Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 * An SPI driver for the Philips PCF2123 RTC
 * Copyright 2009 Cyber Switching, Inc.
 *
 * Author: Chris Verges <chrisv@cyberswitching.com>
 * Maintainers: http://www.cyberswitching.com
 *
 * based on the RS5C348 driver in this same directory.
 *
 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 * the sysfs contributions to this driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Please note that the CS is active high, so platform data
 * should look something like:
 *
 * static struct spi_board_info ek_spi_devices[] = {
 *	...
 *	{
 *		.modalias		= "rtc-pcf2123",
 *		.chip_select		= 1,
 *		.controller_data	= (void *)AT91_PIN_PA10,
 *		.max_speed_hz		= 1000 * 1000,
 *		.mode			= SPI_CS_HIGH,
 *		.bus_num		= 0,
 *	},
 *	...
 *};
 *
 */

#include <linux/bcd.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/rtc.h>
#include <linux/spi/spi.h>
#include <linux/module.h>
#include <linux/sysfs.h>

/* REGISTERS */
#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
#define PCF2123_REG_SC		(0x02)	/* datetime */
#define PCF2123_REG_MN		(0x03)
#define PCF2123_REG_HR		(0x04)
#define PCF2123_REG_DM		(0x05)
#define PCF2123_REG_DW		(0x06)
#define PCF2123_REG_MO		(0x07)
#define PCF2123_REG_YR		(0x08)
#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
#define PCF2123_REG_ALRM_HR	(0x0a)
#define PCF2123_REG_ALRM_DM	(0x0b)
#define PCF2123_REG_ALRM_DW	(0x0c)
#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
#define PCF2123_REG_CTDWN_TMR	(0x0f)

/* PCF2123_REG_CTRL1 BITS */
#define CTRL1_CLEAR		(0)	/* Clear */
#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
#define CTRL1_STOP		BIT(5)	/* Stop the clock */
#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */

/* PCF2123_REG_CTRL2 BITS */
#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
#define CTRL2_AF		BIT(3)	/* Alarm flag */
#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
#define CTRL2_SI		BIT(6)	/* Second irq enable */
#define CTRL2_MI		BIT(7)	/* Minute irq enable */

/* PCF2123_REG_SC BITS */
#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */

/* PCF2123_REG_ALRM_XX BITS */
#define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */

/* PCF2123_REG_TMR_CLKOUT BITS */
#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */

/* PCF2123_REG_OFFSET BITS */
#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */

/* READ/WRITE ADDRESS BITS */
#define PCF2123_WRITE		BIT(4)
#define PCF2123_READ		(BIT(4) | BIT(7))


static struct spi_driver pcf2123_driver;

struct pcf2123_sysfs_reg {
	struct device_attribute attr;
	char name[2];
};

struct pcf2123_plat_data {
	struct rtc_device *rtc;
	struct pcf2123_sysfs_reg regs[16];
};

/*
 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
 * is released properly after an SPI write.  This function should be
 * called after EVERY read/write call over SPI.
 */
static inline void pcf2123_delay_trec(void)
{
	ndelay(30);
}

static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
{
	struct spi_device *spi = to_spi_device(dev);
	int ret;

	reg |= PCF2123_READ;
	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
	pcf2123_delay_trec();

	return ret;
}

static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
{
	struct spi_device *spi = to_spi_device(dev);
	int ret;

	txbuf[0] |= PCF2123_WRITE;
	ret = spi_write(spi, txbuf, size);
	pcf2123_delay_trec();

	return ret;
}

static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
{
	u8 txbuf[2];

	txbuf[0] = reg;
	txbuf[1] = val;
	return pcf2123_write(dev, txbuf, sizeof(txbuf));
}

static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
			    char *buffer)
{
	struct pcf2123_sysfs_reg *r;
	u8 rxbuf[1];
	unsigned long reg;
	int ret;

	r = container_of(attr, struct pcf2123_sysfs_reg, attr);

	ret = kstrtoul(r->name, 16, &reg);
	if (ret)
		return ret;

	ret = pcf2123_read(dev, reg, rxbuf, 1);
	if (ret < 0)
		return -EIO;

	return sprintf(buffer, "0x%x\n", rxbuf[0]);
}

static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
			     const char *buffer, size_t count)
{
	struct pcf2123_sysfs_reg *r;
	unsigned long reg;
	unsigned long val;

	int ret;

	r = container_of(attr, struct pcf2123_sysfs_reg, attr);

	ret = kstrtoul(r->name, 16, &reg);
	if (ret)
		return ret;

	ret = kstrtoul(buffer, 10, &val);
	if (ret)
		return ret;

	ret = pcf2123_write_reg(dev, reg, val);
	if (ret < 0)
		return -EIO;
	return count;
}

static int pcf2123_read_offset(struct device *dev, long *offset)
{
	int ret;
	s8 reg;

	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
	if (ret < 0)
		return ret;

	if (reg & OFFSET_COARSE)
		reg <<= 1; /* multiply by 2 and sign extend */
	else
		reg = sign_extend32(reg, OFFSET_SIGN_BIT);

	*offset = ((long)reg) * OFFSET_STEP;

	return 0;
}

/*
 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
 * The main difference between the two is normal offset adjusts the first
 * second of n minutes every other hour, with 61, 62 and 63 being shoved
 * into the 60th minute.
 * The coarse adjustment does the same, but every hour.
 * the two overlap, with every even normal offset value corresponding
 * to a coarse offset. Based on this algorithm, it seems that despite the
 * name, coarse offset is a better fit for overlapping values.
 */
static int pcf2123_set_offset(struct device *dev, long offset)
{
	s8 reg;

	if (offset > OFFSET_STEP * 127)
		reg = 127;
	else if (offset < OFFSET_STEP * -128)
		reg = -128;
	else
		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);

	/* choose fine offset only for odd values in the normal range */
	if (reg & 1 && reg <= 63 && reg >= -64) {
		/* Normal offset. Clear the coarse bit */
		reg &= ~OFFSET_COARSE;
	} else {
		/* Coarse offset. Divide by 2 and set the coarse bit */
		reg >>= 1;
		reg |= OFFSET_COARSE;
	}

	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
}

static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	u8 rxbuf[7];
	int ret;

	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
	if (ret < 0)
		return ret;

	if (rxbuf[0] & OSC_HAS_STOPPED) {
		dev_info(dev, "clock was stopped. Time is not valid\n");
		return -EINVAL;
	}

	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
	tm->tm_wday = rxbuf[4] & 0x07;
	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
	tm->tm_year = bcd2bin(rxbuf[6]);
	if (tm->tm_year < 70)
		tm->tm_year += 100;	/* assume we are in 1970...2069 */

	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
			"mday=%d, mon=%d, year=%d, wday=%d\n",
			__func__,
			tm->tm_sec, tm->tm_min, tm->tm_hour,
			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

	return rtc_valid_tm(tm);
}

static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	u8 txbuf[8];
	int ret;

	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
			"mday=%d, mon=%d, year=%d, wday=%d\n",
			__func__,
			tm->tm_sec, tm->tm_min, tm->tm_hour,
			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);

	/* Stop the counter first */
	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
	if (ret < 0)
		return ret;

	/* Set the new time */
	txbuf[0] = PCF2123_REG_SC;
	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
	txbuf[5] = tm->tm_wday & 0x07;
	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);

	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
	if (ret < 0)
		return ret;

	/* Start the counter */
	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
	if (ret < 0)
		return ret;

	return 0;
}

static int pcf2123_reset(struct device *dev)
{
	int ret;
	u8  rxbuf[2];

	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
	if (ret < 0)
		return ret;

	/* Stop the counter */
	dev_dbg(dev, "stopping RTC\n");
	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
	if (ret < 0)
		return ret;

	/* See if the counter was actually stopped */
	dev_dbg(dev, "checking for presence of RTC\n");
	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
	if (ret < 0)
		return ret;

	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
		rxbuf[0], rxbuf[1]);
	if (!(rxbuf[0] & CTRL1_STOP))
		return -ENODEV;

	/* Start the counter */
	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
	if (ret < 0)
		return ret;

	return 0;
}

static const struct rtc_class_ops pcf2123_rtc_ops = {
	.read_time	= pcf2123_rtc_read_time,
	.set_time	= pcf2123_rtc_set_time,
	.read_offset	= pcf2123_read_offset,
	.set_offset	= pcf2123_set_offset,

};

static int pcf2123_probe(struct spi_device *spi)
{
	struct rtc_device *rtc;
	struct rtc_time tm;
	struct pcf2123_plat_data *pdata;
	int ret, i;

	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
				GFP_KERNEL);
	if (!pdata)
		return -ENOMEM;
	spi->dev.platform_data = pdata;

	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
	if (ret < 0) {
		ret = pcf2123_reset(&spi->dev);
		if (ret < 0) {
			dev_err(&spi->dev, "chip not found\n");
			goto kfree_exit;
		}
	}

	dev_info(&spi->dev, "spiclk %u KHz.\n",
			(spi->max_speed_hz + 500) / 1000);

	/* Finalize the initialization */
	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
			&pcf2123_rtc_ops, THIS_MODULE);

	if (IS_ERR(rtc)) {
		dev_err(&spi->dev, "failed to register.\n");
		ret = PTR_ERR(rtc);
		goto kfree_exit;
	}

	pdata->rtc = rtc;

	for (i = 0; i < 16; i++) {
		sysfs_attr_init(&pdata->regs[i].attr.attr);
		sprintf(pdata->regs[i].name, "%1x", i);
		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
		pdata->regs[i].attr.show = pcf2123_show;
		pdata->regs[i].attr.store = pcf2123_store;
		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
		if (ret) {
			dev_err(&spi->dev, "Unable to create sysfs %s\n",
				pdata->regs[i].name);
			goto sysfs_exit;
		}
	}

	return 0;

sysfs_exit:
	for (i--; i >= 0; i--)
		device_remove_file(&spi->dev, &pdata->regs[i].attr);

kfree_exit:
	spi->dev.platform_data = NULL;
	return ret;
}

static int pcf2123_remove(struct spi_device *spi)
{
	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
	int i;

	if (pdata) {
		for (i = 0; i < 16; i++)
			if (pdata->regs[i].name[0])
				device_remove_file(&spi->dev,
						   &pdata->regs[i].attr);
	}

	return 0;
}

#ifdef CONFIG_OF
static const struct of_device_id pcf2123_dt_ids[] = {
	{ .compatible = "nxp,rtc-pcf2123", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
#endif

static struct spi_driver pcf2123_driver = {
	.driver	= {
			.name	= "rtc-pcf2123",
			.of_match_table = of_match_ptr(pcf2123_dt_ids),
	},
	.probe	= pcf2123_probe,
	.remove	= pcf2123_remove,
};

module_spi_driver(pcf2123_driver);

MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
MODULE_LICENSE("GPL");