Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/*
 * 6pack.c	This module implements the 6pack protocol for kernel-based
 *		devices like TTY. It interfaces between a raw TTY and the
 *		kernel's AX.25 protocol layers.
 *
 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
 *
 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 *
 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 */

#include <linux/module.h>
#include <asm/uaccess.h>
#include <linux/bitops.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/tty.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <net/ax25.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/spinlock.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/semaphore.h>
#include <linux/compat.h>
#include <linux/atomic.h>

#define SIXPACK_VERSION    "Revision: 0.3.0"

/* sixpack priority commands */
#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
#define SIXP_TX_URUN		0x48	/* transmit overrun */
#define SIXP_RX_ORUN		0x50	/* receive overrun */
#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */

#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */

/* masks to get certain bits out of the status bytes sent by the TNC */

#define SIXP_CMD_MASK		0xC0
#define SIXP_CHN_MASK		0x07
#define SIXP_PRIO_CMD_MASK	0x80
#define SIXP_STD_CMD_MASK	0x40
#define SIXP_PRIO_DATA_MASK	0x38
#define SIXP_TX_MASK		0x20
#define SIXP_RX_MASK		0x10
#define SIXP_RX_DCD_MASK	0x18
#define SIXP_LEDS_ON		0x78
#define SIXP_LEDS_OFF		0x60
#define SIXP_CON		0x08
#define SIXP_STA		0x10

#define SIXP_FOUND_TNC		0xe9
#define SIXP_CON_ON		0x68
#define SIXP_DCD_MASK		0x08
#define SIXP_DAMA_OFF		0

/* default level 2 parameters */
#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
#define SIXP_PERSIST			50	/* in 256ths */
#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */

/* 6pack configuration. */
#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
#define SIXP_MTU			256	/* Default MTU */

enum sixpack_flags {
	SIXPF_ERROR,	/* Parity, etc. error	*/
};

struct sixpack {
	/* Various fields. */
	struct tty_struct	*tty;		/* ptr to TTY structure	*/
	struct net_device	*dev;		/* easy for intr handling  */

	/* These are pointers to the malloc()ed frame buffers. */
	unsigned char		*rbuff;		/* receiver buffer	*/
	int			rcount;         /* received chars counter  */
	unsigned char		*xbuff;		/* transmitter buffer	*/
	unsigned char		*xhead;         /* next byte to XMIT */
	int			xleft;          /* bytes left in XMIT queue  */

	unsigned char		raw_buf[4];
	unsigned char		cooked_buf[400];

	unsigned int		rx_count;
	unsigned int		rx_count_cooked;

	int			mtu;		/* Our mtu (to spot changes!) */
	int			buffsize;       /* Max buffers sizes */

	unsigned long		flags;		/* Flag values/ mode etc */
	unsigned char		mode;		/* 6pack mode */

	/* 6pack stuff */
	unsigned char		tx_delay;
	unsigned char		persistence;
	unsigned char		slottime;
	unsigned char		duplex;
	unsigned char		led_state;
	unsigned char		status;
	unsigned char		status1;
	unsigned char		status2;
	unsigned char		tx_enable;
	unsigned char		tnc_state;

	struct timer_list	tx_t;
	struct timer_list	resync_t;
	atomic_t		refcnt;
	struct semaphore	dead_sem;
	spinlock_t		lock;
};

#define AX25_6PACK_HEADER_LEN 0

static void sixpack_decode(struct sixpack *, const unsigned char[], int);
static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);

/*
 * Perform the persistence/slottime algorithm for CSMA access. If the
 * persistence check was successful, write the data to the serial driver.
 * Note that in case of DAMA operation, the data is not sent here.
 */

static void sp_xmit_on_air(unsigned long channel)
{
	struct sixpack *sp = (struct sixpack *) channel;
	int actual, when = sp->slottime;
	static unsigned char random;

	random = random * 17 + 41;

	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
		sp->led_state = 0x70;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->tx_enable = 1;
		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
		sp->xleft -= actual;
		sp->xhead += actual;
		sp->led_state = 0x60;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->status2 = 0;
	} else
		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
}

/* ----> 6pack timer interrupt handler and friends. <---- */

/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
{
	unsigned char *msg, *p = icp;
	int actual, count;

	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
		msg = "oversized transmit packet!";
		goto out_drop;
	}

	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
		msg = "oversized transmit packet!";
		goto out_drop;
	}

	if (p[0] > 5) {
		msg = "invalid KISS command";
		goto out_drop;
	}

	if ((p[0] != 0) && (len > 2)) {
		msg = "KISS control packet too long";
		goto out_drop;
	}

	if ((p[0] == 0) && (len < 15)) {
		msg = "bad AX.25 packet to transmit";
		goto out_drop;
	}

	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);

	switch (p[0]) {
	case 1:	sp->tx_delay = p[1];
		return;
	case 2:	sp->persistence = p[1];
		return;
	case 3:	sp->slottime = p[1];
		return;
	case 4:	/* ignored */
		return;
	case 5:	sp->duplex = p[1];
		return;
	}

	if (p[0] != 0)
		return;

	/*
	 * In case of fullduplex or DAMA operation, we don't take care about the
	 * state of the DCD or of any timers, as the determination of the
	 * correct time to send is the job of the AX.25 layer. We send
	 * immediately after data has arrived.
	 */
	if (sp->duplex == 1) {
		sp->led_state = 0x70;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
		sp->tx_enable = 1;
		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
		sp->xleft = count - actual;
		sp->xhead = sp->xbuff + actual;
		sp->led_state = 0x60;
		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
	} else {
		sp->xleft = count;
		sp->xhead = sp->xbuff;
		sp->status2 = count;
		sp_xmit_on_air((unsigned long)sp);
	}

	return;

out_drop:
	sp->dev->stats.tx_dropped++;
	netif_start_queue(sp->dev);
	if (net_ratelimit())
		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
}

/* Encapsulate an IP datagram and kick it into a TTY queue. */

static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	if (skb->protocol == htons(ETH_P_IP))
		return ax25_ip_xmit(skb);

	spin_lock_bh(&sp->lock);
	/* We were not busy, so we are now... :-) */
	netif_stop_queue(dev);
	dev->stats.tx_bytes += skb->len;
	sp_encaps(sp, skb->data, skb->len);
	spin_unlock_bh(&sp->lock);

	dev_kfree_skb(skb);

	return NETDEV_TX_OK;
}

static int sp_open_dev(struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	if (sp->tty == NULL)
		return -ENODEV;
	return 0;
}

/* Close the low-level part of the 6pack channel. */
static int sp_close(struct net_device *dev)
{
	struct sixpack *sp = netdev_priv(dev);

	spin_lock_bh(&sp->lock);
	if (sp->tty) {
		/* TTY discipline is running. */
		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
	}
	netif_stop_queue(dev);
	spin_unlock_bh(&sp->lock);

	return 0;
}

static int sp_set_mac_address(struct net_device *dev, void *addr)
{
	struct sockaddr_ax25 *sa = addr;

	netif_tx_lock_bh(dev);
	netif_addr_lock(dev);
	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
	netif_addr_unlock(dev);
	netif_tx_unlock_bh(dev);

	return 0;
}

static const struct net_device_ops sp_netdev_ops = {
	.ndo_open		= sp_open_dev,
	.ndo_stop		= sp_close,
	.ndo_start_xmit		= sp_xmit,
	.ndo_set_mac_address    = sp_set_mac_address,
};

static void sp_setup(struct net_device *dev)
{
	/* Finish setting up the DEVICE info. */
	dev->netdev_ops		= &sp_netdev_ops;
	dev->destructor		= free_netdev;
	dev->mtu		= SIXP_MTU;
	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
	dev->header_ops 	= &ax25_header_ops;

	dev->addr_len		= AX25_ADDR_LEN;
	dev->type		= ARPHRD_AX25;
	dev->tx_queue_len	= 10;

	/* Only activated in AX.25 mode */
	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);

	dev->flags		= 0;
}

/* Send one completely decapsulated IP datagram to the IP layer. */

/*
 * This is the routine that sends the received data to the kernel AX.25.
 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 */

static void sp_bump(struct sixpack *sp, char cmd)
{
	struct sk_buff *skb;
	int count;
	unsigned char *ptr;

	count = sp->rcount + 1;

	sp->dev->stats.rx_bytes += count;

	if ((skb = dev_alloc_skb(count)) == NULL)
		goto out_mem;

	ptr = skb_put(skb, count);
	*ptr++ = cmd;	/* KISS command */

	memcpy(ptr, sp->cooked_buf + 1, count);
	skb->protocol = ax25_type_trans(skb, sp->dev);
	netif_rx(skb);
	sp->dev->stats.rx_packets++;

	return;

out_mem:
	sp->dev->stats.rx_dropped++;
}


/* ----------------------------------------------------------------------- */

/*
 * We have a potential race on dereferencing tty->disc_data, because the tty
 * layer provides no locking at all - thus one cpu could be running
 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 * best way to fix this is to use a rwlock in the tty struct, but for now we
 * use a single global rwlock for all ttys in ppp line discipline.
 */
static DEFINE_RWLOCK(disc_data_lock);
                                                                                
static struct sixpack *sp_get(struct tty_struct *tty)
{
	struct sixpack *sp;

	read_lock(&disc_data_lock);
	sp = tty->disc_data;
	if (sp)
		atomic_inc(&sp->refcnt);
	read_unlock(&disc_data_lock);

	return sp;
}

static void sp_put(struct sixpack *sp)
{
	if (atomic_dec_and_test(&sp->refcnt))
		up(&sp->dead_sem);
}

/*
 * Called by the TTY driver when there's room for more data.  If we have
 * more packets to send, we send them here.
 */
static void sixpack_write_wakeup(struct tty_struct *tty)
{
	struct sixpack *sp = sp_get(tty);
	int actual;

	if (!sp)
		return;
	if (sp->xleft <= 0)  {
		/* Now serial buffer is almost free & we can start
		 * transmission of another packet */
		sp->dev->stats.tx_packets++;
		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
		sp->tx_enable = 0;
		netif_wake_queue(sp->dev);
		goto out;
	}

	if (sp->tx_enable) {
		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
		sp->xleft -= actual;
		sp->xhead += actual;
	}

out:
	sp_put(sp);
}

/* ----------------------------------------------------------------------- */

/*
 * Handle the 'receiver data ready' interrupt.
 * This function is called by the tty module in the kernel when
 * a block of 6pack data has been received, which can now be decapsulated
 * and sent on to some IP layer for further processing.
 */
static void sixpack_receive_buf(struct tty_struct *tty,
	const unsigned char *cp, char *fp, int count)
{
	struct sixpack *sp;
	int count1;

	if (!count)
		return;

	sp = sp_get(tty);
	if (!sp)
		return;

	/* Read the characters out of the buffer */
	count1 = count;
	while (count) {
		count--;
		if (fp && *fp++) {
			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
				sp->dev->stats.rx_errors++;
			continue;
		}
	}
	sixpack_decode(sp, cp, count1);

	sp_put(sp);
	tty_unthrottle(tty);
}

/*
 * Try to resync the TNC. Called by the resync timer defined in
 * decode_prio_command
 */

#define TNC_UNINITIALIZED	0
#define TNC_UNSYNC_STARTUP	1
#define TNC_UNSYNCED		2
#define TNC_IN_SYNC		3

static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
{
	char *msg;

	switch (new_tnc_state) {
	default:			/* gcc oh piece-o-crap ... */
	case TNC_UNSYNC_STARTUP:
		msg = "Synchronizing with TNC";
		break;
	case TNC_UNSYNCED:
		msg = "Lost synchronization with TNC\n";
		break;
	case TNC_IN_SYNC:
		msg = "Found TNC";
		break;
	}

	sp->tnc_state = new_tnc_state;
	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
}

static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
{
	int old_tnc_state = sp->tnc_state;

	if (old_tnc_state != new_tnc_state)
		__tnc_set_sync_state(sp, new_tnc_state);
}

static void resync_tnc(unsigned long channel)
{
	struct sixpack *sp = (struct sixpack *) channel;
	static char resync_cmd = 0xe8;

	/* clear any data that might have been received */

	sp->rx_count = 0;
	sp->rx_count_cooked = 0;

	/* reset state machine */

	sp->status = 1;
	sp->status1 = 1;
	sp->status2 = 0;

	/* resync the TNC */

	sp->led_state = 0x60;
	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
	sp->tty->ops->write(sp->tty, &resync_cmd, 1);


	/* Start resync timer again -- the TNC might be still absent */

	del_timer(&sp->resync_t);
	sp->resync_t.data	= (unsigned long) sp;
	sp->resync_t.function	= resync_tnc;
	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
	add_timer(&sp->resync_t);
}

static inline int tnc_init(struct sixpack *sp)
{
	unsigned char inbyte = 0xe8;

	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);

	sp->tty->ops->write(sp->tty, &inbyte, 1);

	del_timer(&sp->resync_t);
	sp->resync_t.data = (unsigned long) sp;
	sp->resync_t.function = resync_tnc;
	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
	add_timer(&sp->resync_t);

	return 0;
}

/*
 * Open the high-level part of the 6pack channel.
 * This function is called by the TTY module when the
 * 6pack line discipline is called for.  Because we are
 * sure the tty line exists, we only have to link it to
 * a free 6pcack channel...
 */
static int sixpack_open(struct tty_struct *tty)
{
	char *rbuff = NULL, *xbuff = NULL;
	struct net_device *dev;
	struct sixpack *sp;
	unsigned long len;
	int err = 0;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;
	if (tty->ops->write == NULL)
		return -EOPNOTSUPP;

	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
			   sp_setup);
	if (!dev) {
		err = -ENOMEM;
		goto out;
	}

	sp = netdev_priv(dev);
	sp->dev = dev;

	spin_lock_init(&sp->lock);
	atomic_set(&sp->refcnt, 1);
	sema_init(&sp->dead_sem, 0);

	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */

	len = dev->mtu * 2;

	rbuff = kmalloc(len + 4, GFP_KERNEL);
	xbuff = kmalloc(len + 4, GFP_KERNEL);

	if (rbuff == NULL || xbuff == NULL) {
		err = -ENOBUFS;
		goto out_free;
	}

	spin_lock_bh(&sp->lock);

	sp->tty = tty;

	sp->rbuff	= rbuff;
	sp->xbuff	= xbuff;

	sp->mtu		= AX25_MTU + 73;
	sp->buffsize	= len;
	sp->rcount	= 0;
	sp->rx_count	= 0;
	sp->rx_count_cooked = 0;
	sp->xleft	= 0;

	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */

	sp->duplex	= 0;
	sp->tx_delay    = SIXP_TXDELAY;
	sp->persistence = SIXP_PERSIST;
	sp->slottime    = SIXP_SLOTTIME;
	sp->led_state   = 0x60;
	sp->status      = 1;
	sp->status1     = 1;
	sp->status2     = 0;
	sp->tx_enable   = 0;

	netif_start_queue(dev);

	init_timer(&sp->tx_t);
	sp->tx_t.function = sp_xmit_on_air;
	sp->tx_t.data = (unsigned long) sp;

	init_timer(&sp->resync_t);

	spin_unlock_bh(&sp->lock);

	/* Done.  We have linked the TTY line to a channel. */
	tty->disc_data = sp;
	tty->receive_room = 65536;

	/* Now we're ready to register. */
	err = register_netdev(dev);
	if (err)
		goto out_free;

	tnc_init(sp);

	return 0;

out_free:
	kfree(xbuff);
	kfree(rbuff);

	free_netdev(dev);

out:
	return err;
}


/*
 * Close down a 6pack channel.
 * This means flushing out any pending queues, and then restoring the
 * TTY line discipline to what it was before it got hooked to 6pack
 * (which usually is TTY again).
 */
static void sixpack_close(struct tty_struct *tty)
{
	struct sixpack *sp;

	write_lock_bh(&disc_data_lock);
	sp = tty->disc_data;
	tty->disc_data = NULL;
	write_unlock_bh(&disc_data_lock);
	if (!sp)
		return;

	/*
	 * We have now ensured that nobody can start using ap from now on, but
	 * we have to wait for all existing users to finish.
	 */
	if (!atomic_dec_and_test(&sp->refcnt))
		down(&sp->dead_sem);

	/* We must stop the queue to avoid potentially scribbling
	 * on the free buffers. The sp->dead_sem is not sufficient
	 * to protect us from sp->xbuff access.
	 */
	netif_stop_queue(sp->dev);

	del_timer_sync(&sp->tx_t);
	del_timer_sync(&sp->resync_t);

	/* Free all 6pack frame buffers. */
	kfree(sp->rbuff);
	kfree(sp->xbuff);

	unregister_netdev(sp->dev);
}

/* Perform I/O control on an active 6pack channel. */
static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
	unsigned int cmd, unsigned long arg)
{
	struct sixpack *sp = sp_get(tty);
	struct net_device *dev;
	unsigned int tmp, err;

	if (!sp)
		return -ENXIO;
	dev = sp->dev;

	switch(cmd) {
	case SIOCGIFNAME:
		err = copy_to_user((void __user *) arg, dev->name,
		                   strlen(dev->name) + 1) ? -EFAULT : 0;
		break;

	case SIOCGIFENCAP:
		err = put_user(0, (int __user *) arg);
		break;

	case SIOCSIFENCAP:
		if (get_user(tmp, (int __user *) arg)) {
			err = -EFAULT;
			break;
		}

		sp->mode = tmp;
		dev->addr_len        = AX25_ADDR_LEN;
		dev->hard_header_len = AX25_KISS_HEADER_LEN +
		                       AX25_MAX_HEADER_LEN + 3;
		dev->type            = ARPHRD_AX25;

		err = 0;
		break;

	 case SIOCSIFHWADDR: {
		char addr[AX25_ADDR_LEN];

		if (copy_from_user(&addr,
		                   (void __user *) arg, AX25_ADDR_LEN)) {
				err = -EFAULT;
				break;
			}

			netif_tx_lock_bh(dev);
			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
			netif_tx_unlock_bh(dev);

			err = 0;
			break;
		}

	default:
		err = tty_mode_ioctl(tty, file, cmd, arg);
	}

	sp_put(sp);

	return err;
}

#ifdef CONFIG_COMPAT
static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
				unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case SIOCGIFNAME:
	case SIOCGIFENCAP:
	case SIOCSIFENCAP:
	case SIOCSIFHWADDR:
		return sixpack_ioctl(tty, file, cmd,
				(unsigned long)compat_ptr(arg));
	}

	return -ENOIOCTLCMD;
}
#endif

static struct tty_ldisc_ops sp_ldisc = {
	.owner		= THIS_MODULE,
	.magic		= TTY_LDISC_MAGIC,
	.name		= "6pack",
	.open		= sixpack_open,
	.close		= sixpack_close,
	.ioctl		= sixpack_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= sixpack_compat_ioctl,
#endif
	.receive_buf	= sixpack_receive_buf,
	.write_wakeup	= sixpack_write_wakeup,
};

/* Initialize 6pack control device -- register 6pack line discipline */

static const char msg_banner[]  __initconst = KERN_INFO \
	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
static const char msg_regfail[] __initconst = KERN_ERR  \
	"6pack: can't register line discipline (err = %d)\n";

static int __init sixpack_init_driver(void)
{
	int status;

	printk(msg_banner);

	/* Register the provided line protocol discipline */
	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
		printk(msg_regfail, status);

	return status;
}

static const char msg_unregfail[] = KERN_ERR \
	"6pack: can't unregister line discipline (err = %d)\n";

static void __exit sixpack_exit_driver(void)
{
	int ret;

	if ((ret = tty_unregister_ldisc(N_6PACK)))
		printk(msg_unregfail, ret);
}

/* encode an AX.25 packet into 6pack */

static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
	int length, unsigned char tx_delay)
{
	int count = 0;
	unsigned char checksum = 0, buf[400];
	int raw_count = 0;

	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
	tx_buf_raw[raw_count++] = SIXP_SEOF;

	buf[0] = tx_delay;
	for (count = 1; count < length; count++)
		buf[count] = tx_buf[count];

	for (count = 0; count < length; count++)
		checksum += buf[count];
	buf[length] = (unsigned char) 0xff - checksum;

	for (count = 0; count <= length; count++) {
		if ((count % 3) == 0) {
			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
		} else if ((count % 3) == 1) {
			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
		} else {
			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
			tx_buf_raw[raw_count++] = (buf[count] >> 2);
		}
	}
	if ((length % 3) != 2)
		raw_count++;
	tx_buf_raw[raw_count++] = SIXP_SEOF;
	return raw_count;
}

/* decode 4 sixpack-encoded bytes into 3 data bytes */

static void decode_data(struct sixpack *sp, unsigned char inbyte)
{
	unsigned char *buf;

	if (sp->rx_count != 3) {
		sp->raw_buf[sp->rx_count++] = inbyte;

		return;
	}

	buf = sp->raw_buf;
	sp->cooked_buf[sp->rx_count_cooked++] =
		buf[0] | ((buf[1] << 2) & 0xc0);
	sp->cooked_buf[sp->rx_count_cooked++] =
		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
	sp->cooked_buf[sp->rx_count_cooked++] =
		(buf[2] & 0x03) | (inbyte << 2);
	sp->rx_count = 0;
}

/* identify and execute a 6pack priority command byte */

static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
{
	unsigned char channel;
	int actual;

	channel = cmd & SIXP_CHN_MASK;
	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */

	/* RX and DCD flags can only be set in the same prio command,
	   if the DCD flag has been set without the RX flag in the previous
	   prio command. If DCD has not been set before, something in the
	   transmission has gone wrong. In this case, RX and DCD are
	   cleared in order to prevent the decode_data routine from
	   reading further data that might be corrupt. */

		if (((sp->status & SIXP_DCD_MASK) == 0) &&
			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
				if (sp->status != 1)
					printk(KERN_DEBUG "6pack: protocol violation\n");
				else
					sp->status = 0;
				cmd &= ~SIXP_RX_DCD_MASK;
		}
		sp->status = cmd & SIXP_PRIO_DATA_MASK;
	} else { /* output watchdog char if idle */
		if ((sp->status2 != 0) && (sp->duplex == 1)) {
			sp->led_state = 0x70;
			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			sp->tx_enable = 1;
			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
			sp->xleft -= actual;
			sp->xhead += actual;
			sp->led_state = 0x60;
			sp->status2 = 0;

		}
	}

	/* needed to trigger the TNC watchdog */
	sp->tty->ops->write(sp->tty, &sp->led_state, 1);

        /* if the state byte has been received, the TNC is present,
           so the resync timer can be reset. */

	if (sp->tnc_state == TNC_IN_SYNC) {
		del_timer(&sp->resync_t);
		sp->resync_t.data	= (unsigned long) sp;
		sp->resync_t.function	= resync_tnc;
		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
		add_timer(&sp->resync_t);
	}

	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
}

/* identify and execute a standard 6pack command byte */

static void decode_std_command(struct sixpack *sp, unsigned char cmd)
{
	unsigned char checksum = 0, rest = 0, channel;
	short i;

	channel = cmd & SIXP_CHN_MASK;
	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
	case SIXP_SEOF:
		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
			if ((sp->status & SIXP_RX_DCD_MASK) ==
				SIXP_RX_DCD_MASK) {
				sp->led_state = 0x68;
				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			}
		} else {
			sp->led_state = 0x60;
			/* fill trailing bytes with zeroes */
			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
			rest = sp->rx_count;
			if (rest != 0)
				 for (i = rest; i <= 3; i++)
					decode_data(sp, 0);
			if (rest == 2)
				sp->rx_count_cooked -= 2;
			else if (rest == 3)
				sp->rx_count_cooked -= 1;
			for (i = 0; i < sp->rx_count_cooked; i++)
				checksum += sp->cooked_buf[i];
			if (checksum != SIXP_CHKSUM) {
				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
			} else {
				sp->rcount = sp->rx_count_cooked-2;
				sp_bump(sp, 0);
			}
			sp->rx_count_cooked = 0;
		}
		break;
	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
		break;
	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
		break;
	case SIXP_RX_BUF_OVL:
		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
	}
}

/* decode a 6pack packet */

static void
sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
{
	unsigned char inbyte;
	int count1;

	for (count1 = 0; count1 < count; count1++) {
		inbyte = pre_rbuff[count1];
		if (inbyte == SIXP_FOUND_TNC) {
			tnc_set_sync_state(sp, TNC_IN_SYNC);
			del_timer(&sp->resync_t);
		}
		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
			decode_prio_command(sp, inbyte);
		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
			decode_std_command(sp, inbyte);
		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
			decode_data(sp, inbyte);
	}
}

MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
MODULE_DESCRIPTION("6pack driver for AX.25");
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_6PACK);

module_init(sixpack_init_driver);
module_exit(sixpack_exit_driver);