Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 *    Copyright (C) 1996 Paul Mackerras
 *
 *  Derived from "arch/i386/mm/init.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Dave Engebretsen <engebret@us.ibm.com>
 *      Rework for PPC64 port.
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 */

#undef DEBUG

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/poison.h>
#include <linux/memblock.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>

#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/vdso.h>

#include "mmu_decl.h"

#ifdef CONFIG_PPC_STD_MMU_64
#if H_PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif

#if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
#warning TASK_SIZE is smaller than it needs to be.
#endif
#endif /* CONFIG_PPC_STD_MMU_64 */

phys_addr_t memstart_addr = ~0;
EXPORT_SYMBOL_GPL(memstart_addr);
phys_addr_t kernstart_addr;
EXPORT_SYMBOL_GPL(kernstart_addr);

static void pgd_ctor(void *addr)
{
	memset(addr, 0, PGD_TABLE_SIZE);
}

static void pud_ctor(void *addr)
{
	memset(addr, 0, PUD_TABLE_SIZE);
}

static void pmd_ctor(void *addr)
{
	memset(addr, 0, PMD_TABLE_SIZE);
}

struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];

/*
 * Create a kmem_cache() for pagetables.  This is not used for PTE
 * pages - they're linked to struct page, come from the normal free
 * pages pool and have a different entry size (see real_pte_t) to
 * everything else.  Caches created by this function are used for all
 * the higher level pagetables, and for hugepage pagetables.
 */
void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
{
	char *name;
	unsigned long table_size = sizeof(void *) << shift;
	unsigned long align = table_size;

	/* When batching pgtable pointers for RCU freeing, we store
	 * the index size in the low bits.  Table alignment must be
	 * big enough to fit it.
	 *
	 * Likewise, hugeapge pagetable pointers contain a (different)
	 * shift value in the low bits.  All tables must be aligned so
	 * as to leave enough 0 bits in the address to contain it. */
	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
				     HUGEPD_SHIFT_MASK + 1);
	struct kmem_cache *new;

	/* It would be nice if this was a BUILD_BUG_ON(), but at the
	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
	 * constant expression, so so much for that. */
	BUG_ON(!is_power_of_2(minalign));
	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));

	if (PGT_CACHE(shift))
		return; /* Already have a cache of this size */

	align = max_t(unsigned long, align, minalign);
	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
	new = kmem_cache_create(name, table_size, align, 0, ctor);
	kfree(name);
	pgtable_cache[shift - 1] = new;
	pr_debug("Allocated pgtable cache for order %d\n", shift);
}


void pgtable_cache_init(void)
{
	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
	/*
	 * In all current configs, when the PUD index exists it's the
	 * same size as either the pgd or pmd index except with THP enabled
	 * on book3s 64
	 */
	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
		pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);

	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
		panic("Couldn't allocate pgtable caches");
	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
		panic("Couldn't allocate pud pgtable caches");
}

#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
 * Given an address within the vmemmap, determine the pfn of the page that
 * represents the start of the section it is within.  Note that we have to
 * do this by hand as the proffered address may not be correctly aligned.
 * Subtraction of non-aligned pointers produces undefined results.
 */
static unsigned long __meminit vmemmap_section_start(unsigned long page)
{
	unsigned long offset = page - ((unsigned long)(vmemmap));

	/* Return the pfn of the start of the section. */
	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
}

/*
 * Check if this vmemmap page is already initialised.  If any section
 * which overlaps this vmemmap page is initialised then this page is
 * initialised already.
 */
static int __meminit vmemmap_populated(unsigned long start, int page_size)
{
	unsigned long end = start + page_size;
	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));

	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
		if (pfn_valid(page_to_pfn((struct page *)start)))
			return 1;

	return 0;
}

struct vmemmap_backing *vmemmap_list;
static struct vmemmap_backing *next;
static int num_left;
static int num_freed;

static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
{
	struct vmemmap_backing *vmem_back;
	/* get from freed entries first */
	if (num_freed) {
		num_freed--;
		vmem_back = next;
		next = next->list;

		return vmem_back;
	}

	/* allocate a page when required and hand out chunks */
	if (!num_left) {
		next = vmemmap_alloc_block(PAGE_SIZE, node);
		if (unlikely(!next)) {
			WARN_ON(1);
			return NULL;
		}
		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
	}

	num_left--;

	return next++;
}

static __meminit void vmemmap_list_populate(unsigned long phys,
					    unsigned long start,
					    int node)
{
	struct vmemmap_backing *vmem_back;

	vmem_back = vmemmap_list_alloc(node);
	if (unlikely(!vmem_back)) {
		WARN_ON(1);
		return;
	}

	vmem_back->phys = phys;
	vmem_back->virt_addr = start;
	vmem_back->list = vmemmap_list;

	vmemmap_list = vmem_back;
}

int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;

	/* Align to the page size of the linear mapping. */
	start = _ALIGN_DOWN(start, page_size);

	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);

	for (; start < end; start += page_size) {
		void *p;
		int rc;

		if (vmemmap_populated(start, page_size))
			continue;

		p = vmemmap_alloc_block(page_size, node);
		if (!p)
			return -ENOMEM;

		vmemmap_list_populate(__pa(p), start, node);

		pr_debug("      * %016lx..%016lx allocated at %p\n",
			 start, start + page_size, p);

		rc = vmemmap_create_mapping(start, page_size, __pa(p));
		if (rc < 0) {
			pr_warning(
				"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
				rc);
			return -EFAULT;
		}
	}

	return 0;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long vmemmap_list_free(unsigned long start)
{
	struct vmemmap_backing *vmem_back, *vmem_back_prev;

	vmem_back_prev = vmem_back = vmemmap_list;

	/* look for it with prev pointer recorded */
	for (; vmem_back; vmem_back = vmem_back->list) {
		if (vmem_back->virt_addr == start)
			break;
		vmem_back_prev = vmem_back;
	}

	if (unlikely(!vmem_back)) {
		WARN_ON(1);
		return 0;
	}

	/* remove it from vmemmap_list */
	if (vmem_back == vmemmap_list) /* remove head */
		vmemmap_list = vmem_back->list;
	else
		vmem_back_prev->list = vmem_back->list;

	/* next point to this freed entry */
	vmem_back->list = next;
	next = vmem_back;
	num_freed++;

	return vmem_back->phys;
}

void __ref vmemmap_free(unsigned long start, unsigned long end)
{
	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;

	start = _ALIGN_DOWN(start, page_size);

	pr_debug("vmemmap_free %lx...%lx\n", start, end);

	for (; start < end; start += page_size) {
		unsigned long addr;

		/*
		 * the section has already be marked as invalid, so
		 * vmemmap_populated() true means some other sections still
		 * in this page, so skip it.
		 */
		if (vmemmap_populated(start, page_size))
			continue;

		addr = vmemmap_list_free(start);
		if (addr) {
			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);

			if (PageReserved(page)) {
				/* allocated from bootmem */
				if (page_size < PAGE_SIZE) {
					/*
					 * this shouldn't happen, but if it is
					 * the case, leave the memory there
					 */
					WARN_ON_ONCE(1);
				} else {
					unsigned int nr_pages =
						1 << get_order(page_size);
					while (nr_pages--)
						free_reserved_page(page++);
				}
			} else
				free_pages((unsigned long)(__va(addr)),
							get_order(page_size));

			vmemmap_remove_mapping(start, page_size);
		}
	}
}
#endif
void register_page_bootmem_memmap(unsigned long section_nr,
				  struct page *start_page, unsigned long size)
{
}

/*
 * We do not have access to the sparsemem vmemmap, so we fallback to
 * walking the list of sparsemem blocks which we already maintain for
 * the sake of crashdump. In the long run, we might want to maintain
 * a tree if performance of that linear walk becomes a problem.
 *
 * realmode_pfn_to_page functions can fail due to:
 * 1) As real sparsemem blocks do not lay in RAM continously (they
 * are in virtual address space which is not available in the real mode),
 * the requested page struct can be split between blocks so get_page/put_page
 * may fail.
 * 2) When huge pages are used, the get_page/put_page API will fail
 * in real mode as the linked addresses in the page struct are virtual
 * too.
 */
struct page *realmode_pfn_to_page(unsigned long pfn)
{
	struct vmemmap_backing *vmem_back;
	struct page *page;
	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);

	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
		if (pg_va < vmem_back->virt_addr)
			continue;

		/* After vmemmap_list entry free is possible, need check all */
		if ((pg_va + sizeof(struct page)) <=
				(vmem_back->virt_addr + page_size)) {
			page = (struct page *) (vmem_back->phys + pg_va -
				vmem_back->virt_addr);
			return page;
		}
	}

	/* Probably that page struct is split between real pages */
	return NULL;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);

#elif defined(CONFIG_FLATMEM)

struct page *realmode_pfn_to_page(unsigned long pfn)
{
	struct page *page = pfn_to_page(pfn);
	return page;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);

#endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */

#ifdef CONFIG_PPC_STD_MMU_64
static bool disable_radix;
static int __init parse_disable_radix(char *p)
{
	disable_radix = true;
	return 0;
}
early_param("disable_radix", parse_disable_radix);

void __init mmu_early_init_devtree(void)
{
	/* Disable radix mode based on kernel command line. */
	/* We don't yet have the machinery to do radix as a guest. */
	if (disable_radix || !(mfmsr() & MSR_HV))
		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;

	if (early_radix_enabled())
		radix__early_init_devtree();
	else
		hash__early_init_devtree();
}
#endif /* CONFIG_PPC_STD_MMU_64 */