Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/*
 * FreeSec: libcrypt for NetBSD
 *
 * Copyright (c) 1994 David Burren
 * All rights reserved.
 *
 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
 *	this file should now *only* export crypt(), in order to make
 *	binaries of libcrypt exportable from the USA
 *
 * Adapted for FreeBSD-4.0 by Mark R V Murray
 *	this file should now *only* export crypt_des(), in order to make
 *	a module that can be optionally included in libcrypt.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the author nor the names of other contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ''AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This is an original implementation of the DES and the crypt(3) interfaces
 * by David Burren <davidb@werj.com.au>.
 *
 * An excellent reference on the underlying algorithm (and related
 * algorithms) is:
 *
 *	B. Schneier, Applied Cryptography: protocols, algorithms,
 *	and source code in C, John Wiley & Sons, 1994.
 *
 * Note that in that book's description of DES the lookups for the initial,
 * pbox, and final permutations are inverted (this has been brought to the
 * attention of the author).  A list of errata for this book has been
 * posted to the sci.crypt newsgroup by the author and is available for FTP.
 *
 * ARCHITECTURE ASSUMPTIONS:
 *	It is assumed that the 8-byte arrays passed by reference can be
 *	addressed as arrays of uint32_t's (ie. the CPU is not picky about
 *	alignment).
 */


/* Parts busybox doesn't need or had optimized */
#define USE_PRECOMPUTED_u_sbox 1
#define USE_REPETITIVE_SPEEDUP 0
#define USE_ip_mask 0
#define USE_de_keys 0


/* A pile of data */
static const uint8_t IP[64] = {
	58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12,  4,
	62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16,  8,
	57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11,  3,
	61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15,  7
};

static const uint8_t key_perm[56] = {
	57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
	10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
	63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
	14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
};

static const uint8_t key_shifts[16] = {
	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};

static const uint8_t comp_perm[48] = {
	14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
	23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
	41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
	44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};

/*
 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
 */
#if !USE_PRECOMPUTED_u_sbox
static const uint8_t sbox[8][64] = {
	{	14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
		 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
		 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
		15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13
	},
	{	15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
		 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
		 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
		13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9
	},
	{	10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
		13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
		13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
		 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12
	},
	{	 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
		13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
		10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
		 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14
	},
	{	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
		14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
		 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
		11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3
	},
	{	12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
		10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
		 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
		 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13
	},
	{	 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
		13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
		 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
		 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12
	},
	{	13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
		 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
		 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
		 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
	}
};
#else /* precomputed, with half-bytes packed into one byte */
static const uint8_t u_sbox[8][32] = {
	{	0x0e, 0xf4, 0x7d, 0x41, 0xe2, 0x2f, 0xdb, 0x18,
		0xa3, 0x6a, 0xc6, 0xbc, 0x95, 0x59, 0x30, 0x87,
		0xf4, 0xc1, 0x8e, 0x28, 0x4d, 0x96, 0x12, 0x7b,
		0x5f, 0xbc, 0x39, 0xe7, 0xa3, 0x0a, 0x65, 0xd0,
	},
	{	0x3f, 0xd1, 0x48, 0x7e, 0xf6, 0x2b, 0x83, 0xe4,
		0xc9, 0x07, 0x12, 0xad, 0x6c, 0x90, 0xb5, 0x5a,
		0xd0, 0x8e, 0xa7, 0x1b, 0x3a, 0xf4, 0x4d, 0x21,
		0xb5, 0x68, 0x7c, 0xc6, 0x09, 0x53, 0xe2, 0x9f,
	},
	{	0xda, 0x70, 0x09, 0x9e, 0x36, 0x43, 0x6f, 0xa5,
		0x21, 0x8d, 0x5c, 0xe7, 0xcb, 0xb4, 0xf2, 0x18,
		0x1d, 0xa6, 0xd4, 0x09, 0x68, 0x9f, 0x83, 0x70,
		0x4b, 0xf1, 0xe2, 0x3c, 0xb5, 0x5a, 0x2e, 0xc7,
	},
	{	0xd7, 0x8d, 0xbe, 0x53, 0x60, 0xf6, 0x09, 0x3a,
		0x41, 0x72, 0x28, 0xc5, 0x1b, 0xac, 0xe4, 0x9f,
		0x3a, 0xf6, 0x09, 0x60, 0xac, 0x1b, 0xd7, 0x8d,
		0x9f, 0x41, 0x53, 0xbe, 0xc5, 0x72, 0x28, 0xe4,
	},
	{	0xe2, 0xbc, 0x24, 0xc1, 0x47, 0x7a, 0xdb, 0x16,
		0x58, 0x05, 0xf3, 0xaf, 0x3d, 0x90, 0x8e, 0x69,
		0xb4, 0x82, 0xc1, 0x7b, 0x1a, 0xed, 0x27, 0xd8,
		0x6f, 0xf9, 0x0c, 0x95, 0xa6, 0x43, 0x50, 0x3e,
	},
	{	0xac, 0xf1, 0x4a, 0x2f, 0x79, 0xc2, 0x96, 0x58,
		0x60, 0x1d, 0xd3, 0xe4, 0x0e, 0xb7, 0x35, 0x8b,
		0x49, 0x3e, 0x2f, 0xc5, 0x92, 0x58, 0xfc, 0xa3,
		0xb7, 0xe0, 0x14, 0x7a, 0x61, 0x0d, 0x8b, 0xd6,
	},
	{	0xd4, 0x0b, 0xb2, 0x7e, 0x4f, 0x90, 0x18, 0xad,
		0xe3, 0x3c, 0x59, 0xc7, 0x25, 0xfa, 0x86, 0x61,
		0x61, 0xb4, 0xdb, 0x8d, 0x1c, 0x43, 0xa7, 0x7e,
		0x9a, 0x5f, 0x06, 0xf8, 0xe0, 0x25, 0x39, 0xc2,
	},
	{	0x1d, 0xf2, 0xd8, 0x84, 0xa6, 0x3f, 0x7b, 0x41,
		0xca, 0x59, 0x63, 0xbe, 0x05, 0xe0, 0x9c, 0x27,
		0x27, 0x1b, 0xe4, 0x71, 0x49, 0xac, 0x8e, 0xd2,
		0xf0, 0xc6, 0x9a, 0x0d, 0x3f, 0x53, 0x65, 0xb8,
	},
};
#endif

static const uint8_t pbox[32] = {
	16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10,
	 2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25
};

static const uint32_t bits32[32] =
{
	0x80000000, 0x40000000, 0x20000000, 0x10000000,
	0x08000000, 0x04000000, 0x02000000, 0x01000000,
	0x00800000, 0x00400000, 0x00200000, 0x00100000,
	0x00080000, 0x00040000, 0x00020000, 0x00010000,
	0x00008000, 0x00004000, 0x00002000, 0x00001000,
	0x00000800, 0x00000400, 0x00000200, 0x00000100,
	0x00000080, 0x00000040, 0x00000020, 0x00000010,
	0x00000008, 0x00000004, 0x00000002, 0x00000001
};

static const uint8_t bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };


static int
ascii_to_bin(char ch)
{
	if (ch > 'z')
		return 0;
	if (ch >= 'a')
		return (ch - 'a' + 38);
	if (ch > 'Z')
		return 0;
	if (ch >= 'A')
		return (ch - 'A' + 12);
	if (ch > '9')
		return 0;
	if (ch >= '.')
		return (ch - '.');
	return 0;
}


/* Static stuff that stays resident and doesn't change after
 * being initialized, and therefore doesn't need to be made
 * reentrant. */
struct const_des_ctx {
#if USE_ip_mask
	uint8_t	init_perm[64]; /* referenced 2 times */
#endif
	uint8_t	final_perm[64]; /* 2 times */
	uint8_t	m_sbox[4][4096]; /* 5 times */
};
#define C (*cctx)
#define init_perm  (C.init_perm )
#define final_perm (C.final_perm)
#define m_sbox     (C.m_sbox    )

static struct const_des_ctx*
const_des_init(void)
{
	unsigned i, j, b;
	struct const_des_ctx *cctx;

#if !USE_PRECOMPUTED_u_sbox
	uint8_t	u_sbox[8][64];

	cctx = xmalloc(sizeof(*cctx));

	/* Invert the S-boxes, reordering the input bits. */
	for (i = 0; i < 8; i++) {
		for (j = 0; j < 64; j++) {
			b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
			u_sbox[i][j] = sbox[i][b];
		}
	}
	for (i = 0; i < 8; i++) {
		fprintf(stderr, "\t{\t");
		for (j = 0; j < 64; j+=2)
			fprintf(stderr, " 0x%02x,", u_sbox[i][j] + u_sbox[i][j+1]*16);
		fprintf(stderr, "\n\t},\n");
	}
	/*
	 * Convert the inverted S-boxes into 4 arrays of 8 bits.
	 * Each will handle 12 bits of the S-box input.
	 */
	for (b = 0; b < 4; b++)
		for (i = 0; i < 64; i++)
			for (j = 0; j < 64; j++)
				m_sbox[b][(i << 6) | j] =
					(uint8_t)((u_sbox[(b << 1)][i] << 4) |
						u_sbox[(b << 1) + 1][j]);
#else
	cctx = xmalloc(sizeof(*cctx));

	/*
	 * Convert the inverted S-boxes into 4 arrays of 8 bits.
	 * Each will handle 12 bits of the S-box input.
	 */
	for (b = 0; b < 4; b++)
	 for (i = 0; i < 64; i++)
	  for (j = 0; j < 64; j++) {
		uint8_t lo, hi;
		hi = u_sbox[(b << 1)][i / 2];
		if (!(i & 1))
			hi <<= 4;
		lo = u_sbox[(b << 1) + 1][j / 2];
		if (j & 1)
			lo >>= 4;
		m_sbox[b][(i << 6) | j] = (hi & 0xf0) | (lo & 0x0f);
	}
#endif

	/*
	 * Set up the initial & final permutations into a useful form.
	 */
	for (i = 0; i < 64; i++) {
		final_perm[i] = IP[i] - 1;
#if USE_ip_mask
		init_perm[final_perm[i]] = (uint8_t)i;
#endif
	}

	return cctx;
}


struct des_ctx {
	const struct const_des_ctx *const_ctx;
	uint32_t saltbits; /* referenced 5 times */
#if USE_REPETITIVE_SPEEDUP
	uint32_t old_salt; /* 3 times */
	uint32_t old_rawkey0, old_rawkey1; /* 3 times each */
#endif
	uint8_t	un_pbox[32]; /* 2 times */
	uint8_t	inv_comp_perm[56]; /* 3 times */
	uint8_t	inv_key_perm[64]; /* 3 times */
	uint32_t en_keysl[16], en_keysr[16]; /* 2 times each */
#if USE_de_keys
	uint32_t de_keysl[16], de_keysr[16]; /* 2 times each */
#endif
#if USE_ip_mask
	uint32_t ip_maskl[8][256], ip_maskr[8][256]; /* 9 times each */
#endif
	uint32_t fp_maskl[8][256], fp_maskr[8][256]; /* 9 times each */
	uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; /* 9 times */
	uint32_t comp_maskl[8][128], comp_maskr[8][128]; /* 9 times each */
	uint32_t psbox[4][256]; /* 5 times */
};
#define D (*ctx)
#define const_ctx       (D.const_ctx      )
#define saltbits        (D.saltbits       )
#define old_salt        (D.old_salt       )
#define old_rawkey0     (D.old_rawkey0    )
#define old_rawkey1     (D.old_rawkey1    )
#define un_pbox         (D.un_pbox        )
#define inv_comp_perm   (D.inv_comp_perm  )
#define inv_key_perm    (D.inv_key_perm   )
#define en_keysl        (D.en_keysl       )
#define en_keysr        (D.en_keysr       )
#define de_keysl        (D.de_keysl       )
#define de_keysr        (D.de_keysr       )
#define ip_maskl        (D.ip_maskl       )
#define ip_maskr        (D.ip_maskr       )
#define fp_maskl        (D.fp_maskl       )
#define fp_maskr        (D.fp_maskr       )
#define key_perm_maskl  (D.key_perm_maskl )
#define key_perm_maskr  (D.key_perm_maskr )
#define comp_maskl      (D.comp_maskl     )
#define comp_maskr      (D.comp_maskr     )
#define psbox           (D.psbox          )

static struct des_ctx*
des_init(struct des_ctx *ctx, const struct const_des_ctx *cctx)
{
	int i, j, b, k, inbit, obit;
	uint32_t p;
	const uint32_t *bits28, *bits24;

	if (!ctx)
		ctx = xmalloc(sizeof(*ctx));
	const_ctx = cctx;

#if USE_REPETITIVE_SPEEDUP
	old_rawkey0 = old_rawkey1 = 0;
	old_salt = 0;
#endif
	saltbits = 0;
	bits28 = bits32 + 4;
	bits24 = bits28 + 4;

	/* Initialise the inverted key permutation. */
	for (i = 0; i < 64; i++) {
		inv_key_perm[i] = 255;
	}

	/*
	 * Invert the key permutation and initialise the inverted key
	 * compression permutation.
	 */
	for (i = 0; i < 56; i++) {
		inv_key_perm[key_perm[i] - 1] = (uint8_t)i;
		inv_comp_perm[i] = 255;
	}

	/* Invert the key compression permutation. */
	for (i = 0; i < 48; i++) {
		inv_comp_perm[comp_perm[i] - 1] = (uint8_t)i;
	}

	/*
	 * Set up the OR-mask arrays for the initial and final permutations,
	 * and for the key initial and compression permutations.
	 */
	for (k = 0; k < 8; k++) {
		uint32_t il, ir;
		uint32_t fl, fr;
		for (i = 0; i < 256; i++) {
#if USE_ip_mask
			il = 0;
			ir = 0;
#endif
			fl = 0;
			fr = 0;
			for (j = 0; j < 8; j++) {
				inbit = 8 * k + j;
				if (i & bits8[j]) {
#if USE_ip_mask
					obit = init_perm[inbit];
					if (obit < 32)
						il |= bits32[obit];
					else
						ir |= bits32[obit - 32];
#endif
					obit = final_perm[inbit];
					if (obit < 32)
						fl |= bits32[obit];
					else
						fr |= bits32[obit - 32];
				}
			}
#if USE_ip_mask
			ip_maskl[k][i] = il;
			ip_maskr[k][i] = ir;
#endif
			fp_maskl[k][i] = fl;
			fp_maskr[k][i] = fr;
		}
		for (i = 0; i < 128; i++) {
			il = 0;
			ir = 0;
			for (j = 0; j < 7; j++) {
				inbit = 8 * k + j;
				if (i & bits8[j + 1]) {
					obit = inv_key_perm[inbit];
					if (obit == 255)
						continue;
					if (obit < 28)
						il |= bits28[obit];
					else
						ir |= bits28[obit - 28];
				}
			}
			key_perm_maskl[k][i] = il;
			key_perm_maskr[k][i] = ir;
			il = 0;
			ir = 0;
			for (j = 0; j < 7; j++) {
				inbit = 7 * k + j;
				if (i & bits8[j + 1]) {
					obit = inv_comp_perm[inbit];
					if (obit == 255)
						continue;
					if (obit < 24)
						il |= bits24[obit];
					else
						ir |= bits24[obit - 24];
				}
			}
			comp_maskl[k][i] = il;
			comp_maskr[k][i] = ir;
		}
	}

	/*
	 * Invert the P-box permutation, and convert into OR-masks for
	 * handling the output of the S-box arrays setup above.
	 */
	for (i = 0; i < 32; i++)
		un_pbox[pbox[i] - 1] = (uint8_t)i;

	for (b = 0; b < 4; b++) {
		for (i = 0; i < 256; i++) {
			p = 0;
			for (j = 0; j < 8; j++) {
				if (i & bits8[j])
					p |= bits32[un_pbox[8 * b + j]];
			}
			psbox[b][i] = p;
		}
	}

	return ctx;
}


static void
setup_salt(struct des_ctx *ctx, uint32_t salt)
{
	uint32_t obit, saltbit;
	int i;

#if USE_REPETITIVE_SPEEDUP
	if (salt == old_salt)
		return;
	old_salt = salt;
#endif

	saltbits = 0;
	saltbit = 1;
	obit = 0x800000;
	for (i = 0; i < 24; i++) {
		if (salt & saltbit)
			saltbits |= obit;
		saltbit <<= 1;
		obit >>= 1;
	}
}

static void
des_setkey(struct des_ctx *ctx, const char *key)
{
	uint32_t k0, k1, rawkey0, rawkey1;
	int shifts, round;

	rawkey0 = ntohl(*(const uint32_t *) key);
	rawkey1 = ntohl(*(const uint32_t *) (key + 4));

#if USE_REPETITIVE_SPEEDUP
	if ((rawkey0 | rawkey1)
	 && rawkey0 == old_rawkey0
	 && rawkey1 == old_rawkey1
	) {
		/*
		 * Already setup for this key.
		 * This optimisation fails on a zero key (which is weak and
		 * has bad parity anyway) in order to simplify the starting
		 * conditions.
		 */
		return;
	}
	old_rawkey0 = rawkey0;
	old_rawkey1 = rawkey1;
#endif

	/*
	 * Do key permutation and split into two 28-bit subkeys.
	 */
	k0 = key_perm_maskl[0][rawkey0 >> 25]
	   | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
	   | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
	   | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
	   | key_perm_maskl[4][rawkey1 >> 25]
	   | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
	   | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
	   | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
	k1 = key_perm_maskr[0][rawkey0 >> 25]
	   | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
	   | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
	   | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
	   | key_perm_maskr[4][rawkey1 >> 25]
	   | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
	   | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
	   | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
	/*
	 * Rotate subkeys and do compression permutation.
	 */
	shifts = 0;
	for (round = 0; round < 16; round++) {
		uint32_t t0, t1;

		shifts += key_shifts[round];

		t0 = (k0 << shifts) | (k0 >> (28 - shifts));
		t1 = (k1 << shifts) | (k1 >> (28 - shifts));

#if USE_de_keys
		de_keysl[15 - round] =
#endif
		en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
				| comp_maskl[1][(t0 >> 14) & 0x7f]
				| comp_maskl[2][(t0 >> 7) & 0x7f]
				| comp_maskl[3][t0 & 0x7f]
				| comp_maskl[4][(t1 >> 21) & 0x7f]
				| comp_maskl[5][(t1 >> 14) & 0x7f]
				| comp_maskl[6][(t1 >> 7) & 0x7f]
				| comp_maskl[7][t1 & 0x7f];

#if USE_de_keys
		de_keysr[15 - round] =
#endif
		en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
				| comp_maskr[1][(t0 >> 14) & 0x7f]
				| comp_maskr[2][(t0 >> 7) & 0x7f]
				| comp_maskr[3][t0 & 0x7f]
				| comp_maskr[4][(t1 >> 21) & 0x7f]
				| comp_maskr[5][(t1 >> 14) & 0x7f]
				| comp_maskr[6][(t1 >> 7) & 0x7f]
				| comp_maskr[7][t1 & 0x7f];
	}
}


static void
do_des(struct des_ctx *ctx, /*uint32_t l_in, uint32_t r_in,*/ uint32_t *l_out, uint32_t *r_out, int count)
{
	const struct const_des_ctx *cctx = const_ctx;
	/*
	 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
	 */
	uint32_t l, r, *kl, *kr;
	uint32_t f = f; /* silence gcc */
	uint32_t r48l, r48r;
	int round;

	/* Do initial permutation (IP). */
#if USE_ip_mask
	uint32_t l_in = 0;
	uint32_t r_in = 0;
	l = ip_maskl[0][l_in >> 24]
	  | ip_maskl[1][(l_in >> 16) & 0xff]
	  | ip_maskl[2][(l_in >> 8) & 0xff]
	  | ip_maskl[3][l_in & 0xff]
	  | ip_maskl[4][r_in >> 24]
	  | ip_maskl[5][(r_in >> 16) & 0xff]
	  | ip_maskl[6][(r_in >> 8) & 0xff]
	  | ip_maskl[7][r_in & 0xff];
	r = ip_maskr[0][l_in >> 24]
	  | ip_maskr[1][(l_in >> 16) & 0xff]
	  | ip_maskr[2][(l_in >> 8) & 0xff]
	  | ip_maskr[3][l_in & 0xff]
	  | ip_maskr[4][r_in >> 24]
	  | ip_maskr[5][(r_in >> 16) & 0xff]
	  | ip_maskr[6][(r_in >> 8) & 0xff]
	  | ip_maskr[7][r_in & 0xff];
#elif 0 /* -65 bytes (using the fact that l_in == r_in == 0) */
	l = r = 0;
	for (round = 0; round < 8; round++) {
		l |= ip_maskl[round][0];
		r |= ip_maskr[round][0];
	}
	bb_error_msg("l:%x r:%x", l, r); /* reports 0, 0 always! */
#else /* using the fact that ip_maskX[] is constant (written to by des_init) */
	l = r = 0;
#endif

	do {
		/* Do each round. */
		kl = en_keysl;
		kr = en_keysr;
		round = 16;
		do {
			/* Expand R to 48 bits (simulate the E-box). */
			r48l	= ((r & 0x00000001) << 23)
				| ((r & 0xf8000000) >> 9)
				| ((r & 0x1f800000) >> 11)
				| ((r & 0x01f80000) >> 13)
				| ((r & 0x001f8000) >> 15);

			r48r	= ((r & 0x0001f800) << 7)
				| ((r & 0x00001f80) << 5)
				| ((r & 0x000001f8) << 3)
				| ((r & 0x0000001f) << 1)
				| ((r & 0x80000000) >> 31);
			/*
			 * Do salting for crypt() and friends, and
			 * XOR with the permuted key.
			 */
			f = (r48l ^ r48r) & saltbits;
			r48l ^= f ^ *kl++;
			r48r ^= f ^ *kr++;
			/*
			 * Do sbox lookups (which shrink it back to 32 bits)
			 * and do the pbox permutation at the same time.
			 */
			f = psbox[0][m_sbox[0][r48l >> 12]]
			  | psbox[1][m_sbox[1][r48l & 0xfff]]
			  | psbox[2][m_sbox[2][r48r >> 12]]
			  | psbox[3][m_sbox[3][r48r & 0xfff]];
			/* Now that we've permuted things, complete f(). */
			f ^= l;
			l = r;
			r = f;
		} while (--round);
		r = l;
		l = f;
	} while (--count);

	/* Do final permutation (inverse of IP). */
	*l_out	= fp_maskl[0][l >> 24]
		| fp_maskl[1][(l >> 16) & 0xff]
		| fp_maskl[2][(l >> 8) & 0xff]
		| fp_maskl[3][l & 0xff]
		| fp_maskl[4][r >> 24]
		| fp_maskl[5][(r >> 16) & 0xff]
		| fp_maskl[6][(r >> 8) & 0xff]
		| fp_maskl[7][r & 0xff];
	*r_out	= fp_maskr[0][l >> 24]
		| fp_maskr[1][(l >> 16) & 0xff]
		| fp_maskr[2][(l >> 8) & 0xff]
		| fp_maskr[3][l & 0xff]
		| fp_maskr[4][r >> 24]
		| fp_maskr[5][(r >> 16) & 0xff]
		| fp_maskr[6][(r >> 8) & 0xff]
		| fp_maskr[7][r & 0xff];
}

#define DES_OUT_BUFSIZE 21

static void
to64_msb_first(char *s, unsigned v)
{
#if 0
	*s++ = ascii64[(v >> 18) & 0x3f]; /* bits 23..18 */
	*s++ = ascii64[(v >> 12) & 0x3f]; /* bits 17..12 */
	*s++ = ascii64[(v >> 6) & 0x3f]; /* bits 11..6 */
	*s   = ascii64[v & 0x3f]; /* bits 5..0 */
#endif
	*s++ = i64c(v >> 18); /* bits 23..18 */
	*s++ = i64c(v >> 12); /* bits 17..12 */
	*s++ = i64c(v >> 6); /* bits 11..6 */
	*s   = i64c(v); /* bits 5..0 */
}

static char *
NOINLINE
des_crypt(struct des_ctx *ctx, char output[DES_OUT_BUFSIZE],
		const unsigned char *key, const unsigned char *setting)
{
	uint32_t salt, r0, r1, keybuf[2];
	uint8_t *q;

	/*
	 * Copy the key, shifting each character up by one bit
	 * and padding with zeros.
	 */
	q = (uint8_t *)keybuf;
	while (q - (uint8_t *)keybuf != 8) {
		*q = *key << 1;
		if (*q)
			key++;
		q++;
	}
	des_setkey(ctx, (char *)keybuf);

	/*
	 * setting - 2 bytes of salt
	 * key - up to 8 characters
	 */
	salt = (ascii_to_bin(setting[1]) << 6)
	     |  ascii_to_bin(setting[0]);

	output[0] = setting[0];
	/*
	 * If the encrypted password that the salt was extracted from
	 * is only 1 character long, the salt will be corrupted.  We
	 * need to ensure that the output string doesn't have an extra
	 * NUL in it!
	 */
	output[1] = setting[1] ? setting[1] : output[0];

	setup_salt(ctx, salt);
	/* Do it. */
	do_des(ctx, /*0, 0,*/ &r0, &r1, 25 /* count */);

	/* Now encode the result. */
#if 0
{
	uint32_t l = (r0 >> 8);
	q = (uint8_t *)output + 2;
	*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 31..26 of r0 */
	*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 25..20 of r0 */
	*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 19..14 of r0 */
	*q++ = ascii64[l & 0x3f]; /* bits 13..8 of r0 */
	l = ((r0 << 16) | (r1 >> 16));
	*q++ = ascii64[(l >> 18) & 0x3f]; /* bits 7..2 of r0 */
	*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 1..2 of r0 and 31..28 of r1 */
	*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 27..22 of r1 */
	*q++ = ascii64[l & 0x3f]; /* bits 21..16 of r1 */
	l = r1 << 2;
	*q++ = ascii64[(l >> 12) & 0x3f]; /* bits 15..10 of r1 */
	*q++ = ascii64[(l >> 6) & 0x3f]; /* bits 9..4 of r1 */
	*q++ = ascii64[l & 0x3f]; /* bits 3..0 of r1 + 00 */
	*q = 0;
}
#else
	/* Each call takes low-order 24 bits and stores 4 chars */
	/* bits 31..8 of r0 */
	to64_msb_first(output + 2, (r0 >> 8));
	/* bits 7..0 of r0 and 31..16 of r1 */
	to64_msb_first(output + 6, (r0 << 16) | (r1 >> 16));
	/* bits 15..0 of r1 and two zero bits (plus extra zero byte) */
	to64_msb_first(output + 10, (r1 << 8));
	/* extra zero byte is encoded as '.', fixing it */
	output[13] = '\0';
#endif

	return output;
}

#undef USE_PRECOMPUTED_u_sbox
#undef USE_REPETITIVE_SPEEDUP
#undef USE_ip_mask
#undef USE_de_keys

#undef C
#undef init_perm
#undef final_perm
#undef m_sbox
#undef D
#undef const_ctx
#undef saltbits
#undef old_salt
#undef old_rawkey0
#undef old_rawkey1
#undef un_pbox
#undef inv_comp_perm
#undef inv_key_perm
#undef en_keysl
#undef en_keysr
#undef de_keysl
#undef de_keysr
#undef ip_maskl
#undef ip_maskr
#undef fp_maskl
#undef fp_maskr
#undef key_perm_maskl
#undef key_perm_maskr
#undef comp_maskl
#undef comp_maskr
#undef psbox