnt->host->sg_tablesize) count++;
	      else break;
	    };
	    this_count += (bh->b_size >> 9);
	    bhp = bh;
	    bh = bh->b_reqnext;
	  };
#if 0
	  if(SCpnt->host->unchecked_isa_dma &&
	     ((unsigned int) SCpnt->request.bh->b_data-1) == ISA_DMA_THRESHOLD) count--;
#endif
	  SCpnt->use_sg = count;  /* Number of chains */
	  count = 512;/* scsi_malloc can only allocate in chunks of 512 bytes*/
	  while( count < (SCpnt->use_sg * sizeof(struct scatterlist))) 
	    count = count << 1;
	  SCpnt->sglist_len = count;
	  max_sg = count / sizeof(struct scatterlist);
	  if(SCpnt->host->sg_tablesize < max_sg) max_sg = SCpnt->host->sg_tablesize;
	  sgpnt = (struct scatterlist * ) scsi_malloc(count);
	  memset(sgpnt, 0, count);  /* Zero so it is easy to fill */
	  if (!sgpnt) {
	    printk("Warning - running *really* short on DMA buffers\n");
	    SCpnt->use_sg = 0;  /* No memory left - bail out */
	    this_count = SCpnt->request.current_nr_sectors;
	    buff = SCpnt->request.buffer;
	  } else {
	    buff = (char *) sgpnt;
	    counted = 0;
	    for(count = 0, bh = SCpnt->request.bh, bhp = bh->b_reqnext;
		count < SCpnt->use_sg && bh; 
		count++, bh = bhp) {

	      bhp = bh->b_reqnext;

	      if(!sgpnt[count].address) sgpnt[count].address = bh->b_data;
	      sgpnt[count].length += bh->b_size;
	      counted += bh->b_size >> 9;

	      if (((int) sgpnt[count].address) + sgpnt[count].length - 1 > 
		  ISA_DMA_THRESHOLD && (SCpnt->host->unchecked_isa_dma) &&
		  !sgpnt[count].alt_address) {
		sgpnt[count].alt_address = sgpnt[count].address;
		/* We try and avoid exhausting the DMA pool, since it is easier
		   to control usage here.  In other places we might have a more
		   pressing need, and we would be screwed if we ran out */
		if(dma_free_sectors < (sgpnt[count].length >> 9) + 10) {
		  sgpnt[count].address = NULL;
		} else {
		  sgpnt[count].address = (char *) scsi_malloc(sgpnt[count].length);
		};
/* If we start running low on DMA buffers, we abort the scatter-gather
   operation, and free all of the memory we have allocated.  We want to
   ensure that all scsi operations are able to do at least a non-scatter/gather
   operation */
		if(sgpnt[count].address == NULL){ /* Out of dma memory */
#if 0
		  printk("Warning: Running low on SCSI DMA buffers");
		  /* Try switching back to a non scatter-gather operation. */
		  while(--count >= 0){
		    if(sgpnt[count].alt_address) 
		      scsi_free(sgpnt[count].address, sgpnt[count].length);
		  };
		  this_count = SCpnt->request.current_nr_sectors;
		  buff = SCpnt->request.buffer;
		  SCpnt->use_sg = 0;
		  scsi_free(sgpnt, SCpnt->sglist_len);
#endif
		  SCpnt->use_sg = count;
		  this_count = counted -= bh->b_size >> 9;
		  break;
		};

	      };

	      /* Only cluster buffers if we know that we can supply DMA buffers
		 large enough to satisfy the request.  Do not cluster a new
		 request if this would mean that we suddenly need to start
		 using DMA bounce buffers */
	      if(bhp && CONTIGUOUS_BUFFERS(bh,bhp) && CLUSTERABLE_DEVICE(SCpnt)) {
		char * tmp;

		if (((int) sgpnt[count].address) + sgpnt[count].length +
		    bhp->b_size - 1 > ISA_DMA_THRESHOLD && 
		    (SCpnt->host->unchecked_isa_dma) &&
		    !sgpnt[count].alt_address) continue;

		if(!sgpnt[count].alt_address) {count--; continue; }
		if(dma_free_sectors > 10)
		  tmp = (char *) scsi_malloc(sgpnt[count].length + bhp->b_size);
		else {
		  tmp = NULL;
		  max_sg = SCpnt->use_sg;
		};
		if(tmp){
		  scsi_free(sgpnt[count].address, sgpnt[count].length);
		  sgpnt[count].address = tmp;
		  count--;
		  continue;
		};

		/* If we are allowed another sg chain, then increment counter so we
		   can insert it.  Otherwise we will end up truncating */

		if (SCpnt->use_sg < max_sg) SCpnt->use_sg++;
	      };  /* contiguous buffers */
	    }; /* for loop */

	    this_count = counted; /* This is actually how many we are going to transfer */

	    if(count < SCpnt->use_sg || SCpnt->use_sg > SCpnt->host->sg_tablesize){
	      bh = SCpnt->request.bh;
	      printk("Use sg, count %d %x %d\n", SCpnt->use_sg, count, dma_free_sectors);
	      printk("maxsg = %x, counted = %d this_count = %d\n", max_sg, counted, this_count);
	      while(bh){
		printk("[%p %lx] ", bh->b_data, bh->b_size);
		bh = bh->b_reqnext;
	      };
	      if(SCpnt->use_sg < 16)
		for(count=0; count<SCpnt->use_sg; count++)
		  printk("{%d:%p %p %d}  ", count,
			 sgpnt[count].address,
			 sgpnt[count].alt_address,
			 sgpnt[count].length);
	      panic("Ooops");
	    };

	    if (SCpnt->request.cmd == WRITE)
	      for(count=0; count<SCpnt->use_sg; count++)
		if(sgpnt[count].alt_address)
		  memcpy(sgpnt[count].address, sgpnt[count].alt_address, 
			 sgpnt[count].length);
	  };  /* Able to malloc sgpnt */
	};  /* Host adapter capable of scatter-gather */

/* Now handle the possibility of DMA to addresses > 16Mb */

	if(SCpnt->use_sg == 0){
	  if (((int) buff) + (this_count << 9) - 1 > ISA_DMA_THRESHOLD && 
	    (SCpnt->host->unchecked_isa_dma)) {
	    if(bounce_buffer)
	      buff = bounce_buffer;
	    else
	      buff = (char *) scsi_malloc(this_count << 9);
	    if(buff == NULL) {  /* Try backing off a bit if we are low on mem*/
	      this_count = SCpnt->request.current_nr_sectors;
	      buff = (char *) scsi_malloc(this_count << 9);
	      if(!buff) panic("Ran out of DMA buffers.");
	    };
	    if (SCpnt->request.cmd == WRITE)
	      memcpy(buff, (char *)SCpnt->request.buffer, this_count << 9);
	  };
	};
#ifdef DEBUG
	printk("sd%d : %s %d/%d 512 byte blocks.\n", MINOR(SCpnt->request.dev),
		(SCpnt->request.cmd == WRITE) ? "writing" : "reading",
		this_count, SCpnt->request.nr_sectors);
#endif

	cmd[1] = (SCpnt->lun << 5) & 0xe0;

	if (rscsi_disks[dev].sector_size == 1024){
	  if(block & 1) panic("sd.c:Bad block number requested");
	  if(this_count & 1) panic("sd.c:Bad block number requested");
	  block = block >> 1;
	  this_count = this_count >> 1;
	};

	if (rscsi_disks[dev].sector_size == 256){
	  block = block << 1;
	  this_count = this_count << 1;
	};

	if (((this_count > 0xff) ||  (block > 0x1fffff)) && rscsi_disks[dev].ten)
		{
		if (this_count > 0xffff)
			this_count = 0xffff;

		cmd[0] += READ_10 - READ_6 ;
		cmd[2] = (unsigned char) (block >> 24) & 0xff;
		cmd[3] = (unsigned char) (block >> 16) & 0xff;
		cmd[4] = (unsigned char) (block >> 8) & 0xff;
		cmd[5] = (unsigned char) block & 0xff;
		cmd[6] = cmd[9] = 0;
		cmd[7] = (unsigned char) (this_count >> 8) & 0xff;
		cmd[8] = (unsigned char) this_count & 0xff;
		}
	else
		{
		if (this_count > 0xff)
			this_count = 0xff;

		cmd[1] |= (unsigned char) ((block >> 16) & 0x1f);
		cmd[2] = (unsigned char) ((block >> 8) & 0xff);
		cmd[3] = (unsigned char) block & 0xff;
		cmd[4] = (unsigned char) this_count;
		cmd[5] = 0;
		}

/*
 * We shouldn't disconnect in the middle of a sector, so with a dumb 
 * host adapter, it's safe to assume that we can at least transfer 
 * this many bytes between each connect / disconnect.  
 */

        SCpnt->transfersize = rscsi_disks[dev].sector_size;
        SCpnt->underflow = this_count << 9; 
	scsi_do_cmd (SCpnt, (void *) cmd, buff, 
		     this_count * rscsi_disks[dev].sector_size,
		     rw_intr, 
		     (scsi_devices[SCpnt->index].type == TYPE_DISK ? 
		                     SD_TIMEOUT : SD_MOD_TIMEOUT),
		     MAX_RETRIES);
}

int check_scsidisk_media_change(int full_dev, int flag){
        int retval;
	int target;
	struct inode inode;

	target =  DEVICE_NR(MINOR(full_dev));

	if (target >= NR_SD) {
		printk("SCSI disk request error: invalid device.\n");
		return 0;
	};

	if(!rscsi_disks[target].device->removable) return 0;

	inode.i_rdev = full_dev;  /* This is all we really need here */
	retval = sd_ioctl(&inode, NULL, SCSI_IOCTL_TEST_UNIT_READY, 0);

	if(retval){ /* Unable to test, unit probably not ready.  This usually
		     means there is no disc in the drive.  Mark as changed,
		     and we will figure it out later once the drive is
		     available again.  */

	  rscsi_disks[target].device->changed = 1;
	  return 1; /* This will force a flush, if called from
		       check_disk_change */
	};

	retval = rscsi_disks[target].device->changed;
	if(!flag) rscsi_disks[target].device->changed = 0;
	return retval;
}

static void sd_init_done (Scsi_Cmnd * SCpnt)
{
  struct request * req;
  struct task_struct * p;
  
  req = &SCpnt->request;
  req->dev = 0xfffe; /* Busy, but indicate request done */
  
  if ((p = req->waiting) != NULL) {
    req->waiting = NULL;
    p->state = TASK_RUNNING;
    if (p->counter > current->counter)
      need_resched = 1;
  }
}

static int sd_init_onedisk(int i)
{
  int j = 0;
  unsigned char cmd[10];
  unsigned char *buffer;
  char spintime;
  int the_result, retries;
  Scsi_Cmnd * SCpnt;

  /* We need to retry the READ_CAPACITY because a UNIT_ATTENTION is considered
     a fatal error, and many devices report such an error just after a scsi
     bus reset. */

  SCpnt = allocate_device(NULL, rscsi_disks[i].device->index, 1);
  buffer = (unsigned char *) scsi_malloc(512);

  spintime = 0;

  /* Spin up drives, as required.  Only do this at boot time */
  if (current == task[0]){
    do{
      cmd[0] = TEST_UNIT_READY;
      cmd[1] = (rscsi_disks[i].device->lun << 5) & 0xe0;
      memset ((void *) &cmd[2], 0, 8);
      SCpnt->request.dev = 0xffff;  /* Mark as really busy again */
      SCpnt->sense_buffer[0] = 0;
      SCpnt->sense_buffer[2] = 0;
      
      scsi_do_cmd (SCpnt,
		   (void *) cmd, (void *) buffer,
		   512, sd_init_done,  SD_TIMEOUT,
		   MAX_RETRIES);
      
      while(SCpnt->request.dev != 0xfffe);
      
      the_result = SCpnt->result;
      
      /* Look for non-removable devices that return NOT_READY.  Issue command
	 to spin up drive for these cases. */
      if(the_result && !rscsi_disks[i].device->removable && 
	 SCpnt->sense_buffer[2] == NOT_READY) {
	int time1;
	if(!spintime){
	  printk( "sd%d: Spinning up disk...", i );
	  cmd[0] = START_STOP;
	  cmd[1] = (rscsi_disks[i].device->lun << 5) & 0xe0;
	  cmd[1] |= 1;  /* Return immediately */
	  memset ((void *) &cmd[2], 0, 8);
	  cmd[4] = 1; /* Start spin cycle */
	  SCpnt->request.dev = 0xffff;  /* Mark as really busy again */
	  SCpnt->sense_buffer[0] = 0;
	  SCpnt->sense_buffer[2] = 0;
	  
	  scsi_do_cmd (SCpnt,
		       (void *) cmd, (void *) buffer,
		       512, sd_init_done,  SD_TIMEOUT,
		       MAX_RETRIES);
	  
	  while(SCpnt->request.dev != 0xfffe);

	  spintime = jiffies;
	};

	time1 = jiffies;
	while(jiffies < time1 + 100); /* Wait 1 second for next try */
	printk( "." );
      };
    } while(the_result && spintime && spintime+5000 > jiffies);
    if (spintime) {
       if (the_result)
           printk( "not responding...\n" );
       else
           printk( "ready\n" );
    }
  };  /* current == task[0] */


  retries = 3;
  do {
    cmd[0] = READ_CAPACITY;
    cmd[1] = (rscsi_disks[i].device->lun << 5) & 0xe0;
    memset ((void *) &cmd[2], 0, 8);
    memset ((void *) buffer, 0, 8);
    SCpnt->request.dev = 0xffff;  /* Mark as really busy again */
    SCpnt->sense_buffer[0] = 0;
    SCpnt->sense_buffer[2] = 0;
    
    scsi_do_cmd (SCpnt,
		 (void *) cmd, (void *) buffer,
		 8, sd_init_done,  SD_TIMEOUT,
		 MAX_RETRIES);
    
    if (current == task[0])
      while(SCpnt->request.dev != 0xfffe);
    else
      if (SCpnt->request.dev != 0xfffe){
	SCpnt->request.waiting = current;
	current->state = TASK_UNINTERRUPTIBLE;
	while (SCpnt->request.dev != 0xfffe) schedule();
      };
    
    the_result = SCpnt->result;
    retries--;

  } while(the_result && retries);

  SCpnt->request.dev = -1;  /* Mark as not busy */

  wake_up(&scsi_devices[SCpnt->index].device_wait); 

  /* Wake up a process waiting for device*/

  /*
   *	The SCSI standard says "READ CAPACITY is necessary for self confuring software"
   *	While not mandatory, support of READ CAPACITY is strongly encouraged.
   *	We used to die if we couldn't successfully do a READ CAPACITY.
   *	But, now we go on about our way.  The side effects of this are
   *
   *	1.  We can't know block size with certainty.  I have said "512 bytes is it"
   *	   	as this is most common.
   *
   *	2.  Recovery from when some one attempts to read past the end of the raw device will
   *	    be slower.
   */

  if (the_result)
    {
      printk ("sd%d : READ CAPACITY failed.\n"
	      "sd%d : status = %x, message = %02x, host = %d, driver = %02x \n",
	      i,i,
	      status_byte(the_result),
	      msg_byte(the_result),
	      host_byte(the_result),
	      driver_byte(the_result)
	      );
      if (driver_byte(the_result)  & DRIVER_SENSE)
	printk("sd%d : extended sense code = %1x \n", i, SCpnt->sense_buffer[2] & 0xf);
      else
	printk("sd%d : sense not available. \n", i);

      printk("sd%d : block size assumed to be 512 bytes, disk size 1GB.  \n", i);
      rscsi_disks[i].capacity = 0x1fffff;
      rscsi_disks[i].sector_size = 512;

      /* Set dirty bit for removable devices if not ready - sometimes drives
	 will not report this properly. */
      if(rscsi_disks[i].device->removable && 
	 SCpnt->sense_buffer[2] == NOT_READY)
	rscsi_disks[i].device->changed = 1;

    }
  else
    {
      rscsi_disks[i].capacity = (buffer[0] << 24) |
	(buffer[1] << 16) |
	  (buffer[2] << 8) |
	    buffer[3];

      rscsi_disks[i].sector_size = (buffer[4] << 24) |
	(buffer[5] << 16) | (buffer[6] << 8) | buffer[7];

      if (rscsi_disks[i].sector_size != 512 &&
	  rscsi_disks[i].sector_size != 1024 &&
	  rscsi_disks[i].sector_size != 256)
	{
	  printk ("sd%d : unsupported sector size %d.\n",
		  i, rscsi_disks[i].sector_size);
	  if(rscsi_disks[i].device->removable){
	    rscsi_disks[i].capacity = 0;
	  } else {
	    printk ("scsi : deleting disk entry.\n");
	    for  (j=i;  j < NR_SD - 1;)
	      rscsi_disks[j] = rscsi_disks[++j];
	    --i;
	    --NR_SD;
	    scsi_free(buffer, 512);
	    return i;
	  };
	}
      if(rscsi_disks[i].sector_size == 1024)
	rscsi_disks[i].capacity <<= 1;  /* Change this into 512 byte sectors */
      if(rscsi_disks[i].sector_size == 256)
	rscsi_disks[i].capacity >>= 1;  /* Change this into 512 byte sectors */
    }

  rscsi_disks[i].ten = 1;
  rscsi_disks[i].remap = 1;
  scsi_free(buffer, 512);
  return i;
}

/*
	The sd_init() function looks at all SCSI drives present, determines
	their size, and reads partition	table entries for them.
*/


unsigned long sd_init(unsigned long memory_start, unsigned long memory_end)
{
	int i;

	if (register_blkdev(MAJOR_NR,"sd",&sd_fops)) {
		printk("Unable to get major %d for SCSI disk\n",MAJOR_NR);
		return memory_start;
	}
	if (MAX_SD == 0) return memory_start;

	sd_sizes = (int *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(int);
	memset(sd_sizes, 0, (MAX_SD << 4) * sizeof(int));

	sd_blocksizes = (int *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(int);
	for(i=0;i<(MAX_SD << 4);i++) sd_blocksizes[i] = 1024;
	blksize_size[MAJOR_NR] = sd_blocksizes;

	sd = (struct hd_struct *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(struct hd_struct);

	sd_gendisk.max_nr = MAX_SD;
	sd_gendisk.part = sd;
	sd_gendisk.sizes = sd_sizes;
	sd_gendisk.real_devices = (void *) rscsi_disks;

	for (i = 0; i < NR_SD; ++i)
	  i = sd_init_onedisk(i);

	blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;

	/* If our host adapter is capable of scatter-gather, then we increase
	   the read-ahead to 16 blocks (32 sectors).  If not, we use
	   a two block (4 sector) read ahead. */
	if(rscsi_disks[0].device->host->sg_tablesize)
	  read_ahead[MAJOR_NR] = 120;
	/* 64 sector read-ahead */
	else
	  read_ahead[MAJOR_NR] = 4;  /* 4 sector read-ahead */
	
	sd_gendisk.next = gendisk_head;
	gendisk_head = &sd_gendisk;
	return memory_start;
}

unsigned long sd_init1(unsigned long mem_start, unsigned long mem_end){
  rscsi_disks = (Scsi_Disk *) mem_start;
  mem_start += MAX_SD * sizeof(Scsi_Disk);
  return mem_start;
};

void sd_attach(Scsi_Device * SDp){
  SDp->scsi_request_fn = do_sd_request;
  rscsi_disks[NR_SD++].device = SDp;
  if(NR_SD > MAX_SD) panic ("scsi_devices corrupt (sd)");
};

#define DEVICE_BUSY rscsi_disks[target].device->busy
#define USAGE rscsi_disks[target].device->access_count
#define CAPACITY rscsi_disks[target].capacity
#define MAYBE_REINIT  sd_init_onedisk(target)
#define GENDISK_STRUCT sd_gendisk

/* This routine is called to flush all partitions and partition tables
   for a changed scsi disk, and then re-read the new partition table.
   If we are revalidating a disk because of a media change, then we
   enter with usage == 0.  If we are using an ioctl, we automatically have
   usage == 1 (we need an open channel to use an ioctl :-), so this
   is our limit.
 */
int revalidate_scsidisk(int dev, int maxusage){
	  int target, major;
	  struct gendisk * gdev;
	  int max_p;
	  int start;
	  int i;

	  target =  DEVICE_NR(MINOR(dev));
	  gdev = &GENDISK_STRUCT;

	  cli();
	  if (DEVICE_BUSY || USAGE > maxusage) {
	    sti();
	    printk("Device busy for revalidation (usage=%d)\n", USAGE);
	    return -EBUSY;
	  };
	  DEVICE_BUSY = 1;
	  sti();

	  max_p = gdev->max_p;
	  start = target << gdev->minor_shift;
	  major = MAJOR_NR << 8;

	  for (i=max_p - 1; i >=0 ; i--) {
	    sync_dev(major | start | i);
	    invalidate_inodes(major | start | i);
	    invalidate_buffers(major | start | i);
	    gdev->part[start+i].start_sect = 0;
	    gdev->part[start+i].nr_sects = 0;
	  };

#ifdef MAYBE_REINIT
	  MAYBE_REINIT;
#endif

	  gdev->part[start].nr_sects = CAPACITY;
	  resetup_one_dev(gdev, target);

	  DEVICE_BUSY = 0;
	  return 0;
}