Linux debugging

Check our new training course

Linux debugging, tracing, profiling & perf. analysis

Check our new training course
with Creative Commons CC-BY-SA
lecture and lab materials

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/* `time' utility to display resource usage of processes.
   Copyright (C) 1990, 91, 92, 93, 96 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

/* Originally written by David Keppel <pardo@cs.washington.edu>.
   Heavily modified by David MacKenzie <djm@gnu.ai.mit.edu>.
   Heavily modified for busybox by Erik Andersen <andersen@codepoet.org>
   */

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <getopt.h>
#include <string.h>
#include <limits.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>		/* For pid_t. */
#include <sys/wait.h>
#include <sys/param.h>		/* For getpagesize, maybe.  */

#define TV_MSEC tv_usec / 1000
#include <sys/resource.h>
#include "busybox.h"

/* Information on the resources used by a child process.  */
typedef struct
{
  int waitstatus;
  struct rusage ru;
  struct timeval start, elapsed; /* Wallclock time of process.  */
} resource_t;

/* msec = milliseconds = 1/1,000 (1*10e-3) second.
   usec = microseconds = 1/1,000,000 (1*10e-6) second.  */

#ifndef TICKS_PER_SEC
#define TICKS_PER_SEC 100
#endif

/* The number of milliseconds in one `tick' used by the `rusage' structure.  */
#define MSEC_PER_TICK (1000 / TICKS_PER_SEC)

/* Return the number of clock ticks that occur in M milliseconds.  */
#define MSEC_TO_TICKS(m) ((m) / MSEC_PER_TICK)

#define UL unsigned long

static const char *const default_format = "real\t%E\nuser\t%u\nsys\t%T";

/* The output format for the -p option .*/
static const char *const posix_format = "real %e\nuser %U\nsys %S";


/* Format string for printing all statistics verbosely.
   Keep this output to 24 lines so users on terminals can see it all.*/
static const char *const long_format =
  "\tCommand being timed: \"%C\"\n"
  "\tUser time (seconds): %U\n"
  "\tSystem time (seconds): %S\n"
  "\tPercent of CPU this job got: %P\n"
  "\tElapsed (wall clock) time (h:mm:ss or m:ss): %E\n"
  "\tAverage shared text size (kbytes): %X\n"
  "\tAverage unshared data size (kbytes): %D\n"
  "\tAverage stack size (kbytes): %p\n"
  "\tAverage total size (kbytes): %K\n"
  "\tMaximum resident set size (kbytes): %M\n"
  "\tAverage resident set size (kbytes): %t\n"
  "\tMajor (requiring I/O) page faults: %F\n"
  "\tMinor (reclaiming a frame) page faults: %R\n"
  "\tVoluntary context switches: %w\n"
  "\tInvoluntary context switches: %c\n"
  "\tSwaps: %W\n"
  "\tFile system inputs: %I\n"
  "\tFile system outputs: %O\n"
  "\tSocket messages sent: %s\n"
  "\tSocket messages received: %r\n"
  "\tSignals delivered: %k\n"
  "\tPage size (bytes): %Z\n"
  "\tExit status: %x";


  /* Wait for and fill in data on child process PID.
   Return 0 on error, 1 if ok.  */

/* pid_t is short on BSDI, so don't try to promote it.  */
static int resuse_end (pid_t pid, resource_t *resp)
{
    int status;

    pid_t caught;

    /* Ignore signals, but don't ignore the children.  When wait3
       returns the child process, set the time the command finished. */
    while ((caught = wait3 (&status, 0, &resp->ru)) != pid)
    {
	if (caught == -1)
	    return 0;
    }

    gettimeofday (&resp->elapsed, (struct timezone *) 0);
    resp->elapsed.tv_sec -= resp->start.tv_sec;
    if (resp->elapsed.tv_usec < resp->start.tv_usec)
    {
	/* Manually carry a one from the seconds field.  */
	resp->elapsed.tv_usec += 1000000;
	--resp->elapsed.tv_sec;
    }
    resp->elapsed.tv_usec -= resp->start.tv_usec;

    resp->waitstatus = status;

    return 1;
}

/* Print ARGV to FP, with each entry in ARGV separated by FILLER.  */
static void fprintargv (FILE *fp, char *const *argv, const char *filler)
{
    char *const *av;

    av = argv;
    fputs (*av, fp);
    while (*++av)
    {
	fputs (filler, fp);
	fputs (*av, fp);
    }
    if (ferror (fp))
	bb_error_msg_and_die("write error");
}

/* Return the number of kilobytes corresponding to a number of pages PAGES.
   (Actually, we use it to convert pages*ticks into kilobytes*ticks.)

   Try to do arithmetic so that the risk of overflow errors is minimized.
   This is funky since the pagesize could be less than 1K.
   Note: Some machines express getrusage statistics in terms of K,
   others in terms of pages.  */

static unsigned long ptok (unsigned long pages)
{
    static unsigned long ps = 0;
    unsigned long tmp;
    static long size = LONG_MAX;

    /* Initialization.  */
    if (ps == 0)
	ps = (long) getpagesize ();

    /* Conversion.  */
    if (pages > (LONG_MAX / ps))
    {				/* Could overflow.  */
	tmp = pages / 1024;	/* Smaller first, */
	size = tmp * ps;		/* then larger.  */
    }
    else
    {				/* Could underflow.  */
	tmp = pages * ps;		/* Larger first, */
	size = tmp / 1024;	/* then smaller.  */
    }
    return size;
}

/* summarize: Report on the system use of a command.

   Copy the FMT argument to FP except that `%' sequences
   have special meaning, and `\n' and `\t' are translated into
   newline and tab, respectively, and `\\' is translated into `\'.

   The character following a `%' can be:
   (* means the tcsh time builtin also recognizes it)
   % == a literal `%'
   C == command name and arguments
*  D == average unshared data size in K (ru_idrss+ru_isrss)
*  E == elapsed real (wall clock) time in [hour:]min:sec
*  F == major page faults (required physical I/O) (ru_majflt)
*  I == file system inputs (ru_inblock)
*  K == average total mem usage (ru_idrss+ru_isrss+ru_ixrss)
*  M == maximum resident set size in K (ru_maxrss)
*  O == file system outputs (ru_oublock)
*  P == percent of CPU this job got (total cpu time / elapsed time)
*  R == minor page faults (reclaims; no physical I/O involved) (ru_minflt)
*  S == system (kernel) time (seconds) (ru_stime)
*  T == system time in [hour:]min:sec
*  U == user time (seconds) (ru_utime)
*  u == user time in [hour:]min:sec
*  W == times swapped out (ru_nswap)
*  X == average amount of shared text in K (ru_ixrss)
   Z == page size
*  c == involuntary context switches (ru_nivcsw)
   e == elapsed real time in seconds
*  k == signals delivered (ru_nsignals)
   p == average unshared stack size in K (ru_isrss)
*  r == socket messages received (ru_msgrcv)
*  s == socket messages sent (ru_msgsnd)
   t == average resident set size in K (ru_idrss)
*  w == voluntary context switches (ru_nvcsw)
   x == exit status of command

   Various memory usages are found by converting from page-seconds
   to kbytes by multiplying by the page size, dividing by 1024,
   and dividing by elapsed real time.

   FP is the stream to print to.
   FMT is the format string, interpreted as described above.
   COMMAND is the command and args that are being summarized.
   RESP is resource information on the command.  */

static void summarize (FILE *fp, const char *fmt, char **command, resource_t *resp)
{
    unsigned long r;		/* Elapsed real milliseconds.  */
    unsigned long v;		/* Elapsed virtual (CPU) milliseconds.  */

    if (WIFSTOPPED (resp->waitstatus))
	fprintf (fp, "Command stopped by signal %d\n", WSTOPSIG (resp->waitstatus));
    else if (WIFSIGNALED (resp->waitstatus))
	fprintf (fp, "Command terminated by signal %d\n", WTERMSIG (resp->waitstatus));
    else if (WIFEXITED (resp->waitstatus) && WEXITSTATUS (resp->waitstatus))
	fprintf (fp, "Command exited with non-zero status %d\n", WEXITSTATUS (resp->waitstatus));

    /* Convert all times to milliseconds.  Occasionally, one of these values
       comes out as zero.  Dividing by zero causes problems, so we first
       check the time value.  If it is zero, then we take `evasive action'
       instead of calculating a value.  */

    r = resp->elapsed.tv_sec * 1000 + resp->elapsed.tv_usec / 1000;

    v = resp->ru.ru_utime.tv_sec * 1000 + resp->ru.ru_utime.TV_MSEC +
	resp->ru.ru_stime.tv_sec * 1000 + resp->ru.ru_stime.TV_MSEC;

    while (*fmt)
    {
	switch (*fmt)
	{
	    case '%':
		switch (*++fmt)
		{
		    case '%':		/* Literal '%'.  */
			putc ('%', fp);
			break;
		    case 'C':		/* The command that got timed.  */
			fprintargv (fp, command, " ");
			break;
		    case 'D':		/* Average unshared data size.  */
			fprintf (fp, "%lu",
				MSEC_TO_TICKS (v) == 0 ? 0 :
				ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v) +
				ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v));
			break;
		    case 'E':		/* Elapsed real (wall clock) time.  */
			if (resp->elapsed.tv_sec >= 3600)	/* One hour -> h:m:s.  */
			    fprintf (fp, "%ldh %ldm %02lds",
				    resp->elapsed.tv_sec / 3600,
				    (resp->elapsed.tv_sec % 3600) / 60,
				    resp->elapsed.tv_sec % 60);
			else
			    fprintf (fp, "%ldm %ld.%02lds",	/* -> m:s.  */
				    resp->elapsed.tv_sec / 60,
				    resp->elapsed.tv_sec % 60,
				    resp->elapsed.tv_usec / 10000);
			break;
		    case 'F':		/* Major page faults.  */
			fprintf (fp, "%ld", resp->ru.ru_majflt);
			break;
		    case 'I':		/* Inputs.  */
			fprintf (fp, "%ld", resp->ru.ru_inblock);
			break;
		    case 'K':		/* Average mem usage == data+stack+text.  */
			fprintf (fp, "%lu",
				MSEC_TO_TICKS (v) == 0 ? 0 :
				ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v) +
				ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v) +
				ptok ((UL) resp->ru.ru_ixrss) / MSEC_TO_TICKS (v));
			break;
		    case 'M':		/* Maximum resident set size.  */
			fprintf (fp, "%lu", ptok ((UL) resp->ru.ru_maxrss));
			break;
		    case 'O':		/* Outputs.  */
			fprintf (fp, "%ld", resp->ru.ru_oublock);
			break;
		    case 'P':		/* Percent of CPU this job got.  */
			/* % cpu is (total cpu time)/(elapsed time).  */
			if (r > 0)
			    fprintf (fp, "%lu%%", (v * 100 / r));
			else
			    fprintf (fp, "?%%");
			break;
		    case 'R':		/* Minor page faults (reclaims).  */
			fprintf (fp, "%ld", resp->ru.ru_minflt);
			break;
		    case 'S':		/* System time.  */
			fprintf (fp, "%ld.%02ld",
				resp->ru.ru_stime.tv_sec,
				resp->ru.ru_stime.TV_MSEC / 10);
			break;
		    case 'T':		/* System time.  */
			if (resp->ru.ru_stime.tv_sec >= 3600)	/* One hour -> h:m:s.  */
			    fprintf (fp, "%ldh %ldm %02lds",
				    resp->ru.ru_stime.tv_sec / 3600,
				    (resp->ru.ru_stime.tv_sec % 3600) / 60,
				    resp->ru.ru_stime.tv_sec % 60);
			else
			    fprintf (fp, "%ldm %ld.%02lds",	/* -> m:s.  */
				    resp->ru.ru_stime.tv_sec / 60,
				    resp->ru.ru_stime.tv_sec % 60,
				    resp->ru.ru_stime.tv_usec / 10000);
			break;
		    case 'U':		/* User time.  */
			fprintf (fp, "%ld.%02ld",
				resp->ru.ru_utime.tv_sec,
				resp->ru.ru_utime.TV_MSEC / 10);
			break;
		    case 'u':		/* User time.  */
			if (resp->ru.ru_utime.tv_sec >= 3600)	/* One hour -> h:m:s.  */
			    fprintf (fp, "%ldh %ldm %02lds",
				    resp->ru.ru_utime.tv_sec / 3600,
				    (resp->ru.ru_utime.tv_sec % 3600) / 60,
				    resp->ru.ru_utime.tv_sec % 60);
			else
			    fprintf (fp, "%ldm %ld.%02lds",	/* -> m:s.  */
				    resp->ru.ru_utime.tv_sec / 60,
				    resp->ru.ru_utime.tv_sec % 60,
				    resp->ru.ru_utime.tv_usec / 10000);
			break;
		    case 'W':		/* Times swapped out.  */
			fprintf (fp, "%ld", resp->ru.ru_nswap);
			break;
		    case 'X':		/* Average shared text size.  */
			fprintf (fp, "%lu",
				MSEC_TO_TICKS (v) == 0 ? 0 :
				ptok ((UL) resp->ru.ru_ixrss) / MSEC_TO_TICKS (v));
			break;
		    case 'Z':		/* Page size.  */
			fprintf (fp, "%d", getpagesize ());
			break;
		    case 'c':		/* Involuntary context switches.  */
			fprintf (fp, "%ld", resp->ru.ru_nivcsw);
			break;
		    case 'e':		/* Elapsed real time in seconds.  */
			fprintf (fp, "%ld.%02ld",
				resp->elapsed.tv_sec,
				resp->elapsed.tv_usec / 10000);
			break;
		    case 'k':		/* Signals delivered.  */
			fprintf (fp, "%ld", resp->ru.ru_nsignals);
			break;
		    case 'p':		/* Average stack segment.  */
			fprintf (fp, "%lu",
				MSEC_TO_TICKS (v) == 0 ? 0 :
				ptok ((UL) resp->ru.ru_isrss) / MSEC_TO_TICKS (v));
			break;
		    case 'r':		/* Incoming socket messages received.  */
			fprintf (fp, "%ld", resp->ru.ru_msgrcv);
			break;
		    case 's':		/* Outgoing socket messages sent.  */
			fprintf (fp, "%ld", resp->ru.ru_msgsnd);
			break;
		    case 't':		/* Average resident set size.  */
			fprintf (fp, "%lu",
				MSEC_TO_TICKS (v) == 0 ? 0 :
				ptok ((UL) resp->ru.ru_idrss) / MSEC_TO_TICKS (v));
			break;
		    case 'w':		/* Voluntary context switches.  */
			fprintf (fp, "%ld", resp->ru.ru_nvcsw);
			break;
		    case 'x':		/* Exit status.  */
			fprintf (fp, "%d", WEXITSTATUS (resp->waitstatus));
			break;
		    case '\0':
			putc ('?', fp);
			return;
		    default:
			putc ('?', fp);
			putc (*fmt, fp);
		}
		++fmt;
		break;

	    case '\\':		/* Format escape.  */
		switch (*++fmt)
		{
		    case 't':
			putc ('\t', fp);
			break;
		    case 'n':
			putc ('\n', fp);
			break;
		    case '\\':
			putc ('\\', fp);
			break;
		    default:
			putc ('?', fp);
			putc ('\\', fp);
			putc (*fmt, fp);
		}
		++fmt;
		break;

	    default:
		putc (*fmt++, fp);
	}

	if (ferror (fp))
	    bb_error_msg_and_die("write error");
    }
    putc ('\n', fp);

    if (ferror (fp))
	bb_error_msg_and_die("write error");
}

/* Run command CMD and return statistics on it.
   Put the statistics in *RESP.  */
static void run_command (char *const *cmd, resource_t *resp)
{
    pid_t pid;			/* Pid of child.  */
    __sighandler_t interrupt_signal, quit_signal;

    gettimeofday (&resp->start, (struct timezone *) 0);
    pid = fork ();		/* Run CMD as child process.  */
    if (pid < 0)
	bb_error_msg_and_die("cannot fork");
    else if (pid == 0)
    {				/* If child.  */
	/* Don't cast execvp arguments; that causes errors on some systems,
	   versus merely warnings if the cast is left off.  */
	execvp (cmd[0], cmd);
	bb_error_msg("cannot run %s", cmd[0]);
	_exit (errno == ENOENT ? 127 : 126);
    }

    /* Have signals kill the child but not self (if possible).  */
    interrupt_signal = signal (SIGINT, SIG_IGN);
    quit_signal = signal (SIGQUIT, SIG_IGN);

    if (resuse_end (pid, resp) == 0)
	bb_error_msg("error waiting for child process");

    /* Re-enable signals.  */
    signal (SIGINT, interrupt_signal);
    signal (SIGQUIT, quit_signal);
}

int time_main (int argc, char **argv)
{
    int gotone;
    resource_t res;
    const char *output_format = default_format;

    argc--;
    argv++;
    /* Parse any options  -- don't use getopt() here so we don't
     * consume the args of our client application... */
    while (argc > 0 && **argv == '-') {
	gotone = 0;
	while (gotone==0 && *++(*argv)) {
	    switch (**argv) {
		case 'v':
		    output_format = long_format;
		    break;
		case 'p':
		    output_format = posix_format;
		    break;
		default:
		    bb_show_usage();
	    }
	    argc--;
	    argv++;
	    gotone = 1;
	}
    }

    if (argv == NULL || *argv == NULL)
	bb_show_usage();

    run_command (argv, &res);
    summarize (stderr, output_format, argv, &res);
    fflush (stderr);

    if (WIFSTOPPED (res.waitstatus))
	exit (WSTOPSIG (res.waitstatus));
    else if (WIFSIGNALED (res.waitstatus))
	exit (WTERMSIG (res.waitstatus));
    else if (WIFEXITED (res.waitstatus))
	exit (WEXITSTATUS (res.waitstatus));
    return 0;
}